
Evaluating and Improving Hybrid Fuzzing

Ling Jiang†

Southern University of Science

and Technology

Shenzhen, China

11711906@mail.sustech.edu.cn

Hengchen Yuan

Southern University of Science

and Technology

Shenzhen, China

11911202@mail.sustech.edu.cn

Mingyuan Wu

Southern University of Science

and Technology

Shenzhen, China

11849319@mail.sustech.edu.cn

Lingming Zhang

University of Illinois Urbana-Champaign

Champaign, USA

lingming@illinois.edu

Yuqun Zhang∗

Southern University of Science

and Technology

Shenzhen, China

zhangyq@sustech.edu.cn

Abstract—To date, various hybrid fuzzers have been proposed
for maximal program vulnerability exposure by integrating the
power of fuzzing strategies and concolic executors. While the
existing hybrid fuzzers have shown their superiority over con-
ventional coverage-guided fuzzers, they seldom follow equivalent
evaluation setups, e.g., benchmarks and seed corpora. Thus,
there is a pressing need for a comprehensive study on the
existing hybrid fuzzers to provide implications and guidance
for future research in this area. To this end, in this paper,
we conduct the first extensive study on state-of-the-art hybrid
fuzzers. Surprisingly, our study shows that the performance
of existing hybrid fuzzers may not well generalize to other
experimental settings. Meanwhile, their performance advantages
over conventional coverage-guided fuzzers are overall limited.
In addition, instead of simply updating the fuzzing strategies or
concolic executors, updating their coordination modes potentially
poses crucial performance impact of hybrid fuzzers. Accordingly,
we propose CoFuzz to improve the effectiveness of hybrid fuzzers
by upgrading their coordination modes. Specifically, based on
the baseline hybrid fuzzer QSYM, CoFuzz adopts edge-oriented
scheduling to schedule edges for applying concolic execution
via an online linear regression model with Stochastic Gradient
Descent. It also adopts sampling-augmenting synchronization to
derive seeds for applying fuzzing strategies via the interval path
abstraction and John walk as well as incrementally updating
the model. Our evaluation results indicate that CoFuzz can
significantly increase the edge coverage (e.g., 16.31% higher
than the best existing hybrid fuzzer in our study) and expose
around 2X more unique crashes than all studied hybrid fuzzers.
Moreover, CoFuzz successfully detects 37 previously unknown
bugs where 30 are confirmed with 8 new CVEs and 20 are fixed.

I. INTRODUCTION

Fuzzing usually refers to automated test input generation for

exposing potential software bugs or security vulnerabilities. To

date, many existing fuzzers facilitate vulnerability exposure

by optimizing code coverage of programs under test (i.e.,

coverage-guided fuzzing [1]–[6]). However, they have been

† Ling Jiang is also affiliated with the Research Institute of Trustworthy
Autonomous Systems, Shenzhen, China.

* Yuqun Zhang is the corresponding author. He is also affiliated with the
Research Institute of Trustworthy Autonomous Systems, Shenzhen, China and
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Compu-
tation, China

shown ineffective in many occasions [7]–[9]. To address such

issue, hybrid fuzzing [10]–[16] has been proposed to augment

fuzzing effectiveness by coordinating fuzzing strategies and

concolic execution [17]. Specifically, hybrid fuzzers leverage

fuzzing strategies to promptly explore program states and

concolic executors to generate the inputs which advance in

exploring hard-to-cover branches by solving program path

constraints. Moreover, hybrid fuzzers develop coordination

modes [14]–[16] to schedule subjects to be solved by concolic

execution and synchronize the resulting solutions for executing

fuzzing strategies to strengthen their effectiveness.

Although hybrid fuzzers have shown their performance

superiority over conventional coverage-guided fuzzers, e.g.,

Angora outperforms AFL by 27.08% in terms of edge cover-

age in the original paper [11], they seldom follow equivalent

evaluation setups, e.g., they hardly perform evaluations on

identical benchmarks or initial seed corpora. For instance,

QSYM [10] and Eclipser [12] adopt no common benchmark

programs for their evaluations. Meanwhile, the performance

comparisons among the existing hybrid fuzzers are also lim-

ited. For instance, Intriguer [13] only has been evaluated

against QSYM [10] in the existing literature. Such inconsistent

evaluation setups and limited performance comparisons can

potentially compromise the effectiveness and reliability of

the existing hybrid fuzzers. Therefore, there is a pressing

need for an extensive study on the existing hybrid fuzzers

to comprehensively delineate their strengths, limitations, and

rationale.

In this paper, to our best knowledge, we conduct the first

comprehensive study on the existing hybrid fuzzers. Specif-

ically, we select seven state-of-the-art hybrid fuzzers as our

study subjects and construct a comprehensive benchmark suite

with 15 commonly adopted programs in their original papers.

Our study results suggest that the performance of existing

hybrid fuzzers may not well generalize to other experimental

setups. For instance, while Intriguer [13] and MEUZZ [15]

outperform QSYM in the original papers, our study shows that

QSYM can outperform Intriguer and MEUZZ by 9.69% and





conditional branch in an execution path under concrete input

for solving the corresponding path constraints, such as [17],

[38], [39], [42], [43]. When being applied in fuzzing, concolic

execution can be advanced in exploring hard-to-cover program

transitions such that their solutions can be used as seeds to

facilitate further exploration of program states via fuzzing.

For instance, Figure 1 presents an execution path with two

conditional statements (i.e., ψ1 and ψ2) in the upper right cor-

ner. Correspondingly, a concolic executor solves the negated

path constraints ¬ψ1 and ψ1 ∧¬ψ2 respectively such that the

scope bounded by ψ1 and ψ2 can be further explored. While

compared with coverage-guided fuzzing strategies which are

usually lightweight in promptly exploring program states,

concolic execution tends to be heavyweight, i.e., incurring

significant computation overhead for symbolic emulation and

constraint solving [10], [22], [23].

C. Coordination Mode

As mentioned, in this paper, we focus on hybrid fuzzers

which develop a coordination mode to coordinate the usage

of its fuzzing strategy and concolic executor. Figure 1 shows

that a coordination mode typically includes two components,

i.e, the scheduling and synchronization mechanisms, which are

illustrated as follows.

1) Scheduling: Scheduling refers to selecting and sorting

the subjects for performing concolic execution. In general, the

existing scheduling mechanisms are mainly seed-oriented. For

instance, many hybrid fuzzers [10], [12], [13], [24] randomly

select seeds for concolic execution. Moreover, DigFuzz [14]

prioritizes seeds according to their quantitative difficulty of

exploring edges, and MEUZZ [15] adopts a machine learning-

based regression model to predict the seed utility for seed

scheduling. Note that for a hybrid fuzzer, an ideal scheduling

mechanism is expected to fully leverage the power of the

fuzzing strategy and the concolic execution for their respective

purposes rather than mixing their usage to cause redundant

program state exploration.

