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Abstract

Peer prediction refers to a collection of mechanisms for eliciting information from
human agents when direct verification of the obtained information is unavailable.
They are designed to have a game-theoretic equilibrium where everyone reveals
their private information truthfully. This result holds under the assumption that
agents are Bayesian and they each adopt a fixed strategy across all tasks. Human
agents however are observed in many domains to exhibit learning behavior in
sequential settings. In this paper, we explore the dynamics of sequential peer
prediction mechanisms when participants are learning agents. We first show that
the notion of no regret alone for the agents’ learning algorithms cannot guaran-
tee convergence to the truthful strategy. We then focus on a family of learning
algorithms where strategy updates only depend on agents’ cumulative rewards and
prove that agents’ strategies in the popular Correlated Agreement (CA) mechanism
converge to truthful reporting when they use algorithms from this family. This fam-
ily of algorithms is not necessarily no-regret, but includes several familiar no-regret
learning algorithms (e.g multiplicative weight update and Follow the Perturbed
Leader) as special cases. Simulation of several algorithms in this family as well as
the e-greedy algorithm, which is outside of this family, shows convergence to the
truthful strategy in the CA mechanism.

1 Introduction

A fundamental challenge in many domains is to elicit high-quality information from people when
directly verifying the acquired information is not feasible, either because the ground truth is not
available or because it is too costly to obtain. Notable settings include asking people to label data
for machine learning, having students perform peer grading in education, and soliciting customer
feedback for products and services.

The peer prediction literature has made impressive progress on this challenge in the past two decades,
with many mechanisms that have desirable incentive properties developed for this problem [20} |19}
27, 1501220 8, (141 1251 117, 1164 211 [18) 23] [15]. The term peer prediction refers to a collection of reward
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mechanisms that solicit information from human agents and reward each agent solely based on how
the agent’s reported information compares with that of the other agents, without having access to the
ground truth. Under some assumptions, many peer prediction mechanisms [20} (19} 27,122} 8 116 [21]]
guarantee that every agent truthfully reporting their information is a game-theoretic equilibrium, and
the more recent multi-task peer prediction mechanisms [15, [14} 25} |17, |18} 23 [15]] further ensure that
agents receive the highest expected payoff at the truthful equilibrium, compared with other strategy
profiles.

While achieving truthful reporting as a highest-payoff equilibrium is a victory to declare for this
challenging without-verification setting, there are however caveats associated with adopting the notion
of equilibrium as a solution concept. The equilibrium results rely on the assumption that participants
are fully rational Bayesian agents. Equilibrium is a static notion and does not address how agents,
who act independently, jump to play their equilibrium strategies. Moreover, the equilibrium results
of multi-task peer prediction mechanisms heavily depend on a consistent strategy assumption, that
is, each agent is assumed to adopt a fixed strategy across all tasks in which she participates. All
together these assumptions exclude the possibility that agents may explore and learn from previous
experience, a behavior that’s not only commonly observed in practice but also has been modeled in
studying other strategic settings [3\ (6, 4].

This paper is the first theoretical study on the dynamics of sequential peer prediction mechanisms
when participants are learning agents. The main question that we explore is whether and when in
sequential peer prediction, learning agents will converge to all playing the truthful reporting strategy.
We first consider agents adopting no-regret learning algorithms and prove that the notion of no
regret alone cannot guarantee convergence to truthful reporting. We then define a natural family of
reward-based learning algorithms where strategy updates only depend on agents’ cumulative rewards.
While algorithms in this family are not necessarily no-regret (e.g. the Follow the Leader algorithm),
this family includes some familiar no-regret learning algorithms, including the Multiplicative Weight
Update and the Follow the Perturbed Leader algorithms. Our main result shows that, for the binary-
signal setting, agents’ strategies in the popular Correlated Agreement (CA) mechanism [S]] converge
to truthful reporting when agents use any algorithm from this family. To prove the result, we show
the process has a self-fulfilling property: once Alice and Bob have large accumulated rewards for
truth-telling, they are more likely to play truth-telling and resulting in larger accumulated rewards.
Theoretically, we carefully partition the process into three stages, bad, intermediate, and good events
illustrated in fig. |1} and use tools in martingale theory to argue the progress of the process. Finally, we
simulate the strategy dynamics in the CA mechanism for several algorithms in this family as well as
for the e-greedy algorithm, which doesn’t belong to this family. We observe convergence to truthful
reporting for all algorithms considered in our simulation, suggesting an interesting future direction to
characterize all learning algorithms that converge to truthful reporting.

