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Abstract

Peer prediction refers to a collection of mechanisms for eliciting information from
human agents when direct verification of the obtained information is unavailable.
They are designed to have a game-theoretic equilibrium where everyone reveals
their private information truthfully. This result holds under the assumption that
agents are Bayesian and they each adopt a fixed strategy across all tasks. Human
agents however are observed in many domains to exhibit learning behavior in
sequential settings. In this paper, we explore the dynamics of sequential peer
prediction mechanisms when participants are learning agents. We first show that
the notion of no regret alone for the agents’ learning algorithms cannot guaran-
tee convergence to the truthful strategy. We then focus on a family of learning
algorithms where strategy updates only depend on agents’ cumulative rewards and
prove that agents’ strategies in the popular Correlated Agreement (CA) mechanism
converge to truthful reporting when they use algorithms from this family. This fam-
ily of algorithms is not necessarily no-regret, but includes several familiar no-regret
learning algorithms (e.g multiplicative weight update and Follow the Perturbed
Leader) as special cases. Simulation of several algorithms in this family as well as
the ✏-greedy algorithm, which is outside of this family, shows convergence to the
truthful strategy in the CA mechanism.

1 Introduction

A fundamental challenge in many domains is to elicit high-quality information from people when
directly verifying the acquired information is not feasible, either because the ground truth is not
available or because it is too costly to obtain. Notable settings include asking people to label data
for machine learning, having students perform peer grading in education, and soliciting customer
feedback for products and services.

The peer prediction literature has made impressive progress on this challenge in the past two decades,
with many mechanisms that have desirable incentive properties developed for this problem [20, 19,
27, 5, 22, 8, 14, 25, 17, 16, 21, 18, 23, 15]. The term peer prediction refers to a collection of reward
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mechanisms that solicit information from human agents and reward each agent solely based on how
the agent’s reported information compares with that of the other agents, without having access to the
ground truth. Under some assumptions, many peer prediction mechanisms [20, 19, 27, 22, 8, 16, 21]
guarantee that every agent truthfully reporting their information is a game-theoretic equilibrium, and
the more recent multi-task peer prediction mechanisms [5, 14, 25, 17, 18, 23, 15] further ensure that
agents receive the highest expected payoff at the truthful equilibrium, compared with other strategy
profiles.

While achieving truthful reporting as a highest-payoff equilibrium is a victory to declare for this
challenging without-verification setting, there are however caveats associated with adopting the notion
of equilibrium as a solution concept. The equilibrium results rely on the assumption that participants
are fully rational Bayesian agents. Equilibrium is a static notion and does not address how agents,
who act independently, jump to play their equilibrium strategies. Moreover, the equilibrium results
of multi-task peer prediction mechanisms heavily depend on a consistent strategy assumption, that
is, each agent is assumed to adopt a fixed strategy across all tasks in which she participates. All
together these assumptions exclude the possibility that agents may explore and learn from previous
experience, a behavior that’s not only commonly observed in practice but also has been modeled in
studying other strategic settings [3, 6, 4].

This paper is the first theoretical study on the dynamics of sequential peer prediction mechanisms
when participants are learning agents. The main question that we explore is whether and when in
sequential peer prediction, learning agents will converge to all playing the truthful reporting strategy.
We first consider agents adopting no-regret learning algorithms and prove that the notion of no
regret alone cannot guarantee convergence to truthful reporting. We then define a natural family of
reward-based learning algorithms where strategy updates only depend on agents’ cumulative rewards.
While algorithms in this family are not necessarily no-regret (e.g. the Follow the Leader algorithm),
this family includes some familiar no-regret learning algorithms, including the Multiplicative Weight
Update and the Follow the Perturbed Leader algorithms. Our main result shows that, for the binary-
signal setting, agents’ strategies in the popular Correlated Agreement (CA) mechanism [5] converge
to truthful reporting when agents use any algorithm from this family. To prove the result, we show
the process has a self-fulfilling property: once Alice and Bob have large accumulated rewards for
truth-telling, they are more likely to play truth-telling and resulting in larger accumulated rewards.
Theoretically, we carefully partition the process into three stages, bad, intermediate, and good events
illustrated in fig. 1, and use tools in martingale theory to argue the progress of the process. Finally, we
simulate the strategy dynamics in the CA mechanism for several algorithms in this family as well as
for the ✏-greedy algorithm, which doesn’t belong to this family. We observe convergence to truthful
reporting for all algorithms considered in our simulation, suggesting an interesting future direction to
characterize all learning algorithms that converge to truthful reporting.