2) Synchronization: Synchronization refers to the manner

of inputting the solutions, i.e., the resulting mutants, of con-

colic execution as the seeds for activating the execution of

fuzzing strategies. Essentially, synchronization can advance

the fuzzing strategy to further explore new program states

bounded by the solved path constraints [10], [24]. In general,

most existing hybrid fuzzers simply iteratively execute their

fuzzing strategies upon the termination of their concolic ex-

ecutions. Considering that the mutations in fuzzing strategies

can easily invalidate the path constraints solved by concolic

execution and thus compromise the exploration on program

states, Pangolin [16] converts the path constraint to the polyhe-

dral abstraction domain [44] with the SMT-opt algorithm [45]

for limiting mutation space. Accordingly, Pangolin adopts a

sampling-based algorithm named Dikin walk [46] to uniformly

sample the polyhedral abstraction to generate the mutants.

In this paper, we study the performance and rationale of not

only the hybrid fuzzers, but also their technical components.

TABLE I
STUDIED HYBRID FUZZERS

Name Conference
Fuzzing

Strategy

Concolic

Executor

Coordination Mode

Sch† Sync‡

QSYM [10] USENIX Security’18 AFL QSYM-ce R D

Angora [11] S&P’18 AFL Angora-ce R D

Eclipser [12] ICSE’19 AFL Eclipser-ce R D

Intriguer [13] CCS’19 AFL Intriguer-ce R D

DigFuzz [14] NDSS’19 AFL QSYM-ce MC D

MEUZZ [15] RAID’20 AFL QSYM-ce ML D

Pangolin [16] S&P’20 AFL QSYM-ce R PD

†Scheduling - R: Random, MC: Monte Carlo, ML: Machine Learning
‡Synchronization - D: Default, PD: Polyhedral Path Abstraction + Dikin Walk

III. EXTENSIVE STUDY

A. Subjects and Benchmarks

1) Subject: To determine our study subjects, we first select

the hybrid fuzzers recently published in prestigious software

engineering and system security conferences, e.g., ICSE, FSE,

CCS, S&P, and USENIX Security. Next, we filter the selected

hybrid fuzzers based on the availability of their source code

and the feasibility of their execution environments.

Eventually, we select seven hybrid fuzzers for study as

in Table I. We can observe that they all adopt AFL [1] as

their fuzzing strategy. In particular, QSYM [10], Angora [11],

Eclipser [12], and Intriguer [13] propose their specific con-

colic executor designs. On the other hand, DigFuzz [14],

MEUZZ [15], and Pangolin [16] attempt to strengthen their

coordination modes. We present their details as follows.

QSYM [10], proposed as one baseline hybrid fuzzer, tailors a

concolic executor with fast symbolic emulation and enhanced

constraint solving strategy.

Angora [11] attempts to replace the concolic executor of

QSYM by approximating its path constraint solver with taint

tracking and gradient descent search. Note that although

Angora is not a typical hybrid fuzzer, we still include it as

a baseline for our study as it shares the same insight as other

hybrid fuzzers.

Eclipser [12] applies a grey-box concolic executor which

leverages lightweight instrumentation to infer and solve ap-

proximated branch conditions.

Intriguer [13] attempts to address the constraint solving issues

at the field level, i.e., using field inference and field transition

tree to simplify symbolic emulation. Meanwhile, Intriguer

adopts the SMT solver only for complicated constraints.

DigFuzz [14] schedules seeds by modeling the difficulty of

exploring edges for each seed as a probability using the Monte

Carlo method [47] and prioritizes the seeds by ranking their

probabilities for concolic execution.

MEUZZ [15] adopts a linear regression model to predict the

seed utility based on feature engineering and data labeling, for

seed scheduling.

Pangolin [16] improves the synchronization mechanism by

formulating the path constraint as polyhedral path abstraction

and adopting Dikin walk [46] to sample the mutants as input

seeds for its fuzzing strategy.



To comprehensively evaluate our study subjects, we fur-

ther include typical conventional coverage-guided fuzzers

(AFL [1], FairFuzz [48], and AFL++ [49]) for performance

comparison. Since all the studied hybrid fuzzers adopt one

core for fuzzing strategy and concolic execution respectively,

in this paper, we implement the two-instance versions of the

conventional coverage-guided fuzzers following [50] for fair

performance comparison. In particular, we simply replicate

their original single-core (instance) fuzzing strategies in an

additional core (instance) and run them simultaneously. The

two instances also perform synchronization periodically via

sharing their individually generated seeds.

2) Benchmark Programs: Following prior studies [25],

[27], [51], we construct our benchmark with the commonly

adopted programs in the studied hybrid fuzzers [10]–[16]. As

a result, we collect 15 real-world programs with their latest

versions shown in Table II to evaluate code coverage and bug

detection for our study.

TABLE II
STUDIED REAL-WORLD BENCHMARK

Program Version Input format Argument

readelf binutils-2.37 ELF -a @@

nm binutils-2.37 ELF -C @@

objdump binutils-2.37 ELF -D @@

strip binutils-2.37 ELF @@

tcpdump commit-465a8f PCAP -r @@

libxml2 2.9.12 XML @@

libjpeg v9c JPEG @@

jhead commit-f0a884 JPEG @@

libpng 1.7.0 PNG @@

libtiff 4.2.0 TIFF @@

file commit-d17d8e FILE -m magic @@

bento commit-7ddec0 MP4 @@

wavpack commit-36b08d WAV -y @@

cyclonedds commit-53cf7c IDL @@

libming commit-04aee5 SWF @@

B. Experiment Setup

Prior study [28] indicates that inappropriate seed choices

can lead to high variance in evaluation results and thus poten-

tially cause untenable performance. To alleviate such issue, we

strictly follow the instructions in the previous work [16], [27],

[28], [52] to construct the initial seed corpora for reflecting the

real-world testing scenarios and reducing the bias of the edge

coverage results. In particular, for the benchmark programs

whose input formats are JPEG, PNG, and TIFF as in Table II,

we collect their corresponding AFL seed collection [53]. For

the rest programs, we adopt the seed collection from their

original projects. Then we employ afl-cmin to eliminate

duplicate files to minimize the corpora size. Note that we keep

our initial seed corpora identical across all experimental runs.

We adopt edge coverage to represent code coverage, as our

studied hybrid fuzzers [10]–[16]. Here an edge represents a

conditional jump between two basic blocks in programs. All

the evaluation results are averaged for 5 experimental runs for

reducing the impact caused by randomness. Following prior

work [5], [11], [14], [16], [27], the execution time budget for

each fuzzer is set to be 24 hours for all our experiments.

All the experiments are conducted on ESC servers with 2.6

GHz AMD EPYC™ ROME 7H12 CPUs and 256 GiB RAM

running Linux 4.15.0-147-generic Ubuntu 18.04.

C. Research Questions

We investigate the following research questions for exten-

sively studying hybrid fuzzing:

• RQ1: How do hybrid fuzzers perform on top of our bench-

mark programs? For this RQ, we evaluate the performance

of the studied hybrid fuzzers under multiple setups.