Related Works This paper relates to two lines of work, information elicitation and mechanisms for
learning agents.

Information Elicitation Mechanisms The literature on information elicitation without verification
focuses on capturing the strategic aspect of human agents. In multi-task settings, Dasgupta and Ghosh
[S] proposed a seminal informed truthful mechanism, the Correlated Agreement (CA) mechanism,
for binary positively correlated signals. A series of works then relaxed the binary and positively
correlation assumptions [25} [17, 23} [15]. Additionally, Zheng et al. [28] study the limitation of
information elicitation in the multi-task setting. However, all of the above works assume agents using
consistent strategies that are identical across all tasks. The consistent strategy assumption excludes
the possibility of agent learning. Our work removes the consistent strategy assumption and explicitly
considers learning agents. We theoretically prove truthful convergence of the CA mechanism when
agents using algorithms from a family of reward-based online learning algorithms.

Our work of considering learning agents can be viewed as a way of testing the robustness of
information elicitation mechanisms with respect to deviation from the rational Bayesian agent model.
From this perspective, Shnayder et al. [26]] is closely related to ours. They consider sequential
information elicitation and empirically study if agents using replicator dynamics can converge to
truth-telling in the CA mechanism and several other mechanisms. Our work theoretically proves that,
besides replicator dynamics, learning agents can converge to truth-telling in the CA mechanism when
they use a general family of learning algorithms. Additionally, Schoenebeck et al. [24] designed an
information elicitation mechanism that was robust against a small fraction of adversarial agents.



Mechanisms for Learning Agents Several works in economics and computer science try to design
mechanisms for learning agents, rather than for rational, Bayesian ones. Braverman et al. [3]] studied
pricing mechanisms for learning agents with no external regrets. Their work was generalized by
Deng et al. [|6] to consider repeated Stackelberg games in full-information settings. Camara et al. [4]]
further proposed counterfactual internal regrets (CIR) together with no-CIR assumption, which was
proved to be a sufficient behavior assumption for no-regret principal mechanism design in repeated
stage games. However, all of these works focus on a single agent or full-information games, while
peer prediction is an incomplete-information game with multiple agents. Finally, our goal is slightly
different from that of most sequential mechanism design. Instead of maximizing the mechanism
designer’s utility, our goal is to incentivize truthful reporting from agents.

2 Peer Prediction Settings

For simplicity we consider two agentsﬂ Alice and Bob, who work on a sequence of tasks indexed
by t > 1. For round ¢, both agents work on task ¢, Alice receives a signal X; = x; in {0, 1},
and Bob a signal ¥; = y; in {0,1} where X; and Y; denote random variables, and x; and y;
are their realizations. Then Alice and Bob report X, =4 and Y, = 9¢ in {0,1}. We define
Xop ={X,:1<s<t}e{0,1} and X, = {X,:1<s <t} € {0,1} to denote Alice’s
signal profile and report profiles until ¢-th round respectively, and define Y<; and Ygt for Bob

similarly. We use X, X, Y, and Y for the complete signal and report profiles. Additionally, we
consider the signals are generated from some distribution P that satisfies the following assumptions:

Assumption 2.1 (A priori similar tasks [S]). Each pair of signal is identically and independently
(i.i.d.) generated: there exists a distribution Px y over {0, 1}? such that (X;,Y;) ~ P,y for any
t € N*. Moreover, we assume the distribution has full support, Px y (z,y) > 0 forall z,y € {0,1}.

Assumption 2.2 (Positively correlated signals). The distribution Px y is positively correlated,
min{PX,y(l, 1), ,PX’y(O7 0)} > maX{PX’y(l, 0)7 PX,Y (07 1)}

Now we introduce multi-task peer prediction mechanisms and sequential peer prediction mech-
anisms, and their relation. We will focus on the sequential setting. Multi-task peer prediction
mechanisms work on a fixed number of tasks. Formally, a multi-task peer prediction mech-
anism on k tasks is a pair of payment functions M : {0,1}* — [0,1]%. For instance, the
(multi-task) correlated agreement mechanism (CA mechanism 5l 25l 6] is M CA()E,y) =
(I[22 = G2] — [[Z2 = §1],[[J2 = Z2] — L[§2 = #1]) for all X,y € {0, 1}2. Intuitively, the CA mech-
anism rewards agreement on the same task and punishes agreement on uncorrelated tasks.