Related Works This paper relates to two lines of work, information elicitation and mechanisms for
learning agents.

Information Elicitation Mechanisms The literature on information elicitation without verification
focuses on capturing the strategic aspect of human agents. In multi-task settings, Dasgupta and Ghosh
[5] proposed a seminal informed truthful mechanism, the Correlated Agreement (CA) mechanism,
for binary positively correlated signals. A series of works then relaxed the binary and positively
correlation assumptions [25, 17, 23, 15]. Additionally, Zheng et al. [28] study the limitation of
information elicitation in the multi-task setting. However, all of the above works assume agents using
consistent strategies that are identical across all tasks. The consistent strategy assumption excludes
the possibility of agent learning. Our work removes the consistent strategy assumption and explicitly
considers learning agents. We theoretically prove truthful convergence of the CA mechanism when
agents using algorithms from a family of reward-based online learning algorithms.

Our work of considering learning agents can be viewed as a way of testing the robustness of
information elicitation mechanisms with respect to deviation from the rational Bayesian agent model.
From this perspective, Shnayder et al. [26] is closely related to ours. They consider sequential
information elicitation and empirically study if agents using replicator dynamics can converge to
truth-telling in the CA mechanism and several other mechanisms. Our work theoretically proves that,
besides replicator dynamics, learning agents can converge to truth-telling in the CA mechanism when
they use a general family of learning algorithms. Additionally, Schoenebeck et al. [24] designed an
information elicitation mechanism that was robust against a small fraction of adversarial agents.

2



Mechanisms for Learning Agents Several works in economics and computer science try to design
mechanisms for learning agents, rather than for rational, Bayesian ones. Braverman et al. [3] studied
pricing mechanisms for learning agents with no external regrets. Their work was generalized by
Deng et al. [6] to consider repeated Stackelberg games in full-information settings. Camara et al. [4]
further proposed counterfactual internal regrets (CIR) together with no-CIR assumption, which was
proved to be a sufficient behavior assumption for no-regret principal mechanism design in repeated
stage games. However, all of these works focus on a single agent or full-information games, while
peer prediction is an incomplete-information game with multiple agents. Finally, our goal is slightly
different from that of most sequential mechanism design. Instead of maximizing the mechanism
designer’s utility, our goal is to incentivize truthful reporting from agents.

2 Peer Prediction Settings

For simplicity we consider two agents1, Alice and Bob, who work on a sequence of tasks indexed
by t � 1. For round t, both agents work on task t, Alice receives a signal Xt = xt in {0, 1},
and Bob a signal Yt = yt in {0, 1} where Xt and Yt denote random variables, and xt and yt

are their realizations. Then Alice and Bob report X̂t = x̂t and Ŷt = ŷt in {0, 1}. We define
Xt = {Xs : 1  s  t} 2 {0, 1}t and X̂t = {X̂s : 1  s  t} 2 {0, 1}t to denote Alice’s
signal profile and report profiles until t-th round respectively, and define Yt and Ŷt for Bob
similarly. We use X, X̂,Y, and Ŷ for the complete signal and report profiles. Additionally, we
consider the signals are generated from some distribution P that satisfies the following assumptions:
Assumption 2.1 (A priori similar tasks [5]). Each pair of signal is identically and independently
(i.i.d.) generated: there exists a distribution PX,Y over {0, 1}2 such that (Xt, Yt) ⇠ PX,Y for any
t 2 N+. Moreover, we assume the distribution has full support, PX,Y (x, y) > 0 for all x, y 2 {0, 1}.
Assumption 2.2 (Positively correlated signals). The distribution PX,Y is positively correlated,
min{PX,Y (1, 1), PX,Y (0, 0)} > max{PX,Y (1, 0), PX,Y (0, 1)}.