• RQ2: How do existing coordination modes impact hybrid

fuzzers? For this RQ, we investigate the performance impact

of the existing coordination modes.

D. Results and Analysis

1) RQ1: Performance of hybrid fuzzers: Table III demon-

strates the edge coverage results of the studied fuzzers upon

our benchmark. Surprisingly, we observe that the baseline

technique QSYM achieves the optimal performance on av-

erage (5,763 edges), followed by Pangolin (5,561 edges)

and Angora (5,517 edges). Moreover, QSYM dominates in

7 out of 15 studied benchmark programs. Specifically, while

DigFuzz and MEUZZ are respectively equipped with Monte

Carlo method [47] and supervised regression model [54] to

strengthen the scheduling mechanism of QSYM, they never-

theless underperform QSYM by 7.67% and 5.92%. Similarly,

while Pangolin attempts to improve the synchronization mech-

anism of QSYM, it underperforms QSYM by 3.51%.

We further attempt to analyse the edge coverage comparison

results presented in the original papers of the studied hybrid

fuzzers. Note that Angora, Eclipser and DigFuzz only compare

their results with conventional coverage-guided fuzzers (e.g.,

AFL) while failing to include any hybrid fuzzer. Thus, we

only include Intriguer, MEUZZ and Pangolin for analysis.

In particular, we analyse the commonly studied benchmark

programs between our study and their original papers (i.e.,

4 for Intriguer, 6 for MEUZZ, and 9 for Pangolin). Surpris-

ingly, while all the original papers demonstrate edge coverage

improvement over QSYM (12.42% for Intriguer, 6.60% for

MEUZZ and 21.90% for Pangolin), QSYM outperforms In-

triguer, MEUZZ, and Pangolin by 3.75%, 9.99%, and 0.17%

respectively in our study.

Interestingly, we observe that different papers present rather

inconsistent edge coverage results on the same projects, e.g.,

for program readelf, QSYM explores 6,012, 1,244, 8,402, and

9,512 edges respectively in the original Intriguer, MEUZZ,

Pangolin papers, and our study. Since all evaluations follow the

same setups, e.g., metric and execution time, we infer that the

performance variances are caused by the divergent hardware

platforms and initial seed corpora applied in different papers.

Finding 1: The edge coverage comparison results among

hybrid fuzzers from their original papers may not well

generalize to other experimental setups.







jhead to infer the cause. In particular, Figure 4 presents a code

snippet of project jhead which calibrates the if condition to

find out whether string “Exif” (i.e., 0x66697845 in its binary

form) is matched in function ReadJpegSection (the com-

plete code and its corresponding labels are presented in [21]

due to page limit). For conventional coverage-guided fuzzers,

the probability of generating the feasible input matching such

32-bit value via probabilistic mutation is 1/232 ≈ 2.3×10−10.

Therefore, we infer that the chance to explore the edge

associated with such if condition is rather low, i.e., the edge

exploration of the scope under such if condition can be easily

halted. However, applying concolic execution can quickly

solve the path constraint of the if condition such that fuzzing

strategies are further leveraged to promptly explore the edges

within function process_EXIF. Such results enlighten that

for a hybrid fuzzer, its coordination mode potentially plays a

vital role for impacting its effectiveness.

Finding 5: The hybrid fuzzing effectiveness is reflected

by redundant edge ratio which is highly relevant to their

coordination modes.

We further investigate the performance impact from the

individual components of the coordination mode. First, we

investigate how the scheduling mechanism affects the edge

coverage. As mentioned, DigFuzz and MEUZZ propose their

scheduling mechanisms with the Monte Carlo method [47] and

the supervised regression model [54] respectively in order to

schedule the seeds according to their capabilities for exploring

hard-to-cover edges, while the rest studied hybrid fuzzers

randomly select seeds, for concolic execution. However, we

find from Figure 3 that QSYM outperforms DigFuzz in all of

the programs and MEUZZ in 10 out of 15 programs where

the average redundant edge ratio is 0.65 for QSYM, 0.71 for

MEUZZ and 0.87 for DigFuzz. Such results indicate that the

seed scheduling mechanisms adopted by our studied hybrid

fuzzers do not effectively limit redundant edge ratio.

Finding 6: The seed scheduling mechanisms adopted by

our studied hybrid fuzzers do not effectively alleviate

the issue of redundant edge exploration.

We also attempt to investigate the effect of synchronization.

Note that only Pangolin specifically designs its synchroniza-

tion mechanism while the rest studied hybrid fuzzers simply

input the resulting seeds from the concolic execution to the

fuzzing strategy. Specifically, Pangolin first linearizes path

constraint to the polyhedra abstraction domain with the SMT-

opt algorithm [45] for limiting mutation spaces. Then Pangolin

utilizes a sampling algorithm, i.e., Dikin walk [46] to sample

the abstraction domain to derive the mutants as the seeds

for the fuzzing strategy. We then concentrate our analysis

on comparing the edge coverage results between QSYM and

Pangolin because they only differ in their adopted synchroniza-

tion mechanisms. Surprisingly, although Pangolin attempts to

enhance QSYM via its specifically designed synchronization

mechanism, it still performs worse in terms of edge coverage,

i.e., 5,561 edges vs. 5,763 edges on average. Such result

indicates that the existing effort on strengthening the synchro-

nization mechanism of hybrid fuzzers may pose rather limited

performance impact.

Finding 7: The existing effort on strengthening the

synchronization mechanism may have limited impact on

the edge coverage performance of hybrid fuzzers.

E. Discussion

Previous findings indicate that while the coordination modes

significantly impact the performance of hybrid fuzzers, the

existing effort on the scheduling and synchronization mecha-

nisms lead to rather limited effectiveness. We then discuss the

possible reasons. In particular, we first discuss why enhancing

seed scheduling in the studied hybrid fuzzers (i.e. DigFuzz

and MEUZZ) does not effectively alleviate the redundant edge

exploration (Finding 6). More specifically, during concolic

execution, each conditional branch along the execution path

of PUT is negated to solve the corresponding path con-

straints. Note that such effort can be cost-ineffective upon

the conditional branches which can be explored by fuzzing

strategies usually with much lower overhead. Moreover, the

coverage updates on applying fuzzing strategies and concolic

executions are mutually unknown for all our studied hybrid

fuzzers. Therefore, the concolic executor is likely to spend

massive effort on solving the edges which have been explored

by the fuzzing strategy. Typically, fine-grained scheduling

is expected to successfully rule out the redundant edge ex-

ploration. Unfortunately, even when MEUZZ and DigFuzz

attempt to shepherd their seed scheduling mechanisms via

refined machine learning or statistics approaches, they fail to

distinguish the worth of each edge to be explored by concolic

executors, and thus are ineffective on preventing redundant

edge exploration. Accordingly, we infer that proposing finer-

grained edge-oriented rather than seed-oriented scheduling

mechanisms is essential.