A sequential information elicitation mechanism is a sequence of payment functions M = {M; :
t > 1} where M; : {0,1}?*" — [—1,1] for all t. After Alice and Bob reporting X<; and y<;
in round ¢, the mechanism computes (1, s;) := M; (X<, y<¢) and pay r; to Alice and s, to Bob.
Here we assume M can only depends on a constant k round of reports so that M; (X<, ¥<¢) =
Mt(-%t—k)-‘rla .f}t_;g_;,_l, AN ,.i‘t, ?)t—k—kla ?jt—k-&-ly N ,gt) for all t, )ACSt, and ySt» and we call such M
rank k mechanism. For instance, the (multi-task) CA mechanism can be adopted as a sequential rank
2 information elicitation mechanism: At round ¢, the payment is

MEA (%<, ¥<t) = Ude = G¢] — & = Ge—1], 1[G = @] — Uge = 24-1]) (1)

where ¢ and 9y are set as 0. Similarly, we say a sequential information elicitation mechanism
M = (My)y>1 is a sequential version of a multi-task information elicitation mechanism M if
Mt(f(gm 5’9) = M(itkarh i'tflfrh o Ty Utk 1 Gtk 1s - - - >ﬂt) for all X<, S’gt andt > k.
The payment at round ¢ > k is M on the latest k£ reports. Conversely, a sequential information
elicitation mechanism can be seen as a sequence of multi-task information elicitation mechanisms.

'For more than two agents, we can partition the agents into groups of two agents to run our mechanisms
when the number of agents is even. Then all our results still hold. Finally, when the number of agents is odd, we
can pair the unpaired agent with a reference agent whose payment is not affected by the unpaired one.

2While the CA mechanism can be defined on non binary setting and does not require positive correlation. [25],
with assumption[2.2] the CA mechanism reduces to eq. (1) and is first proposed in [5]. Finally, note that when
the number of task is greater than two, we can compute the payment based on the last two tasks or two random
tasks since agents using consistent strategy and assumpti0n|2._1.



Now we formally define agents’ strategies. Due to symmetry, we introduce notation for Alice and
omit Bob’s. Given an information elicitation mechanism M, at round ¢, Alice observes her signal
24 and decides on her report ;. Thus, Alice has four options (pure strategies): 1) opt,: report the
private signal truthfully, 2) opt,: flip the private signal, 3) opt;: report 1 regardless of the signal, and
4) opt,: report 0 regardless of the signal. We call opt, and opt, uninformative strategies. We use
opt;¥ to denote Alice’s pure strategy, and r for her payoff at round ¢. At each round ¢, Alice knows
her previous signals x<; € {0, 1}?, her pure strategies opt;, ..., optyX ;, and Bob’s reports y<;_1,
so we use Fy = {x<¢,0ptX, |,¥<i—1} to denote Alice knowledge at round ¢. Thus, Alice’s mixed
strategy at round ¢ is a stochastic mapping o;% from F; to {opt,, opt,, opt,, opt, }. We’ll abuse our
nation and also use 0;* = opt;X to represent the realized pure strategy. Finally, a learning algorithm
of Alice is a mapping from an information elicitation mechanism M to her strategies.

Strong Truthfulness for Rational and Bayesian agents Previous works on information elicitation
try to ensure truth-telling opt, is the best strategy for rational and strategic agents. In particular, a
mechanism is strongly truthful if Alice and Bob report truthfully is a Bayesian Nash Equilibrium
(BNE) and they get strictly higher payment at this BNE than at any other non-permutation BNE.
We present the formal definitions in the appendix. Informally, in a permutation BNE, every agent’s
strategy on each round is a permutation/bijection from his/her signals to reports. However, the
equilibrium results of previous mechanisms not only require assumption but further assume
agents using consistent strategies. Specifically, Alice uses a consistent strategy if there is a fixed
distribution on {opt,, opt,, opt;,opt, } so that optX is generated from a fixed distribution that is
independent of her private signals on other tasks and the round number. For instance, when Alice and
Bob are Bayesian and use consistent strategies under assumption[2.2)and [2.1] Dasgupta and Ghosh
[5] show CA mechanism in eq. (I) is strongly truthful. Intuitively, positive correlation assumption[2.2
guarantees that truthful reporting can maximize the chance of agreeing with the peer on the same
task while avoiding agreeing on reports on other tasks. Furthermore, in appendix [B| we show CA
mechanism merely has three types Bayesian Nash equilibria, at which both agents 1) play truth-telling
opt;, 2) flip the signal opt,, or 3) generate uninformative reports (mixture between opt;, opt,) when
agents use consistent strategies and assumptions [2.T]and [2.2] hold.

