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Abstract

Maintenance on piping failures due to degrading materials are time consuming, costly, and result in decreased
productivity to fix. However, with growing technology it is possible to use machine learning models to predict when
maintenance would be needed prior to such failures. With machine learning models and time series data analysis being
a key aspect in the growing field of predictive maintenance, data from sensors in pipelines on corrosion were analyzed
in Python to create a predictive model that would accurately predict plant equipment failure. Both classical and
machine learning models were analyzed to use on the time series data of corrosion rates and Integrity Operating
Window (IOW) tags collected from oil refinery piping. Models such as ARIMA and ARMA were comparatively the
best at predicting the corrosion rates. On the other hand, machine learning models such as Random Forest (RF) and
Support Vector Machine (SVM) were not as accurate, although RF was one of the more accurate machine learning
models tested. Analyzing the corrosion rates yielded more accurate predictions than analyzing the IOW tags.
Analyzing the IOW tags with machine learning models yielded percentage errors of 99% and above. However,
ARIMA was found to have the highest success rate in predicting the corrosion rates obtained from the data.
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1. Introduction

Failure of pipelines due to degrading materials is a common issue dealt with by infrastructure, specifically oil
refineries. Maintenance on these systems can be costly, time consuming, and can cause a decrease in productivity.
However, with increasing technology and the ability to evaluate equipment’s need for maintenance has proven to
increase productivity, save time, along with many other benefits. This predictive maintenance through collaboration
with machine learning would prove to be very beneficial to pipelines in oil refineries. As pipelines are the
transportation network of oil refineries and they have limited accessibility for maintenance. This makes it highly
important to be able to maintain them and avoid failures that could cause delays. Predictive maintenance would need
to be able to identify and alert someone of the optimal time to perform the maintenance to ensure longest life and
productivity of the pipes/piping and pipelines. In order to develop a system that is capable of predicting the optimal
time to repair a pipe/piping and/or pipeline network, an understanding of the degradation rate is necessary. The
degradation rate is the process by which, in this case a pipe, loses its functionality with respect to time and external
strenuous conditions at a continuous rate [1]. There are many prediction modeling techniques used to predict the rate
of degradation and the remaining useful life (RUL). Linear models are widely used to predict corrosion rate, especially
when dealing with limited time-series data points [2]. The power-law model is widely accepted to describe the
corrosion growth mechanism and expect the corrosion depth over time in the pipeline [3]. The de Waard-Milliams
model is the most commonly used to predict internal corrosion rate, which is commonly known as CO2 corrosion rate
[4]. Several probabilistic models consider probability as a primary factor are also proposed in predicting the corrosion
growth process over time in pipelines and are reviewed in [5]. As the industry continues to progress through “The
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Fourth Industrial Revolution,” also known as Industry 4.0, Many engineers and researchers are focusing on the
combination of physical data and digital systems and equipment. This is especially true in predictive maintenance
modeling (PdM). Technological advances in the past decade have let researchers and engineers be able to analyze
large amounts of data and predict important degradation of plant equipment. PdM often uses machine learning (ML)
to recognize patterns in data and predict when equipment needs to be fixed before failure actually occurs. Many
common models of ML used in PAM are Random Forest Regression (RF), Artificial Neural Network (ANN),
Convolution Neural Network (CNN), Support Vector Machine (SVM), Decision Tree (DT), etc. A comparative study
[6] compares the performance of three artificial intelligence models such as ANN, RF, and SVM in predicting the
internal corrosion rate in the pipeline and found that ANN outperforms others.

This paper aims to analyze the data given and come up with a model to predict plant equipment failure of pipelines.
Sensors along oil refinery pipelines in Malaysia collected data over a ten-month span in 2019, from March to
December, on corrosion rates and properties that influence corrosion; such as temperature, pH, flow velocity, salt,
iron, chloride, and basic sediment and water. With the given data, different time series forecasting models are used to
find the most accurate model. This comparative study selects only a few corrosion rate sensors and considers both
classical ways of analyzing time series data and other machine learning (ML) models. Classic time series analysis
algorithms we used involved: Autoregression (AR), Autoregressive Moving Average (ARMA), and Autoregressive
Integrated Moving Average (ARIMA). For ML models we looked at: RF, SVM, Gradient Boosting Regression (GBR),
and K-Nearest Neighbor Regression (KNN). As we analyzed the results of these models, we learned which predicted
the designated test section more accurately than others.