We then discuss why the synchronization mechanism of

Pangolin causes limited performance impact. Specifically, we

infer that the polyhedra abstraction domain [44] is not an

optimal choice out of the three sound abstract domains (in-

terval [19], octagon [57] and polyhedra) used for limiting

mutation space with different precision levels and time cost.

Specifically, the polyhedra abstraction domain is adopted by

Pangolin due to its highest precision for approximating path

constraints which results in the fewest false positives (i.e.,

mutants which cannot be executed to increase code coverage).

However, the fuzzing strategy adopted by Pangolin, i.e., AFL,

can quickly filter out such mutants [1], [24], [25] such that

adopting any abstract domain actually leads to close effects on

limiting the mutation space. Thus, one could totally adopt the

interval abstraction domain with the lowest time cost instead.

In addition to Dikin walk [46] adopted by Pangolin, there

are also other representative sampling algorithms (e.g., Hit-

and-run [58], Vaidya walk [20] and John walk [20]) for the





feasible input via random mutation, as in [15], [62].

5. Condition bit width. This feature refers to the bit width of

operands in a condition as [62], [63] to reflect the challenge

of covering such statement via random mutation.

Then, we schedule the edges with high utility (i.e., namely

critical edges in this paper) and leverage the concolic executor

to solve them (lines 5 to 6). More specifically, we identify

the seed whose execution path covers the critical edge (line

7) to activate the concolic executor to only negate such a

critical edge for solving the corresponding constraint (line

8). In this way, we significantly alleviate the redundant edge

exploration, i.e., such critical edges can only be solved by

concolic executors exclusively instead of fuzzing strategies.

For instance, by adopting edge-oriented scheduling to the

sample code in Figure 4, we only schedule edge (b1, b2)
for concolic execution since edge (b2, b3) has no unexplored

sibling edge. Then the concolic executor negates the condition

in b1 and solves the path constraint to explore the critical edge

(b1, b5), preventing the redundant exploration of edge (b2, b4).
2) Sampling-augmenting Synchronization: Algorithm 1

(lines 8 to 10) demonstrates our sampling-augmenting syn-

chronization mechanism which consists of three steps: (1)

generating the path constraint pc via concolic execution for

the target critical edge from edge-oriented scheduling, (2)

converting pc to the interval path abstraction ϕ̂ by the SMT-

opt algorithm [45] (i.e., determining the scale of each corre-

sponding input), and (3) sampling in the abstraction domain

with John walk and generating the mutants. Accordingly, we

filter the mutants failing to explore new edges and store the

resulting seeds for future executions of fuzzing strategies (line

13). Meanwhile, we collect the coverage updates as the utility

for each solved edge, and update the online SGD regressor, i.e.,

performing incremental learning (lines 15 to 16). Note that the

sampling-augmenting synchronization mechanism is proposed

to not only increase the edge coverage by inputting the mutants

efficiently sampled within limited mutation space for the

fuzzing strategy, but also advance edge-oriented scheduling

by utilizing the edge increase to update the online linear

regression model simultaneously, i.e., enhancing the prediction

accuracy of the edge utility during edge-oriented scheduling.

B. Evaluation

We evaluate the performance of CoFuzz in terms of edge

coverage and bug detection with the identical evaluation setups

as in Section III-B where the results are shown as follows.

1) Edge Coverage: We select AFL and the top-performing

hybrid fuzzer QSYM for performance comparison. To perform

ablation study on our edge-oriented scheduling and sampling-

augmenting synchronization mechanisms respectively, we

build the corresponding CoFuzz variants, i.e., CoFuzzsch with

edge-oriented scheduling only and CoFuzzsync with sampling-

augmenting synchronization only. Table V presents the edge

coverage results for our study subjects. We can observe that

overall, CoFuzz outperforms AFL and QSYM by 32.44% and

16.31% respectively in terms of edge coverage and dominates

all the benchmark programs. We further perform significance

tests to investigate the robustness of the edge coverage ad-

vantage of CoFuzz over QSYM. Following prior work [16],

[25], [27], [52], we leverage Mann Whitney U-test [64] with

one-tailed hypothesis to measure the significance of such

performance advantage. We calculate the p-value between the

edge coverage performance of QSYM and CoFuzz for each

program in terms of two significance levels (i.e., 0.01 and

0.05). We can observe that the p-values listed in Table V are

smaller than 0.01 for 13 of 15 programs and way smaller

than 0.05 for the rest 2 programs, i.e., libjpeg and libtiff (both

0.01059). Such results indicate that CoFuzz can significantly

and consistently dominate all our studied hybrid fuzzers.

We further observe that CoFuzzsch and CoFuzzsync can

outperform all the studied hybrid fuzzers, e.g., outperforming

QSYM by 11.05% and 7.37% respectively. Note that CoFuzz

outperforms CoFuzzsch and CoFuzzsync by 4.73% and 8.32%

which indicates that jointly improving the scheduling and

synchronization mechanisms is rather essential to optimize the

overall performance of hybrid fuzzers. Such results also indi-

cate that edge-oriented scheduling and sampling-augmenting

synchronization can potentially boost each other. Additionally,

we evaluate the temporal development of CoFuzz in terms of

edge coverage. Figure 6 presents the average edge coverage for

all benchmark programs of CoFuzz and other studied fuzzers

over time. Overall, we can observe that CoFuzz achieves better

performance compared with other studied fuzzers. Specifically,

the edge coverage of CoFuzz is significantly increased after

each synchronization stage, indicating the effectiveness of

concolic execution. Note that we also present the results for

all benchmark programs which show the similar trends in our

GitHub repository [21] due to page limit.

TABLE V
EDGE COVERAGE RESULTS OF COFUZZ

Program AFL QSYM CoFuzzsch CoFuzzsync CoFuzz p-value

readelf 9,176 9,512 10,407 10,236 10,786 0.00596

nm 5,127 5,602 7,824 7,573 8,234 0.00609

objdump 7,358 8,304 8,512 8,453 8,710 0.00609

strip 6,340 7,624 7,839 8,598 9,094 0.00609

tcpdump 9,782 10,279 12,661 10,348 13,130 0.00609

libxml2 5,876 7,888 8,493 7,946 8,640 0.00609

libjpeg 2,902 3,183 3,192 3,190 3,210 0.01059

jhead 304 885 897 890 915 0.00199

libpng 1,496 2,058 2,239 2,197 2,311 0.00609

libtiff 3,546 3,793 3,820 3,842 3,974 0.01059

file 2,283 2,553 2,652 2,730 2,851 0.00609

bento 3,001 4,017 5,624 5,398 6,179 0.00609

wavpack 5,703 5,797 5,832 5,857 5,863 0.00596

cyclonedds 4,822 5,612 5,832 5,713 5,932 0.00609

libming 8,197 9,335 10,177 9,846 10,719 0.00609

AVG 5,061 5,763 6,400 6,188 6,703 0.00640

2) Bug Detection: Following all our studied hybrid

fuzzers [10]–[16], we evaluate CoFuzz on the LAVA-M dataset

with the time budget of 5 hours. Note that while LAVA-

M automatically injects and labels bugs into four programs

(base64, md5sum, uniq, who in coreutils-8.24), it is also quite

common for fuzzers to detect more bugs than the listed ones

[11], [12], [16]. Table VI presents the number of detected bugs

N and the corresponding bug survival time Tm in minutes

by all the studied techniques. We can observe that they all



Fig. 6. Average edge coverage of CoFuzz and other studied fuzzers over time

fully expose the listed bugs in the subjects base64, md5sum

and uniq while CoFuzz spends way less time than others, i.e.,

around 66 seconds for CoFuzz vs. 604 seconds for the second

fastest hybrid fuzzer Angora. Meanwhile, for program who,

although none of the hybrid fuzzers full expose the injected

bugs within 5 hours, CoFuzz still exposes the most bugs (1,913

bugs) which outperforms Angora by 23.66%.