Truthful Convergence for Learning Agents However, as we consider agents using a family of
online learning algorithms to decide their strategies, standard solution concepts like Bayesian Nash
equilibrium no longer apply. Additionally, online learning algorithms often have exploration, so we
cannot hope agents will always use the truth-telling strategy. For learning agents, our goal is to test
whether existing mechanisms can ensure that agents will converge to truthful reporting when they
deploy certain learning behavior that goes beyond obliviously consistent strategies.

We now formalize the convergence of algorithms to truthful reporting. Because we want to elicit
information without verification, it is information-theoretically impossible for us to separate per-
mutation equilibrium, where all agents play opt,, from truthful equilibrium, where all agents play
opt,, without any additional information [[17]. However, if we have an additional bit of information
on whether the prior of 0 is larger than 1, we may tell apart these two equilibria. We hence define
convergence to truthful reporting as the limits of both optX and opt}” being truth-telling (opt,) or
flipping (opt,). Note that definition [2.3|requires almost surely convergence which is very strong
convergence concept.

Definition 2.3. An information elicitation mechanism M achieves truthful convergence for agents
using algorithms A; and A, respectively if and only if both sequences of pure strategies converge to
truth-telling or both flipping the reports.

Pr{ lim optX = lim opt’ =opt; V lim opt’ = lim opt] = opt, v = 1.
{t—>+oo Pl =, oPh Pl Vi, A OoPh = A OPh Pl

3 Online Learning Algorithms

In this section, we explore candidates to model agents’ learning behavior to replace Bayesian agents’
consistent strategies in the literature. We first show the conventional no-regret assumption is a
necessary but not a sufficient condition for truthful convergence in section Then in section
we introduce a family of reward-based online learning algorithm to model agents’ learning behavior,



and show that the family of reward-based online learning algorithms contains several common
no-regret algorithms as special cases.

3.1 No-regret Online Learning Algorithms

We now investigate the relationship between no regret and truthful convergence. First, we show
general no-regret algorithms may not ensure truthful convergence (theorem [3.T). However, we show
the converse is almost true (theorem [3.2): If truthful convergence happens, the agents do not have
regret when the sequential mechanism is a sequential version of a strongly truthful mechanism.

Given a sequential information elicitation mechanism M = (M;X, MY );>1, signals x, y, and reports
X,y, we define r;; = M;X (opt,(z1),...,0pt;(:), y<;) be the payoff when Alice uses strategy
opt; and Bob’s choices are unchanged. Then Alice’s regret is Reg®(T) = max; Doier Tit —
> i< ¢ Finally, we say that Alice’s and Bob’s online learning algorithms are no regret (on M) if

E[Reg® (T)] = E[Reg" (T)] = o(T) over the randomness of signals and the algorithms, and we say
Alice and Bob are no regret for short.

One may hope that no regret as a behavior assumption for agents is sufficient for achieving desirable
outcome in a mechanism. However, the following theorem shows that we cannot have an information
elicitation mechanism that achieves truthful convergence for all no-regret agents.

Theorem 3.1. For any sequential information elicitation mechanism M of rank k € N, there exist
no-regret algorithms for Alice and Bob so that M cannot achieve truthful convergence.

The main idea of the proof is that the no-regret assumption cannot prevent Alice and Bob from
colluding. In our counterexample, Alice and Bob decide on a no-regret sequence of reports regardless
of their signals once the mechanism is announced. Technically, we use a probabilistic method to show
the existence of a deterministic and no-regret sequence of strategies (opt;®, opt}/)tzl that consists of
reporting 1 or 0 regardless of private signals, i.e. opty or opt,. The formal proof is in appendix [C.1,

The notion of truthful convergence in definition [2.3] provides an ideal truthful guarantee to the
mechanism designer. Here we show that truthful convergence also ensures no regret for agents when
the sequential mechanism is a sequential version of a strongly truthful one-shot multi-task mechanism.
That is, when the one-shot mechanism admits truthful reporting as a highest-payoff BNE.