Now we introduce multi-task peer prediction mechanisms and sequential peer prediction mech-
anisms, and their relation. We will focus on the sequential setting. Multi-task peer prediction
mechanisms work on a fixed number of tasks. Formally, a multi-task peer prediction mech-
anism on k tasks is a pair of payment functions M̄ : {0, 1}k ! [0, 1]2. For instance, the
(multi-task) correlated agreement mechanism (CA mechanism)2 [5, 25, 26] is M̄

CA(x̂, ŷ) =
(I[x̂2 = ŷ2]� I[x̂2 = ŷ1], I[ŷ2 = x̂2]� I[ŷ2 = x̂1]) for all x̂, ŷ 2 {0, 1}2. Intuitively, the CA mech-
anism rewards agreement on the same task and punishes agreement on uncorrelated tasks.

A sequential information elicitation mechanism is a sequence of payment functions M = {Mt :
t � 1} where Mt : {0, 1}2⇥t

! [�1, 1] for all t. After Alice and Bob reporting x̂t and ŷt

in round t, the mechanism computes (rt, st) := Mt(x̂t, ŷt) and pay rt to Alice and st to Bob.
Here we assume Mt can only depends on a constant k round of reports so that Mt(x̂t, ŷt) =
Mt(x̂t�k+1, x̂t�k+1, . . . , x̂t, ŷt�k+1, ŷt�k+1, . . . , ŷt) for all t, x̂t, and ŷt, and we call such M

rank k mechanism. For instance, the (multi-task) CA mechanism can be adopted as a sequential rank
2 information elicitation mechanism: At round t, the payment is

M
CA
t (x̂t, ŷt) = (I[x̂t = ŷt]� I[x̂t = ŷt�1], I[ŷt = x̂t]� I[ŷt = x̂t�1]) (1)

where x̂0 and ŷ0 are set as 0. Similarly, we say a sequential information elicitation mechanism
M = (Mt)t�1 is a sequential version of a multi-task information elicitation mechanism M̄ if
Mt(x̂t, ŷt) = M̄(x̂t�k+1, x̂t�k+1, . . . , x̂t, ŷt�k+1, ŷt�k+1, . . . , ŷt) for all x̂t, ŷt and t � k.
The payment at round t � k is M̄ on the latest k reports. Conversely, a sequential information
elicitation mechanism can be seen as a sequence of multi-task information elicitation mechanisms.

1For more than two agents, we can partition the agents into groups of two agents to run our mechanisms
when the number of agents is even. Then all our results still hold. Finally, when the number of agents is odd, we
can pair the unpaired agent with a reference agent whose payment is not affected by the unpaired one.

2While the CA mechanism can be defined on non binary setting and does not require positive correlation. [25],
with assumption 2.2, the CA mechanism reduces to eq. (1) and is first proposed in [5]. Finally, note that when
the number of task is greater than two, we can compute the payment based on the last two tasks or two random
tasks since agents using consistent strategy and assumption 2.1.
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Now we formally define agents’ strategies. Due to symmetry, we introduce notation for Alice and
omit Bob’s. Given an information elicitation mechanism M, at round t, Alice observes her signal
xt and decides on her report x̂t. Thus, Alice has four options (pure strategies): 1) opt1: report the
private signal truthfully, 2) opt2: flip the private signal, 3) opt3: report 1 regardless of the signal, and
4) opt4: report 0 regardless of the signal. We call opt3 and opt4 uninformative strategies. We use
optXt to denote Alice’s pure strategy, and rt for her payoff at round t. At each round t, Alice knows
her previous signals xt 2 {0, 1}t, her pure strategies optX1 , . . . , optXt�1, and Bob’s reports ŷt�1,
so we use Ft = {xt, optX

t�1, ŷt�1} to denote Alice knowledge at round t. Thus, Alice’s mixed
strategy at round t is a stochastic mapping �

X
t from Ft to {opt1, opt2, opt3, opt4}. We’ll abuse our

nation and also use �
X
t = optXt to represent the realized pure strategy. Finally, a learning algorithm

of Alice is a mapping from an information elicitation mechanism M to her strategies.