We further evaluate CoFuzz in terms of unique crashes

on real-world benchmark programs. Overall, CoFuzz exposes

a total of 456 unique crashes (around 2X more than other

hybrid fuzzers combining with Table IV). Additionally, Co-

Fuzz exposes the crashes in three programs (strip, file and

wavpack) which cannot be detected by any other studied

hybrid fuzzer. The detailed crash information is presented in

our Github repository [21] due to the page limit. We further

manually calibrate all the crashed files to derive 42 bugs

including 37 previously unknown bugs all of which are only

detected by CoFuzz. Table VII presents the bug details where

30 previously unknown bugs have been confirmed by the

developers with 8 new CVEs and 20 of them have been fixed.

Note that for the 5 patched bugs in the latest version, CoFuzz

can still detect different execution paths to trigger them.

TABLE VI
BUG RESULTS OF COFUZZ ON LAVA-M

Fuzzer
base64 md5sum uniq who

N Tm N Tm N Tm N Tm

QSYM 44/44 8.48 57/57 31.77 28/28 4.55 1,332/2,136 300.00

Angora 48/44 6.75 57/57 16.37 29/28 7.15 1,547/2,136 300.00

Eclipser 46/44 128.33 57/57 147.35 29/28 155.83 1,030/2,136 300.00

Intriguer 46/44 205.07 57/57 132.60 29/28 187.22 1,350/2,136 300.00

DigFuzz 46/44 7.53 57/57 57.30 28/28 4.32 1,146/2,136 300.00

MEUZZ 44/44 7.28 57/57 40.35 28/28 6.50 1,205/2,136 300.00

Pangolin 48/44 9.37 57/57 132.75 29/28 13.27 1,342/2,136 300.00

CoFuzz 48/44 1.07 57/57 1.75 29/28 0.50 1,913/2,136 300.00

V. THREATS TO VALIDITY

Threats to internal validity. One threat to internal validity lies

in the implementation of the studied subjects. To reduce this

threat, we reuse the source code of the studied hybrid fuzzers

and their runtime environment as we can. For DigFuzz and

Pangolin without publicly available source code, we strictly

follow the description in their papers for re-implementation

where the first three authors carefully review our code to en-

sure the correctness and consistency. Another threat to internal

TABLE VII
BUGS DETECTED BY COFUZZ IN REAL-WORLD BENCHMARK

Program Function Bug Type Count Bug Status

readelf process object memory leaks 1 Confirmed

nm demangle path stack-buffer-overflow 1 Confirmed

str buf append stack-buffer-overflow 1 Patched

objdump unknow module invalid memory reference 1 Patched

strip bfd getl32 heap-buffer-overflow 3 CVE-2022-38533 & Fixed

bfd getl32 invalid memory reference 2 Patched

group signature heap-use-after-free 1 Patched

libjpeg jpeg read scanlines use-of-uninitialized-value 1 Confirmed

jhead ReadJpegSections use-of-uninitialized-value 1 CVE-2022-37165

libtiff tiffMapProc use-of-uninitialized-value 2 Reported

tiffcp heap-buffer-overflow 1 Confirmed & Fixed

file file tryelf allocation-size-too-big 1 Confirmed & Fixed

bento ParseExtension heap-buffer-overflow 1 CVE-2022-37167 & Fixed

WriteBytes heap-buffer-overflow 1 CVE-2022-37169

AP4 HvccAtom heap-buffer-overflow 3 CVE-2022-37690

AP4 StsdAtom invalid memory reference 2 CVE-2022-37166 & Fixed

AP4 AvccAtom invalid memory reference 1 CVE-2022-37168 & Fixed

Create memory leaks 2 CVE-2022-37691

wavpack MD5 Final heap-buffer-overflow 2 Confirmed & Fixed

cyclonedds parse line heap-buffer-overflow 3 Confirmed & Fixed

idl reference node heap-use-after-free 2 Confirmed & Fixed

idlc parse stack-buffer-overflow 2 Confirmed & Fixed

idl parse invalid memory reference 2 Confirmed & Fixed

libming newVar N heap-buffer-overflow 2 Reported

decompileAction invalid memory reference 3 Reported

validity lies in the reliability of our evaluation results which

can possibly be compromised by randomness. Accordingly,

all our results are averaged from five runs, following prior

work [11], [14], [15], [27], [62], [65].

Threats to external validity. The threat to external validity

mainly lies in the subjects and benchmarks. To reduce this

threat, we select 7 representative hybrid fuzzers recently pub-

lished in prestigious software engineering and system security

conferences as mentioned in Section III-A1.We also apply

15 real-world benchmark programs which are frequently used

in the original papers of our studied hybrid fuzzers and the

LAVA-M dataset in our evaluation.

Threats to construct validity. The threat to construct validity

mainly lies in the adopted metrics in our study. To reduce this

threat, we follow many existing fuzzers [5], [16], [25], [27],

[48], [66] to adopt the edge coverage as our evaluation metric.

Moreover, we also evaluate the bug detection capability of the

studied hybrid fuzzers on top of the LAVA-M benchmark and

our real-world benchmark programs.