For instance, if a pair of algorithms exhibits truthful convergence on the sequential CA mechanism
(eq. (1)), they are also no regret (on the game). Intuitively, if Bob converges to the truth-telling
limg—, o0 optf = opt,, the average expected gain of Alice deviating to opt; is equal to the expected
gain of deviating to opt, when Bob always tells the truth. The gain is non positive because the
CA mechanism is strictly truthful by lemma Therefore, the expected regrets E[Reg™ (T')] and
E[RegY (T')] are small. Theorem [3.2]formalizes and extends the above idea to any strongly truthful
multi-task information elicitation mechanism.

Theorem 3.2. Let M be a strongly truthful multi-task information elicitation mechanism, and M be
a sequential version of M. If M achieve truthful convergence for Alice and Bob using algorithms A,
and As respectively, then Alice and Bob are no regret.

3.2 Reward-based Online Learning Algorithms

As shown in theorem the no-regret assumption allow does not guarantee truthful convergence.
In this section, we introduce a general family of online learning algorithms, reward-based online
learning algorithm, under the general full feedback bandit setting, and we will apply these algorithms
in sequential information elicitation mechanisms later. Informally, a reward-based online learning
algorithm decides each round’s strategy using a fixed update function that depends only on the
accumulative reward.

For simplicity, we only consider algorithms on four strategies {opt, , opt,, opt;, opt, } which can be
extended easily. Recall that the payoff of choosing option opt,, ¢ € [4] at round ¢ is r; ; when others’
choices are unchanged. We denote the accumulated payoffs of these four options as R; ; = 22:1 i
for i € [4]. Symmetrically, we use S;; and s, to represent accumulated payoffs and the payoff
of turning to choose option opt; in the " round for Bob. For example, for our specific peer



prediction game using CA mechanism in eq. (E), r14 = Iz = 9] — I[xy = §i—1] and therefore,
RLt = Z;Zl(ﬂ[.ﬁt = :l)t] — H[l‘t = gt—l]) for Alice.

We consider a family of reward-based online learning algorithms A that use an update function
[ :R* — A3, and choose opt; with probability f;(R1 1, R2t—1, R3t—1, Ra¢—1) fori € [4] in the
t*" round, where f; is the i coordinate of f. A such mechanism based on accumulated payoffs is
denoted by A ;. We have three assumptions for the update function f, which are all very natural. The
first two require that f is exchangeable and preserves ordering.

Assumption 3.3 (Exchangeability of f). For any R;, Ra, R3, R4 € R and an arbitrary permutation
of them Ri] s RiQ, Ria, Ru, fij (Rl, Rg, Rg, R4) = fj (Rll , R,‘z y R,‘S y Ru) for allj S [4]

Assumption 3.4 (Order preservation of f). For any R;, Ry, R3, R4 € R and suppose that
R;,,R;,, Ri,, R;, is a non-increasing order of them, for f we have f;, (R1,Ro, R3,R4) >
f’iz (Rla R27 R37 R4) Z fig (R17 R27 R3a R4> Z fi4(R17 R2’ RB’ R4)

Finally we consider the strategy chosen by the update function f when the accumulated payoff of
an strategy is much higher than that of other strategies (assumption [3.5). Appendix shows that
the assumption is necessary for reward-based online learning algorithms to achieve no regret for any
online decision problem.

Assumption 3.5 (Full exploitation of f). impg, _max{R,,Rs,Ra}—+o0 J1(R1, R2, R3, Ry) = 1.

Now we show that the family of reward-based online learning algorithms A satisfying assumptions[3.3
to[3.5]contains several classic no-regret online learning algorithms [[10}[13]].

Theorem 3.6. A contains Follow the Perturbed Leader (FPL) algorithm, and Multiplicative Weights
algorithm as special cases. Corresponding f’s for them are listed as below:

PR

Multiplicative Weight algorithm ff “isl( R\ Ry, Rs, Ry) = a7y fori € [4]

2 je €
FPL algorithm Given a noise distribution N on scalars, fI"'(Ry, Re, R3, Ry) =
iid . .
Pr {Ri + pi = maxje{ R +pi}p; ~ N,j€ [4]}f0” € [4].