Strong Truthfulness for Rational and Bayesian agents Previous works on information elicitation
try to ensure truth-telling opt1 is the best strategy for rational and strategic agents. In particular, a
mechanism is strongly truthful if Alice and Bob report truthfully is a Bayesian Nash Equilibrium
(BNE) and they get strictly higher payment at this BNE than at any other non-permutation BNE.
We present the formal definitions in the appendix. Informally, in a permutation BNE, every agent’s
strategy on each round is a permutation/bijection from his/her signals to reports. However, the
equilibrium results of previous mechanisms not only require assumption 2.1 but further assume
agents using consistent strategies. Specifically, Alice uses a consistent strategy if there is a fixed
distribution on {opt1, opt2, opt3, opt4} so that optXt is generated from a fixed distribution that is
independent of her private signals on other tasks and the round number. For instance, when Alice and
Bob are Bayesian and use consistent strategies under assumption 2.2 and 2.1, Dasgupta and Ghosh
[5] show CA mechanism in eq. (1) is strongly truthful. Intuitively, positive correlation assumption 2.2
guarantees that truthful reporting can maximize the chance of agreeing with the peer on the same
task while avoiding agreeing on reports on other tasks. Furthermore, in appendix B we show CA
mechanism merely has three types Bayesian Nash equilibria, at which both agents 1) play truth-telling
opt1, 2) flip the signal opt2, or 3) generate uninformative reports (mixture between opt3, opt4) when
agents use consistent strategies and assumptions 2.1 and 2.2 hold.

Truthful Convergence for Learning Agents However, as we consider agents using a family of
online learning algorithms to decide their strategies, standard solution concepts like Bayesian Nash
equilibrium no longer apply. Additionally, online learning algorithms often have exploration, so we
cannot hope agents will always use the truth-telling strategy. For learning agents, our goal is to test
whether existing mechanisms can ensure that agents will converge to truthful reporting when they
deploy certain learning behavior that goes beyond obliviously consistent strategies.

We now formalize the convergence of algorithms to truthful reporting. Because we want to elicit
information without verification, it is information-theoretically impossible for us to separate per-
mutation equilibrium, where all agents play opt2, from truthful equilibrium, where all agents play
opt1, without any additional information [17]. However, if we have an additional bit of information
on whether the prior of 0 is larger than 1, we may tell apart these two equilibria. We hence define
convergence to truthful reporting as the limits of both optXt and optYt being truth-telling (opt1) or
flipping (opt2). Note that definition 2.3 requires almost surely convergence which is very strong
convergence concept.
Definition 2.3. An information elicitation mechanism M achieves truthful convergence for agents
using algorithms A1 and A2 respectively if and only if both sequences of pure strategies converge to
truth-telling or both flipping the reports.

Pr

⇢
lim

t!+1

optXt = lim
t!+1

optYt = opt1 _ lim
t!+1

optXt = lim
t!+1

optYt = opt2

�
= 1.

3 Online Learning Algorithms

In this section, we explore candidates to model agents’ learning behavior to replace Bayesian agents’
consistent strategies in the literature. We first show the conventional no-regret assumption is a
necessary but not a sufficient condition for truthful convergence in section 3.1. Then in section 3.2,
we introduce a family of reward-based online learning algorithm to model agents’ learning behavior,
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and show that the family of reward-based online learning algorithms contains several common
no-regret algorithms as special cases.

3.1 No-regret Online Learning Algorithms

We now investigate the relationship between no regret and truthful convergence. First, we show
general no-regret algorithms may not ensure truthful convergence (theorem 3.1). However, we show
the converse is almost true (theorem 3.2): If truthful convergence happens, the agents do not have
regret when the sequential mechanism is a sequential version of a strongly truthful mechanism.

Given a sequential information elicitation mechanism M = (MX
t ,M

Y
t )t�1, signals x,y, and reports

x̂, ŷ, we define ri,t = M
X
t (opti(x1), . . . , opti(xt), ŷt) be the payoff when Alice uses strategy

opti and Bob’s choices are unchanged. Then Alice’s regret is Reg
X(T ) = maxi

P
tT ri,t �P

tT rt. Finally, we say that Alice’s and Bob’s online learning algorithms are no regret (on M) if
E[Reg

X(T )] = E[Reg
Y (T )] = o(T ) over the randomness of signals and the algorithms, and we say

Alice and Bob are no regret for short.