VI. RELATED WORK

A. Fuzzing

Many fuzzers adopt coverage to guide fuzzing. AFL [1]

retains the mutants executed to increase code coverage as

seeds. Accordingly, AFLFast [2] leverages the Markov chain

model [67] to prioritize low-frequency execution paths, and

AFLGo [3] introduced directed fuzzing which generates inputs

for the target program. FairFuzz [48] increases the edge cov-

erage of AFL by facilitating the exploration of rare branches

identified at runtime. Mopt [56] utilizes the particle swarm

optimization algorithm to schedule mutators. EnFuzz [68]

integrates different fuzzing techniques with a synchronization

mechanism. Additionally, fuzzing has been widely applied in

domain-specific software systems. SGFUZZ [69] is proposed



to test stateful software systems like network protocol im-

plementations. Deephunter [70] fuzzes deep neural networks

with extensible coverage criteria. Zhang et al. [71] combine

GANs and metamorphic testing to generate image mutants for

fuzzing autonomous driving systems. Zhou et al. [72] further

paint the generated image mutants on billboards to enhance

their real-world applicability. Liu et al. [73] propose FANS

to detect vulnerabilities in Android native system services by

generating test cases for specific interfaces. Wu et al. [74] fuzz

CUDA programs by building memory models and the rules

to detect memory conflicts for exposing their synchronization

bugs. They also use the fuzzing results to guide the process of

fixing them accordingly [75]. More recently, Zhao et al. [76]

propose JavaTailor to learn information from historical bug-

revealing test programs for generating test programs to expose

JVM defects, while Wu et al. [77] further propose JITFuzz

which leverages multiple mutators to fully exercise the JIT

optimization components for fuzzing JVM JIT compilers.

Many fuzzers are proposed to enhance coverage-guided

fuzzing strategies when exploring hard-to-cover program

states. VUzzer [78] integrates its evolutionary fuzzing strategy

via dynamic taint analysis. Steelix [34] leverages light-weight

program analysis to acquire program state information and

locate the offsets for magic bytes. Greyone [65] infers taints of

variables driven by fuzzing and utilizes them to guide program

state exploration. Aschermann et al. [4] exploit input-to-state

relations to improve fuzzing effectiveness. Specifically, hybrid

fuzzers leverage the power of concolic executors in addition

to fuzzing strategies. QSYM [10] tailors a concolic executor

with fast symbolic emulation and enhanced constraint solving.

Accordingly, Angora [11] adopts gradient descent to solve path

constraints. Eclipser [12] proposes grey-box concolic testing

to resolve conditional branches. Intriguer [13] proposes field-

level constraint solving which applies the SMT solver only

for complicated conditions. On the other hand, DigFuzz [14]

proposes probabilistic seed prioritization with the Monte Carlo

method. MEUZZ [15] utilizes a machine learning regression

model to predict seed utility for seed scheduling. The more

recent Pangolin [16] uses Dikin walk to uniformly sample

a polyhedron path abstraction. In this paper, we propose

CoFuzz to enhance the coordination mode of hybrid fuzzers

for augmenting the overall fuzzing effectiveness.

Researchers also tend to study the existing fuzzers to guide

the future relevant research. Klees et al. [27] investigate the

experiment setup and statistical analysis methods for reliable

fuzzing evaluation. Liang et al. [29] present the major obsta-

cles and their solutions while applying fuzzing in practice.

Boehme et al. [8] investigate challenges and opportunities for

fuzzing and symbolic execution. Herrera et al. [28] study how

to construct initial seed corpora for fuzzing. Moreover, some

researchers study the rationale of fuzzing strategies. Wang

et al. [79] investigate and evaluate the efficacy of machine

learning techniques in the existing fuzzers. Ding et al. [80]

investigate characteristics and life cycles of the detected faults

of OSS-Fuzz, a continuous fuzzing service for open source

software. Wu et al. [25] evaluate a generic stochastic mutation

strategy adopted in many existing fuzzers and improve the

strategy with a reinforcement learning model. They also find

that while combining deep learning and program smoothing

can be helpful for fuzzing, it still can be improved by including

a mechanism for identifying edge properties [26]. In this paper,

we conduct the first extensive study on hybrid fuzzers and

demonstrate that their coordination modes significantly impact

the overall performance for the first time.

B. Symbolic/Concolic Execution

While symbolic execution has been applied in vulnerability

exploitation for long time [30], [35], it tends to incur high

computation overhead and path explosion. To tackle such

issues, KLEE [36] reserves the solved constraint states to

eliminate the repetitive computation costs. Trabish et al. [81]

propose chopped symbolic execution, which alleviates path

explosion by targeting important code fragments and lever-

ages static analysis to resolve side effects. Li et al. [82]

propose the heuristic to guide symbolic execution to in-

sufficient explored program states. Concolic execution [17]

combines symbolic execution and concrete execution [40],

[83] to improve efficiency and scalability in large softwares.

SAGE [84] performs concolic execution at the binary level

and mitigates the problem of scalability. Triton [43] is a

concolic execution framework which allows dynamic binary

analysis. Poeplau et al. [39] propose SymCC which compiles

the concolic execution right in the binary level to facilitate

the performance. Very recently, Liu et al. [85], [86] have

also applied symbolic/concolic constraint solving to test the

emerging machine learning systems.

VII. CONCLUSION

In this paper, we have extensively investigated hybrid

fuzzers. Specifically, we first find for many studied hybrid

fuzzes, their performance may not well generalize to other

experimental setups. We further find that their edge cov-

erage performance is highly related to the redundant edge

exploration between applying fuzzing strategy and concolic

execution. Inspired by our findings, we propose CoFuzz with

edge-oriented scheduling and sampling-augmenting synchro-

nization. The evaluation results demonstrate that CoFuzz can

significantly outperform QSYM by 16.31% in terms of edge

coverage and expose 2X more unique crashes than all studied

hybrid fuzzers with 37 previously unknown bugs detected.

VIII. ACKNOWLEDGEMENT

This work is partially supported by the National Natural

Science Foundation of China (Grant No. 61902169),

Guangdong Provincial Key Laboratory (Grant No.

2020B121201001), and Shenzhen Peacock Plan (Grant

No. KQTD2016112514355531). This work is also partially

supported by National Science Foundation under Grant Nos.

CCF-2131943 and CCF-2141474, as well as Ant Group.

Yuqun Zhang would like to dedicate this paper to the memory

of his grandmother. She will live in his heart forever.



REFERENCES

[1] M. Zalewski, “American fuzz lop,” https://github.com/google/AFL,
2020.

[2] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” IEEE Transactions on Software Engi-

neering, vol. 45, no. 5, pp. 489–506, 2017.

[3] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, 2017, pp. 2329–2344.

[4] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence.” in NDSS,
vol. 19, 2019, pp. 1–15.

[5] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz: Effi-
cient fuzzing with neural program smoothing,” in 2019 IEEE Symposium

on Security and Privacy (SP). IEEE, 2019, pp. 803–817.

[6] J. Liu, Y. Wei, S. Yang, Y. Deng, and L. Zhang, “Coverage-guided
tensor compiler fuzzing with joint ir-pass mutation,” Proc. ACM

Program. Lang., vol. 6, no. OOPSLA1, apr 2022. [Online]. Available:
https://doi.org/10.1145/3527317

[7] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,
no. 1, pp. 1–13, 2018.

[8] M. Boehme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges and
reflections.” IEEE Softw., vol. 38, no. 3, pp. 79–86, 2021.

[9] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon: Exploring
deep state spaces via fuzzing,” in 2020 IEEE Symposium on Security

and Privacy (SP). IEEE, 2020, pp. 1597–1612.

[10] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM}: A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th USENIX

Security Symposium (USENIX Security 18), 2018, pp. 745–761.