In the binary peer prediction problem using CA mechanism, we can further show that replicator
dynamics and linear updating multiplicative weight algorithm [2] are both in A in appendix [E.

Remark 3.7. Our reward based online learning is very similar to the mean-based algorithm in [3]] and
both use the accumulated rewards to characterize the algorithm’s choice. Additionally, like the mean-
based algorithms, our reward based online algorithm may contain algorithms with regret in genral
game, e.g., follow the leader. The family of reward based online algorithms uses an identical update
function across all rounds. Thus some no-regret algorithms, e.g., e-greedy with time decreasing e,
doesn’t belong to family. Finally, if a mean-based algorithm is also a reward based algorithm that
uses the same update function in each round, then its update function satisfies assumption

4 Truthful Convergence of CA Mechanism on Reward-based Algorithms

Now we present our main result. We will show that the sequential CA mechanism can achieve truthful
convergence if both agents use reward-based online learning algorithms from .4. This convergence
result suggests that the classical CA is robust even when agents deviate from Bayesian rational
behavior and use a general family of online learning algorithms.

Theorem 4.1. Under assumptions and the binary-signal, sequential CA mechanism as
defined in eq. (]I) achieves truthful convergence when agents use reward-based algorithms Ay and
Ay, where the update functions f and g satisfy assumptions[3.3]to

Note that given agents’ online learning algorithm and the payment function, the sequence of accu-
mulated reward vector (Ry ¢, Rat, R3¢, Rat, S1,t, 52, 55,t, S4,1)1>1 forms a stochastic process and
we define H; as the game history of the rewards and private signals in the first ¢ round. Additionally,
if the accumulated reward of truth-telling R, ¢, 51+ is much larger than the others’, we can show
Alice and Bob converge to the truth-telling by assumption Thus, it is sufficient for us to track
the evolution of accumulated reward vector. Though the process of accumulated reward vector is not



a Markov chain because the payment function eq. (1) depends on reports in two rounds, we can still
use ideas from semi-martingale to track the process.

Before proving our main result, we first present two properties of CA mechanism for our binary
signal peer prediction problem. Lemma [4.2]shows that the accumulated payoffs of uninformative
strategies opts, opt, R3¢, R4, S3+, and Sy 4 are always bounded.

Lemma 4.2. Given the game defined in theorem for any round t, the accumulated payoffs
Rs3 1, Rat, S3+, and Sy, for two agents are bounded by [—1, 1].

The second one, Lemma tells us that the summation of accumulated payoffs of opt; and opt, is
always fixed and is equal to the summation of accumulated payoffs of uninformative ones opt; and
opt, for both agents. The proofs of these two lemmas are in appendix E

Lemma 4.3. Given the game defined in theorem for any round t, Alice has Ry + Ro s =
R37t + R4’t = 0, and Bob has Sl,t + Sg’t = S&t + Oyt = 0.

We now sketch the proof that consists of four steps. Informally, using lemmas [4.2]and [4.3] the first
step says that the uninformative strategies opt; and opt, can not completely dominate other strategies.
Specifically, both agents can not choose an option between opt, and opt, with a probability larger
than 0.75. With the first step, lemma4.2 and lemma[4.3, we only need to focus on agents’ reward of
the truthtelling opt, shown in fig.[I, We partition the space into three types of events. Good events
happen when R;, S; are both very large or very small, bad events happen when one of R, S is
very large and one of them is very small, and intermediate states are the states between them. The
second step removes the possibility that Alice and Bob continue using different reports opt; and opt,.
Therefore, we can always escape "bad events" and enter "intermediate states". The third step further
shows that if the game is in an intermediate state, there exists a constant probability that the game
will get into a good events that leads to truthful convergence in a constant number of rounds. Hence,
after the game enters "good events", which leaves us the final step: showing their strategies converges
to either both truth telling opt; or flipping opt, truthful convergence.

Now we discuss each steps in more details but defer all the proofs to appendix
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Figure 1: A schematic diagram of behaviors of Ry ; and .Sy ;.

Step 1: Choosing opt, , opt, with Nonzero Probability
Combining Lemmas §.2]and [4.3] we have the following Lemma[4.4] which completes step 1.

Lemma 4.4. Given the game defined in theorem for any round t > 0 and i € {1,2}, if
Z;:l r;; = 0, the probability for Alice to choose opt; is larger than i; ifzz-:l sit > 0, the
probability for Bob to choose opt; is larger than i.