One may hope that no regret as a behavior assumption for agents is sufficient for achieving desirable
outcome in a mechanism. However, the following theorem shows that we cannot have an information
elicitation mechanism that achieves truthful convergence for all no-regret agents.

Theorem 3.1. For any sequential information elicitation mechanism M of rank k 2 N, there exist

no-regret algorithms for Alice and Bob so that M cannot achieve truthful convergence.

The main idea of the proof is that the no-regret assumption cannot prevent Alice and Bob from
colluding. In our counterexample, Alice and Bob decide on a no-regret sequence of reports regardless
of their signals once the mechanism is announced. Technically, we use a probabilistic method to show
the existence of a deterministic and no-regret sequence of strategies (optXt , optYt )t�1 that consists of
reporting 1 or 0 regardless of private signals, i.e. opt3 or opt4. The formal proof is in appendix C.1.

The notion of truthful convergence in definition 2.3 provides an ideal truthful guarantee to the
mechanism designer. Here we show that truthful convergence also ensures no regret for agents when
the sequential mechanism is a sequential version of a strongly truthful one-shot multi-task mechanism.
That is, when the one-shot mechanism admits truthful reporting as a highest-payoff BNE.

For instance, if a pair of algorithms exhibits truthful convergence on the sequential CA mechanism
(eq. (1)), they are also no regret (on the game). Intuitively, if Bob converges to the truth-telling
limt!1 optYt = opt1, the average expected gain of Alice deviating to opti is equal to the expected
gain of deviating to opti when Bob always tells the truth. The gain is non positive because the
CA mechanism is strictly truthful by lemma B.4.Therefore, the expected regrets E[Reg

X(T )] and
E[Reg

Y (T )] are small. Theorem 3.2 formalizes and extends the above idea to any strongly truthful
multi-task information elicitation mechanism.

Theorem 3.2. Let M̄ be a strongly truthful multi-task information elicitation mechanism, and M be

a sequential version of M̄ . If M achieve truthful convergence for Alice and Bob using algorithms A1

and A2 respectively, then Alice and Bob are no regret.

3.2 Reward-based Online Learning Algorithms

As shown in theorem 3.1, the no-regret assumption allow does not guarantee truthful convergence.
In this section, we introduce a general family of online learning algorithms, reward-based online

learning algorithm, under the general full feedback bandit setting, and we will apply these algorithms
in sequential information elicitation mechanisms later. Informally, a reward-based online learning
algorithm decides each round’s strategy using a fixed update function that depends only on the
accumulative reward.

For simplicity, we only consider algorithms on four strategies {opt1, opt2, opt3, opt4} which can be
extended easily. Recall that the payoff of choosing option opti, i 2 [4] at round t is ri,j when others’
choices are unchanged. We denote the accumulated payoffs of these four options as Ri,t =

Pt
j=1 ri,j

for i 2 [4]. Symmetrically, we use Si,t and si,t to represent accumulated payoffs and the payoff
of turning to choose option opti in the t

th round for Bob. For example, for our specific peer
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prediction game using CA mechanism in eq. (1), r1,t = I[xt = ŷt] � I[xt = ŷt�1] and therefore,
R1,t =

Pt
j=1(I[xt = ŷt]� I[xt = ŷt�1]) for Alice.

We consider a family of reward-based online learning algorithms A that use an update function

f : R4
! 4

3, and choose opti with probability fi(R1,t�1, R2,t�1, R3,t�1, R4,t�1) for i 2 [4] in the
t
th round, where fi is the i

th coordinate of f . A such mechanism based on accumulated payoffs is
denoted by Af . We have three assumptions for the update function f , which are all very natural. The
first two require that f is exchangeable and preserves ordering.
Assumption 3.3 (Exchangeability of f ). For any R1, R2, R3, R4 2 R and an arbitrary permutation
of them Ri1 , Ri2 , Ri3 , Ri4 , fij (R1, R2, R3, R4) = fj(Ri1 , Ri2 , Ri3 , Ri4) for all j 2 [4].
Assumption 3.4 (Order preservation of f ). For any R1, R2, R3, R4 2 R and suppose that
Ri1 , Ri2 , Ri3 , Ri4 is a non-increasing order of them, for f we have fi1(R1, R2, R3, R4) �

fi2(R1, R2, R3, R4) � fi3(R1, R2, R3, R4) � fi4(R1, R2, R3, R4).