[11] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 711–725.

[12] J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing
on binary code,” in 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE). IEEE, 2019, pp. 736–747.

[13] M. Cho, S. Kim, and T. Kwon, “Intriguer: Field-level constraint solving
for hybrid fuzzing,” in Proceedings of the 2019 ACM SIGSAC Confer-

ence on Computer and Communications Security, 2019, pp. 515–530.

[14] L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send hardest problems my way:
Probabilistic path prioritization for hybrid fuzzing.” in NDSS, 2019.

[15] Y. Chen, M. Ahmadi, B. Wang, L. Lu et al., “{MEUZZ}: Smart seed
scheduling for hybrid fuzzing,” in 23rd International Symposium on

Research in Attacks, Intrusions and Defenses (RAID 2020), 2020, pp.
77–92.

[16] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin: Incremental
hybrid fuzzing with polyhedral path abstraction,” in 2020 IEEE Sympo-

sium on Security and Privacy (SP). IEEE, 2020, pp. 1613–1627.

[17] K. Sen, “Concolic testing,” in Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineer-

ing, 2007, pp. 571–572.

[18] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:

Tricks of the trade. Springer, 2012, pp. 421–436.

[19] P. Cousot et al., “Static determination of dynamic properties of pro-
grams.” 1977.

[20] Y. Chen, R. Dwivedi, M. J. Wainwright, and B. Yu, “Fast mcmc sampling
algorithms on polytopes,” The Journal of Machine Learning Research,
vol. 19, no. 1, pp. 2146–2231, 2018.

[21] G. Repository, “Hybrid fuzzing approach,” https://github.com/Tricker-z/
CoFuzz, 2022.

[22] R. Majumdar and K. Sen, “Hybrid concolic testing,” in 29th Interna-

tional Conference on Software Engineering (ICSE’07). IEEE, 2007,
pp. 416–426.

[23] B. S. Pak, “Hybrid fuzz testing: Discovering software bugs via fuzzing
and symbolic execution,” School of Computer Science Carnegie Mellon

University, 2012.

[24] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, no.
2016, 2016, pp. 1–16.

[25] M. Wu, L. Jiang, J. Xiang, Y. Huang, H. Cui, L. Zhang, and Y. Zhang,
“One fuzzing strategy to rule them all,” in Proceedings of the Interna-

tional Conference on Software Engineering, 2022.

[26] M. Wu, L. Jiang, J. Xiang, Y. Zhang, G. Yang, H. Ma, S. Nie, S. Wu,
H. Cui, and L. Zhang, “Evaluating and improving neural program-
smoothing-based fuzzing,” in Proceedings of the 44th International

Conference on Software Engineering, ser. ICSE ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 847–858.
[Online]. Available: https://doi.org/10.1145/3510003.3510089

[27] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, 2018, pp. 2123–2138.

[28] A. Herrera, H. Gunadi, S. Magrath, M. Norrish, M. Payer, and A. L.
Hosking, “Seed selection for successful fuzzing,” in Proceedings of the

30th ACM SIGSOFT International Symposium on Software Testing and

Analysis, 2021, pp. 230–243.

[29] J. Liang, M. Wang, Y. Chen, Y. Jiang, and R. Zhang, “Fuzz testing in
practice: Obstacles and solutions,” in 2018 IEEE 25th International Con-

ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2018, pp. 562–566.

[30] L. d. Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-

national conference on Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 2008, pp. 337–340.

[31] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya,
“Fuzzbench: an open fuzzer benchmarking platform and service,” in
Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, 2021, pp. 1393–1403.

[32] J. Song and J. Alves-Foss, “The darpa cyber grand challenge: A
competitor’s perspective,” IEEE Security & Privacy, vol. 13, no. 6, pp.
72–76, 2015.

[33] K. Serebryany, “{OSS-Fuzz}-google’s continuous fuzzing service for
open source software,” 2017.

[34] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: program-state based binary fuzzing,” in Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering, 2017,
pp. 627–637.

[35] J. C. King, “Symbolic execution and program testing,” Communications

of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[36] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209–224.

[37] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Till-
mann, and W. Visser, “Symbolic execution for software testing in prac-
tice: preliminary assessment,” in 2011 33rd International Conference on

Software Engineering (ICSE). IEEE, 2011, pp. 1066–1071.

[38] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,
2013.

[39] S. Poeplau and A. Francillon, “Symbolic execution with {SymCC}:
Don’t interpret, compile!” in 29th USENIX Security Symposium

(USENIX Security 20), 2020, pp. 181–198.

[40] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp.
263–272, 2005.

[41] X. Wang, J. Sun, Z. Chen, P. Zhang, J. Wang, and Y. Lin, “Towards
optimal concolic testing,” in Proceedings of the 40th International

Conference on Software Engineering, 2018, pp. 291–302.

[42] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox
fuzz testing.” in NDSS, vol. 8, 2008, pp. 151–166.

[43] F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution frame-
work,” in Symposium sur la sécurité des technologies de l’information

et des communications, SSTIC, France, Rennes, 2015, pp. 31–54.

[44] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in Proceedings of the 5th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, 1978,
pp. 84–96.

[45] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik,
“Symbolic optimization with smt solvers,” ACM SIGPLAN Notices,
vol. 49, no. 1, pp. 607–618, 2014.

[46] R. Kannan and H. Narayanan, “Random walks on polytopes and an
affine interior point method for linear programming,” Mathematics of

Operations Research, vol. 37, no. 1, pp. 1–20, 2012.

[47] J. Hammersley, Monte carlo methods. Springer Science & Business
Media, 2013.

[48] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd



ACM/IEEE International Conference on Automated Software Engineer-

ing, 2018, pp. 475–485.

[49] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “{AFL++}: Combin-
ing incremental steps of fuzzing research,” in 14th USENIX Workshop

on Offensive Technologies (WOOT 20), 2020.

[50] M. Zalewski, “Afl parallel fuzzing,” https://github.com/google/AFL/
blob/master/docs/parallel fuzzing.txt, 2020.

[51] Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen, C. Lyu, C. Wu,
R. Beyah, P. Cheng et al., “Unifuzz: A holistic and pragmatic metrics-
driven platform for evaluating fuzzers.” in USENIX Security Symposium,
2021, pp. 2777–2794.

[52] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and L. Lu,
“Savior: Towards bug-driven hybrid testing,” in 2020 IEEE Symposium

on Security and Privacy (SP). IEEE, 2020, pp. 1580–1596.

[53] M. Zalewski, “Afl official seed corpus,” http://lcamtuf.coredump.cx/afl/
demo/, 2021.

[54] L. Bottou et al., “Online learning and stochastic approximations,” On-

line learning in neural networks, vol. 17, no. 9, p. 142, 1998.

[55] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao, and
J. Sun, “Safl: increasing and accelerating testing coverage with symbolic
execution and guided fuzzing,” in Proceedings of the 40th International

Conference on Software Engineering: Companion Proceeedings, 2018,
pp. 61–64.