Step 2: Escaping Bad Events



Before introduce the formal statement of step 2, we define two "bad events". Given cg for all ¢ > 1
53’2 = {R1,+ > co, and Sa; > ¢} and 5,52’1 :={Ra > copand S1; > co}. We will specify ¢
later. Intuitively, when ¢y is sufficiently large, 5,3’2 implies that Alice and Bob will choose opt;, opt,
respectively with a probability close to 1 in following rounds. For simplicity, we treat each event £ as
an indicator function, i.e., £ happens if and only if £ = 1. In order to prove that these two bad events
cannot go on forever, we want to show that when 5t1’2 happens, R; ; — R2 will tend to decrease at a
rapid rate. Therefore, Alice will eventually deviate from opt; to choose opt, with a relatively high
probability.

By assumption [3.5]and lemma[4.2] given § > 0 there exists a constant ¢; such that when Ry ; > ¢,
Alice chooses opt; with probability larger than 1 — §; when S5 ; > c¢;, Bob chooses opt, with
probability larger than 1 — . Let 4 = Px y(1,1) + Pxy(0,0) — Pxy(1,0) — Pxy(0,1)
Yo = (nyy(]., ].) - ]nyy(o7 0))2 — (vay(]., 0) — PX,y(O, 1))2

Lemma 4.5. Given the game defined in theoremd.1, there exists a § > 0 and corresponding ¢, such
that for any round t, E[ry s 11 — r2,¢41|S1,6-1 > ¢ + 1] > 2512 > 0.

1000
Y172
and 57+, 52+ vary by at most 1, if Stl -2 happens Alice chooses opt; and Bob chooses opt, with

probability larger than 1 — § independently for the next [ %%%-] + 1 rounds. Similar argument holds

for Etg "' We use the above observation to show lemma
Lemma 4.6. Given the game defined in theorem for all t and history H; € Etl’z, we have

1000
f s ’Ht} < —100.

Given such § and ¢; in lemmaM wesetco =c1 + [ 1 + 1. Because in each round R ¢, Ro

B0 (e — r2aeg)

This lemma formalizes the blue arrows in Fig.[I] With this lemma, we get the main result of step two.

Lemma 4.7. Given the game defined in theorem Pr {lim SUD;_y 00 5,51’2 Vv 53’1 = 1} =1.

If we treat Ry ; — Ro; as money of Alice, Lemma is similar to the gambler’s ruin problem

[7]. More specifically, Ri,; — Ro, has a negative expected growth each [ %20 + 1 rounds by

Lemma so Ry + — Ry will always become small enough to escape £ 12,

Step 3: From Intermediate States to Good Events

We define a series of "good events" at first. For all u € N* and ¢t > 1, Etl’l(u) = {R1s+ >
u, and 1 ; > u} and £ (u) := {Ry,; > wand Sy, > u}.

To the end, we want to show that V,en+ £ (1) and Vyen+ £ (1) happen with probability 1 for any
u € NT. Formally, we claim Lemma 4.8t

Lemma 4.8. Given the game defined in theorem for all wu there ex-
ists X\, so that for any T with history Hr € E}F’Q\/é‘;’l, we  have
e { (VT 0G11 ) (VIR 0220) Z 1l ) 3,

This lemma generally says that when the agents are in an intermediate state that 8%’2 \% 5%’1 =1, they
have a constant probability A, to get into a good event in the next 4(u + ¢o) + 100 rounds. In order
to prove this lemma, we define a nice event Pz such that Pr happens with probability larger than A,
and Pr implies the good events happen in no more than 4(u + ¢o) + 100 rounds. Formally, event Pr
is defined as the following: First, for j = T',..., T until some round 77 > T such that S; 1, > 0,
Tj+1 = 1—19;5,y;41 = 1 — &;, Alice uses strategy opt;, Bob uses strategy opt,. Then, Alice and
Bob uses strategy opt; for 4u + 50 rounds and signals are generated as x;1 = y;j4+1 = —x; for
j > Ty. We can use Lemma@to prove that A, = (min; jego,11{Px,y (i,5)} x 0.25%)100+4(utco)
is a feasible lower bound.

Step 4: Good Events Lead to Truthful Convergence

Similar to step 2, we have lemmato show that Stl 1 (u) can lead to increasing of Ry ; — Ry, at
first. The idea is completely similar to Lemma[4.6]and it formalize the red arrows in Fig.