Finally we consider the strategy chosen by the update function f when the accumulated payoff of
an strategy is much higher than that of other strategies (assumption 3.5). Appendix D.2 shows that
the assumption is necessary for reward-based online learning algorithms to achieve no regret for any
online decision problem.
Assumption 3.5 (Full exploitation of f ). limR1�max{R2,R3,R4}!+1 f1(R1, R2, R3, R4) = 1.

Now we show that the family of reward-based online learning algorithms A satisfying assumptions 3.3
to 3.5 contains several classic no-regret online learning algorithms [10, 13].
Theorem 3.6. A contains Follow the Perturbed Leader (FPL) algorithm, and Multiplicative Weights

algorithm as special cases. Corresponding f ’s for them are listed as below:

Multiplicative Weight algorithm f
hedge 1

i (R1, R2, R3, R4) =
e�Ri

P
j2[4] e

�Rj
for i 2 [4]

FPL algorithm Given a noise distribution N on scalars, f
FPL

i (R1, R2, R3, R4) =

Pr
n
Ri + pi = maxj2[4]{Rj + pj}

���pj
iid
⇠ N , j 2 [4]

o
for i 2 [4].

In the binary peer prediction problem using CA mechanism, we can further show that replicator
dynamics and linear updating multiplicative weight algorithm [2] are both in A in appendix E.
Remark 3.7. Our reward based online learning is very similar to the mean-based algorithm in [3] and
both use the accumulated rewards to characterize the algorithm’s choice. Additionally, like the mean-
based algorithms, our reward based online algorithm may contain algorithms with regret in genral
game, e.g., follow the leader. The family of reward based online algorithms uses an identical update
function across all rounds. Thus some no-regret algorithms, e.g., ✏-greedy with time decreasing ✏,
doesn’t belong to family. Finally, if a mean-based algorithm is also a reward based algorithm that
uses the same update function in each round, then its update function satisfies assumption 3.5.

4 Truthful Convergence of CA Mechanism on Reward-based Algorithms

Now we present our main result. We will show that the sequential CA mechanism can achieve truthful
convergence if both agents use reward-based online learning algorithms from A. This convergence
result suggests that the classical CA is robust even when agents deviate from Bayesian rational
behavior and use a general family of online learning algorithms.
Theorem 4.1. Under assumptions 2.1 and 2.2, the binary-signal, sequential CA mechanism as

defined in eq. (1) achieves truthful convergence when agents use reward-based algorithms Af and

Ag , where the update functions f and g satisfy assumptions 3.3 to 3.5.

Note that given agents’ online learning algorithm and the payment function, the sequence of accu-
mulated reward vector (R1,t, R2,t, R3,t, R4,t, S1,t, S2,t, S3,t, S4,t)t�1 forms a stochastic process and
we define Ht as the game history of the rewards and private signals in the first t round. Additionally,
if the accumulated reward of truth-telling R1,t, S1,t is much larger than the others’, we can show
Alice and Bob converge to the truth-telling by assumption 3.5. Thus, it is sufficient for us to track
the evolution of accumulated reward vector. Though the process of accumulated reward vector is not
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a Markov chain because the payment function eq. (1) depends on reports in two rounds, we can still
use ideas from semi-martingale to track the process.

Before proving our main result, we first present two properties of CA mechanism for our binary
signal peer prediction problem. Lemma 4.2 shows that the accumulated payoffs of uninformative
strategies opt3, opt4 R3,t, R4,t, S3,t, and S4,t are always bounded.
Lemma 4.2. Given the game defined in theorem 4.1, for any round t, the accumulated payoffs

R3,t, R4,t, S3,t, and S4,t for two agents are bounded by [�1, 1].