[56] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“{MOPT}: Optimized mutation scheduling for fuzzers,” in 28th USENIX

Security Symposium (USENIX Security 19), 2019, pp. 1949–1966.

[57] A. Miné, “The octagon abstract domain,” Higher-order and symbolic

computation, vol. 19, no. 1, pp. 31–100, 2006.

[58] L. Lovász and S. Vempala, “Hit-and-run from a corner,” SIAM Journal

on Computing, vol. 35, no. 4, pp. 985–1005, 2006.

[59] S. Weisberg, Applied linear regression. John Wiley & Sons, 2005, vol.
528.

[60] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Model-based whitebox
fuzzing for program binaries,” in Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, 2016, pp.
543–553.

[61] S. Cha, S. Hong, J. Lee, and H. Oh, “Automatically generating search
heuristics for concolic testing,” in Proceedings of the 40th International

Conference on Software Engineering, 2018, pp. 1244–1254.

[62] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and
J. Sun, “Pata: Fuzzing with path aware taint analysis,” in 2022 2022

IEEE Symposium on Security and Privacy (SP)(SP). IEEE Computer

Society, Los Alamitos, CA, USA, 2022, pp. 154–170.

[63] A. Fioraldi, D. C. D’Elia, and E. Coppa, “Weizz: Automatic grey-box
fuzzing for structured binary formats,” in Proceedings of the 29th ACM

SIGSOFT International Symposium on Software Testing and Analysis,
2020, pp. 1–13.

[64] P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini

encyclopedia of psychology, pp. 1–1, 2010.

[65] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen,
“{GREYONE}: Data flow sensitive fuzzing,” in 29th USENIX Security

Symposium (USENIX Security 20), 2020, pp. 2577–2594.

[66] D. She, R. Krishna, L. Yan, S. Jana, and B. Ray, “Mtfuzz: fuzzing with
a multi-task neural network,” in Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, 2020, pp. 737–749.

[67] J. R. Norris and J. R. Norris, Markov chains. Cambridge university
press, 1998, no. 2.

[68] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and
Z. Su, “{EnFuzz}: Ensemble fuzzing with seed synchronization among
diverse fuzzers,” in 28th USENIX Security Symposium (USENIX Security

19), 2019, pp. 1967–1983.

[69] J. Ba, M. Böhme, Z. Mirzamomen, and A. Roychoudhury, “Stateful
greybox fuzzing,” arXiv preprint arXiv:2204.02545, 2022.

[70] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 146–157.

[71] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid,
“Deeproad: Gan-based metamorphic testing and input validation
framework for autonomous driving systems,” in Proceedings of the

33rd ACM/IEEE International Conference on Automated Software

Engineering, ser. ASE ’18. New York, NY, USA: Association

for Computing Machinery, 2018, p. 132–142. [Online]. Available:
https://doi.org/10.1145/3238147.3238187

[72] H. Zhou, W. Li, Z. Kong, J. Guo, Y. Zhang, B. Yu, L. Zhang,
and C. Liu, “Deepbillboard: Systematic physical-world testing of
autonomous driving systems,” in Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
347–358. [Online]. Available: https://doi.org/10.1145/3377811.3380422

[73] B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, and J. Zhuge, “{FANS}:
Fuzzing android native system services via automated interface analy-
sis,” in 29th USENIX Security Symposium (USENIX Security 20), 2020,
pp. 307–323.

[74] M. Wu, Y. Ouyang, H. Zhou, L. Zhang, C. Liu, and Y. Zhang,
“Simulee: Detecting cuda synchronization bugs via memory-access
modeling,” in Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, ser. ICSE ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 937–948.
[Online]. Available: https://doi.org/10.1145/3377811.3380358

[75] M. Wu, L. Zhang, C. Liu, S. H. Tan, and Y. Zhang, “Automating cuda
synchronization via program transformation,” in 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE),
2019, pp. 748–759.

[76] Y. Zhao, Z. Wang, J. Chen, M. Liu, M. Wu, Y. Zhang, and
L. Zhang, “History-driven test program synthesis for jvm testing,”
in Proceedings of the 44th International Conference on Software

Engineering, ser. ICSE ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1133–1144. [Online]. Available:
https://doi.org/10.1145/3510003.3510059

[77] M. Wu, M. Lu, H. Cui, J. Chen, Y. Zhang, and L. Zhang, “Jitfuzz:
Coverage-guided fuzzing for jvm just-in-time compilers,” in Proceedings

of the 45th International Conference on Software Engineering, ser. ICSE
’23. New York, NY, USA: Association for Computing Machinery, 2023.

[78] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing.” in NDSS, vol. 17,
2017, pp. 1–14.

[79] Y. Wang, P. Jia, L. Liu, C. Huang, and Z. Liu, “A systematic review
of fuzzing based on machine learning techniques,” PloS one, vol. 15,
no. 8, p. e0237749, 2020.

[80] Z. Y. Ding and C. Le Goues, “An empirical study of oss-fuzz bugs,”
in 2021 IEEE/ACM 18th International Conference on Mining Software

Repositories (MSR). IEEE, 2021, pp. 131–142.
[81] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped sym-

bolic execution,” in Proceedings of the 40th International Conference

on Software Engineering, 2018, pp. 350–360.
[82] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less

traveled paths,” ACM SigPlan Notices, vol. 48, no. 10, pp. 19–32, 2013.
[83] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated

random testing,” in Proceedings of the 2005 ACM SIGPLAN conference

on Programming language design and implementation, 2005, pp. 213–
223.

[84] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing for
security testing,” Communications of the ACM, vol. 55, no. 3, pp. 40–44,
2012.

[85] J. Liu, J. Lin, F. Ruffy, C. Tan, J. Li, A. Panda, and L. Zhang,
“Nnsmith: Generating diverse and valid test cases for deep learning
compilers,” in Proceedings of the 28th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems, Volume 2, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 530–543. [Online].
Available: https://doi.org/10.1145/3575693.3575707

[86] J. Liu, J. Peng, Y. Wang, and L. Zhang, “Neuri: Diversifying dnn gen-
eration via inductive rule inference,” arXiv preprint arXiv:2302.02261,
2023.


	Introduction
	Background
	Coverage-guided Fuzzing Strategy
	Concolic Execution
	Coordination Mode
	Scheduling
	Synchronization


	Extensive Study
	Subjects and Benchmarks
	Subject
	Benchmark Programs

	Experiment Setup
	Research Questions
	Results and Analysis
	RQ1: Performance of hybrid fuzzers
	RQ2: Impact of coordination mode

	Discussion

	Enhancing hybrid fuzzers
	Approach
	Edge-oriented Scheduling
	Sampling-augmenting Synchronization

	Evaluation
	Edge Coverage
	Bug Detection


	Threats to Validity
	Related Work
	Fuzzing
	Symbolic/Concolic Execution

	Conclusion
	Acknowledgement
	References