Lemma 4.9. Given the game defined in theoremfor all v > 2¢o + 1 and t if Hy € £ (L%]).
1000
Al Ht} > 100,

we have E Zjllfw (1445 — T2,645)

Using Lemma we are able to prove that for any ¢, there exists a u such that when Etl’l (u) or
£7? (u) happens, Alice and Bob will tend to choose (opt,,opt,) or (opt,, opt,) with increasingly
higher probability. Formally, we propose Lemma

Lemma 4.10. Given the game defined in theorem for all ¢ > 0 there ex-
ists: u € Nt such that given a history Hr € Ep'(u) V Ex*(u), we have

. 1,1 u . 2,2 u N _
Pr {Vz € N,5T+(( 1), ([%] +1) \/ET+<[ w0 141 (1%] +1) = I‘HT} >1-—e.

Y172 Y1 —
We design a sub-martingale {D;};ey that is proportional to RI,TH(( 1000 Hl)

Y1 -2
sz T (rwi@% I+ 1) , and use Azuma-Hoeffding inequality to prove lemma

5 Simulations

We simulate the CA mechanism with various learning algorithms: the Hedge algorithms, follow the
perturbed leader, follow the leader, and e-greedy, and repeat the process 400 times with 800 rounds
on each algorithm each time. We define the converge proportion in round ¢ as the fraction of the
simulations where both agents report truthfully opt; (or both use opt,) in all the subsequent rounds.

In our simulations, we use the following private signal distribution that satisfies assumption 2.2}
Pxy(0,0) = Pxy(1,1) = 04,Pxy(1,0) = Px,y(0,1) = 0.2. Moreover, Alice and Bob
are using the same learning algorithms in our simulations that are listed below: First, Follow the
Leader algorithm (FTL) chooses opt, with probability proportional to I[R; = max{R1, Rz, R3, R4}|.
Follow the perturbed leader (FPL*, where * can be 1, 4 or 8) adds a uniform random noise between 0
and * and choose strategy opt, with probability Pr {RZ- +pi = max;cu{R; + pj}’pj B U0, ] }
We consider FPL1, FPL4, and FPL8. Hedge algorithm 1 choose 7 with probability proportional to
3%%/2 that is an implementation by choosing € = 0.5 for the multiplicative weights algorithm of Arora
et al. [2]. Hedge algorithm 2 chooses i with probability proportional to e’ that is an implementation

by choosing 5 = 1 of exponentially weighted averaged forecaster introduced by Freund and Schapire
[10]. Finally, e-greedy algorithm uses time varying € = e at round ¢. Note that e-greedy is not

1
(+1
in A but still achieves truthful convergence.

In Figure [2; all our algorithms converge to truth-telling. First, all reward-based online learning
algorithms (the Hedge algorithms, follow the perturbed leader, and follow the leader) exhibit truthful
convergence that aligns with our theoretical result, theorem 4.1, Moreover, although FTL is generally
not no-regret, CA mechanism still works well with it. Additionally, we observe that when an algorithm
explores less (e.g. FPL4 vs FPLS8), it converges faster, but very little exploration does not further
improve the convergence rate (e.g. FTL vs FPL2). Finally, we also find that the e-greedy with time
decreasing €, which is not a reward-based online learning algorithm, also shows truthful convergence.
This suggests that the CA mechanism may have truthful convergence beyond reward-based online
learning algorithms.

6 Conclusions

In this paper, we study sequential peer prediction with learning agents and prove that the notion of
no-regret alone is not sufficient for truthful convergence. We then define a family of reward-based
learning algorithms and show that the CA mechanism is able to achieve truthful convergence when
agents use algorithms in this family. Finally, we give a discussion on the converge rates of different
learning agents based on simulations.

This is the first theoretical study on peer prediction with learning agents. There are many open
problems and future directions to extend this work. We believe similar proof techniques can be used
to extend our results to settings where agents’ private signals are generated by a Markov chain with
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Figure 2: Convergence Rates of Learning Algorithms in CA.

some assumptions on the transition matrix. Moreover, this work is only restricted to binary signals
and it is still an open problem whether there exists a mechanism for non-binary settings that can
promise truthful convergence. For the learning agents, one could consider a more general family of
learning algorithms such as when f is time-varying.
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