The second one, Lemma 4.3, tells us that the summation of accumulated payoffs of opt1 and opt2 is
always fixed and is equal to the summation of accumulated payoffs of uninformative ones opt3 and
opt4 for both agents. The proofs of these two lemmas are in appendix F.1.
Lemma 4.3. Given the game defined in theorem 4.1, for any round t, Alice has R1,t + R2,t =
R3,t +R4,t = 0, and Bob has S1,t + S2,t = S3,t + S4,t = 0.

We now sketch the proof that consists of four steps. Informally, using lemmas 4.2 and 4.3, the first
step says that the uninformative strategies opt3 and opt4 can not completely dominate other strategies.
Specifically, both agents can not choose an option between opt3 and opt4 with a probability larger
than 0.75. With the first step, lemma 4.2 and lemma 4.3, we only need to focus on agents’ reward of
the truthtelling opt1 shown in fig. 1. We partition the space into three types of events. Good events

happen when R1, S1 are both very large or very small, bad events happen when one of R1, S1 is
very large and one of them is very small, and intermediate states are the states between them. The
second step removes the possibility that Alice and Bob continue using different reports opt1 and opt2.
Therefore, we can always escape "bad events" and enter "intermediate states". The third step further
shows that if the game is in an intermediate state, there exists a constant probability that the game
will get into a good events that leads to truthful convergence in a constant number of rounds. Hence,
after the game enters "good events", which leaves us the final step: showing their strategies converges
to either both truth telling opt1 or flipping opt2 truthful convergence.

Now we discuss each steps in more details but defer all the proofs to appendix F.

Figure 1: A schematic diagram of behaviors of R1,t and S1,t.

Step 1: Choosing opt1, opt2 with Nonzero Probability
Combining Lemmas 4.2 and 4.3, we have the following Lemma 4.4, which completes step 1.
Lemma 4.4. Given the game defined in theorem 4.1, for any round t � 0 and i 2 {1, 2}, ifPt

j=1 ri,j � 0, the probability for Alice to choose opti is larger than
1
4 ; if

Pt
j=1 si,t � 0, the

probability for Bob to choose opti is larger than
1
4 .

Step 2: Escaping Bad Events
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Before introduce the formal statement of step 2, we define two "bad events". Given c0 for all t � 1
E
1,2
t := {R1,t > c0, and S2,t > c0} and E

2,1
t := {R2,t > c0 and S1,t > c0}. We will specify c0

later. Intuitively, when c0 is sufficiently large, E1,2
t implies that Alice and Bob will choose opt1, opt2

respectively with a probability close to 1 in following rounds. For simplicity, we treat each event E as
an indicator function, i.e., E happens if and only if E = 1. In order to prove that these two bad events
cannot go on forever, we want to show that when E

1,2
t happens, R1,t �R2,t will tend to decrease at a

rapid rate. Therefore, Alice will eventually deviate from opt1 to choose opt2 with a relatively high
probability.

By assumption 3.5 and lemma 4.2, given � > 0 there exists a constant c1 such that when R1,t > c1,
Alice chooses opt1 with probability larger than 1 � �; when S2,t > c1, Bob chooses opt2 with
probability larger than 1 � �. Let �1 = PX,Y (1, 1) + PX,Y (0, 0) � PX,Y (1, 0) � PX,Y (0, 1)
�2 = (PX,Y (1, 1)� PX,Y (0, 0))2 � (PX,Y (1, 0)� PX,Y (0, 1))2.
Lemma 4.5. Given the game defined in theorem 4.1, there exists a � > 0 and corresponding c1 such

that for any round t, E[r1,t+1 � r2,t+1|S1,t�1 > c1 + 1] � �1��2

2 > 0.

Given such � and c1 in lemma 4.5, we set c0 = c1 + d
1000
�1��2

e+ 1. Because in each round R1,t, R2,t

and S1,t, S2,t vary by at most 1, if E1,2
t happens Alice chooses opt1 and Bob chooses opt2 with

probability larger than 1� � independently for the next d 1000
�1��2

e+ 1 rounds. Similar argument holds
for E2,1

t . We use the above observation to show lemma 4.6.