2. Method and Testing

2.1 Software

In this paper, we used Python, a programming language, and JupyterLab to perform all steps in the machine learning
lifecycle such as data preprocessing, feature engineering and model development. Python was chosen due to its ease
of learning, simplicity and the wealth of resources for data science libraries. Jupyterlab is a computational notebook
that allows us to run codes and document our process in a single web page. Both are popular tools in the data science
community.

2.2 Performance Measure

The accuracy of the models was measured using mean absolute percentage error (MAPE) and mean absolute error
(MAE). MAPE was used to determine how accurate the forecast model was, and MAE was used to show the average
of all errors [7]. We also calculated the percentage error using a Root Mean Square Estimate (RMSE) divided by the
standard deviation of the data. To find the RMSE, we used cross evaluation on the data to get a mean RMSE.

2.3 Data Preparation & Cleaning
When preparing the data for analysis we went through a couple of steps:

1. Read in the data from the excel files (both metadata and dataset)

2. Parsed the dates and index columns

3. Selected a corrosion group (CG) from the existing cg in the metadata file and created an object containing
only the items from that CG
Converted the values in the dataset file to numeric values
Created objects for both the corrosion rate tags and the Integrity Operating Window (IOW) tags
Selected a target tag from the data
Dropped the null values in the target tag and selected a time frame
Split the data into train and test sets. There were two different ways to create train and test groups in order to
analyze the data: custom_train_test split (seen in section A) and the train_test_split function from the sklearn
library. The first algorithm was used for splitting the data for the classical methods, where the training and
testing sets were adjusted to 3 weeks and 1 week, respectfully. The second way was used to split data for the
ML methods, where 70% of the data would be used for training and the remaining 30% for testing. Figure 1
demonstrates an example of a graph after completing these steps with the first way.

PRI
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Figure 1: Train and Test Sets on PU1-CT-1129 Graph

2.4 Classical Models

The first method examined was AR, which studies previous data and uses that knowledge to predict the next value in
the series [8]. Next, ARMA was considered, it is a combination of AR and Moving Average (MA), hence the name.
It observes and uses errors from the past to calculate future steps [8]. Lastly, ARIMA was used, which is very similar
to ARMA except it includes Integration (I), which differences data in order to make it stationary [8].

2.5 ML Models

Some of the ML models we looked at were Linear Regression (LR), Decision Tree (DT), Support Vector Machine
(SVM), RF, KNN, and GBR. To briefly go over each model that we had looked at in our testing. LR is a model that
uses the process of finding a straight line that best approximates the set of points. DT models use a system of roots
and nodes, breaking the dataset into smaller subtrees to analyze. This results with a tree with decision nodes. SVM
modeling is based on finding a hyperplane that best divides the dataset into two classes. It then conducts optimization
to pick an optimal line from the distance of the closet values to the hyperplane. RF is a model that uses a collection of
arbitrary decision trees; it aims to predict the remaining useful life of an object. KNN model approximates association
between variables and averages the observations based on a similarity measure. GBR modeling uses a weak learner
(such as decision or regression trees) to add the trees using a gradient descent procedure to minimize the loss.

3. Results

3.1 Corrosion Rate

Both classical and ML models were utilized to predict the time series data of corrosion rates for the first processing
unit (PU1). Figure 2 and Figure 3 display the outcome of these classical and ML methods, respectively. From these
images and Table 1, it was noted that the classical models provided a better prediction for the first 4 weeks of the
PU1-CT-1129 graph, with ARMA having the best result and lowest error of 0.0083.
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Figure 2: Classical Forecast of PU1-CT-1129.1 Graph
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Figure 3: ML Forecast of PU1-CT-1129.1 Graph
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Similarly, Figure 4 and Figure 5 illustrate the different prediction methods for the second 4 weeks of the PU1-CT-
1129 graph. The best model here was ARIMA, with the MAPE error being 0.016, as seen in Table 1.
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Figure 4: Classical Forecast of PU1-CT-1129.2 Graph
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Figure 5: ML Forecast of PU1-CT-1129.2 Graph

Since the classical methods were the best for the first two trials, we conducted several more tests on corrosion rate
data to see if this pattern would continue. Parameters such as the length of the train and test sets were changed from 3
and 1 week, respectively, to 6 and 2 weeks, still maintaining the 3:1 ratio. The reason for this was to observe whether
adding more data would improve the model. Figure 6 and Figure 7 demonstrate this by showing the first 8 weeks of
PU1-CT-1188. In these graphs ARIMA was the best method with an error of 0.1633.
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Figure 6: Classical Forecast of PU1-CT-1188.1 Graph
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Figure 7: ML Forecast of PU1-CT-1188.1 Graph

After all methods were tested on three PU1 models with different train and test lengths and different time stamps, the
MAPE errors were summarized in Table 1. The green highlights signify which classical method had the lowest error
and the yellow highlights indicate which ML method had the lowest error. From the table, we observed that ARIMA
had the highest success rate of 43.75% out of the classical methods. The second highest success rate was ARMA with
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a 37.5% accuracy, and third was AR with an accuracy of 18.75%. Out of the ML models, RF had a success rate of
31.25%, SVM and KNN both were 25% accurate, and GBR was 18.75% accurate. We also noticed how the classical
method always had a lower error than ML method, except for two times: PU1-CT-1173 and PU1-CT-1188.2. This
suggests that the classical methods were more accurate compared to the ML ones.

Table 1: Comparison of Data using MAPE

AR ARMA  ARIMA [ RF VM GBR KNN

PUL-CT-1101 | 00176 00180 0.0654| 00379 01039 00708 0.0388
PUL-CT-1103 | 01756 01370 0.0114| 0.1676 02381 02067 0.1717
PUL-CT-1105 | 00546 00187 0.0367| 00369 00326 00371 0.0347
PUL-CT-1129 | 04391 03631 02510 05999 05602 05850 04951
PUI-CT-1129.1 01118 00083 00230 01065 01946 01383 0.1298
PUI-CT-1129.2( 01004 0.0742 0.0160[ 0.0405 00638 0.0380 0.0377
PUL-CT-1129.3| 0.1246 01093 0.0634f 02349 01159 01937 02033
PUI-(T-1129.4( 5.43E08 01393  0.1330| 6.15E-08 1.94E-07 5.81E-08 8.62E-08
PUL-CT-1161 | 0.1940 00138 0.0626| 01351 01603 0.1679 0.1557
PUL-CT-1162 | 01821 00193 0.1109| 0.1434 01320 01420 01378
PUL-CT-1173 [ 0.0011 00370 3.44E-05 1.18E-07 2.61E-08 1.20E-07 2.03E-07
PUL-CT-1179 | 0.0808 0.0921 0.0198( 0.0566 0.0497 00421 0.0622
PUL-CT-1180 | 13494 08670 1.9274| 17.2086 14535 2.1814 3.3926
PUL-CT-1188.1| 37579 02554 0.1633| 0.2327 03256 01982 0.2281
PUI-CT-1188.2 01284 0.4034 0.2688( 0.2830 02752 03098 0.1279
PUL-CT-1189 | 00681 00542 0.0703| 0.0683 00659 0.0576 0.0564

It is important to note that not all of the data was suitable for predicting since some corrosion rate processing units
had irregular or non-existing data such as the model in Figure 8. The lines are jagged, and it would be difficult to
predict the next point in the sequence. Therefore, we focused on graphs that were more continuous.
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Figure 8: PU1-CT-1164 Graph
3.210W

We also looked at how the IOW tags could be used to predict corrosion rates. Focusing on the IOW tags corresponding
with the tag PU3-CT-1010 from the 3rd processing unit, we used LR, DT, RF, GBR, and KNN regression models. In
this research, it was found that each model had a percentage error higher than 100% (seen in Table 2).
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Table 2: Comparison Data for IOW ML Model

Percentage Error

LR 2.243627
DT 1.143244
RF 0.997076

GBR 1.334363
KNN 1.061953

This data shows the importance of having enough data to train the model with. The data from the corresponding IOW
tag did not offer enough data for any of the models to properly be trained and tested. We suggest gathering more data,
test more feature engineering, and also test more ML models with more hyperparameter tuning in order to improve
the IOW models.

4. Conclusion

In our research, we were able to look at how valuable ML can be in PAM. Through assessing the corrosion rate tags,
we found that of both the classical and the ML modeling, ARIMA had the highest success rate. Meaning the classic
ways of assessing time series forecasting was the most accurate way to predict future data points. Through assessing
the IOW, we saw that there was not enough data to create low error models. The next steps we could continue in our
research to produce more accurate results would be to collect more data, test more feature engineering, assess the data
with more ML models, and do more hyperparameter tuning.
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