Lemma 4.6. Given the game defined in theorem 4.1, for all t and history Ht 2 E
1,2
t , we have

E
Pd

1000
�1��2

e+1

j=1 (r1,t+j � r2,t+j)

����Ht

�
 �100.

This lemma formalizes the blue arrows in Fig. 1. With this lemma, we get the main result of step two.

Lemma 4.7. Given the game defined in theorem 4.1, Pr
n
lim supt!1

E
1,2
t _ E

2,1
t = 1

o
= 1.

If we treat R1,t � R2,t as money of Alice, Lemma 4.7 is similar to the gambler’s ruin problem
[7]. More specifically, R1,t � R2,t has a negative expected growth each d

1000
�1��2

e + 1 rounds by
Lemma 4.6, so R1,t �R2,t will always become small enough to escape E

1,2.

Step 3: From Intermediate States to Good Events

We define a series of "good events" at first. For all u 2 N+ and t � 1, E1,1
t (u) := {R1,t �

u, and S1,t � u} and E
2,2
t (u) := {R2,t � u and S2,t � u}.

To the end, we want to show that _t2N+E
1,1
t (u) and _t2N+E

2,2
t (u) happen with probability 1 for any

u 2 N+. Formally, we claim Lemma 4.8.
Lemma 4.8. Given the game defined in theorem 4.1, for all u there ex-

ists �u so that for any T with history HT 2 E
1,2
T _ E

2,1
T , we have

Pr
n⇣

_
T+4(u+c0)+100
i=T E

1,1
t (u)

⌘
_

⇣
_
T+4(u+c0)+100
i=T E

2,2
t (u)

⌘
= 1

���HT

o
� �u.

This lemma generally says that when the agents are in an intermediate state that E1,2
T _ E

2,1
T = 1, they

have a constant probability �u to get into a good event in the next 4(u+ c0) + 100 rounds. In order
to prove this lemma, we define a nice event PT such that PT happens with probability larger than �u

and PT implies the good events happen in no more than 4(u+ c0) + 100 rounds. Formally, event PT

is defined as the following: First, for j = T, . . . , T1 until some round T1 � T such that S1,T1 � 0,
xj+1 = 1 � ŷj , yj+1 = 1 � x̂j , Alice uses strategy opt1, Bob uses strategy opt2. Then, Alice and
Bob uses strategy opt1 for 4u + 50 rounds and signals are generated as xj+1 = yj+1 = �xj for
j � T1. We can use Lemma 4.4 to prove that �u = (mini,j2{0,1}{PX,Y (i, j)}⇥ 0.252)100+4(u+c0)

is a feasible lower bound.

Step 4: Good Events Lead to Truthful Convergence

Similar to step 2, we have lemma 4.9 to show that E1,1
t (u) can lead to increasing of R1,t �R2,t at

first. The idea is completely similar to Lemma 4.6 and it formalize the red arrows in Fig. 1.
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Lemma 4.9. Given the game defined in theorem 4.1, for all u > 2c0 + 1 and t if Ht 2 E
1,1
t

�
b
u
2 c

�
,

we have E
Pd

1000
�1��2

e+1

j=1 (r1,t+j � r2,t+j)

����Ht

�
� 100.

Using Lemma 4.9, we are able to prove that for any ", there exists a u such that when E
1,1
t (u) or

E
2,2
t (u) happens, Alice and Bob will tend to choose (opt1, opt1) or (opt2, opt2) with increasingly

higher probability. Formally, we propose Lemma 4.10.
Lemma 4.10. Given the game defined in theorem 4.1, for all ✏ > 0 there ex-

ists u 2 N+
such that given a history HT 2 E

1,1
T (u) _ E

2,2
T (u), we have

Pr

⇢
8i 2 N, E1,1

T+
⇣
d

1000
�1��2

e+1
⌘
i

�
b
u
2 c+ i

�
_ E

2,2

T+
⇣
d

1000
�1��2

e+1
⌘
i

�
b
u
2 c+ i

�
= 1

����HT

�
� 1� ".

We design a sub-martingale {Di}i2N that is proportional to R
1,T+i

⇣
d

1000
�1��2

e+1
⌘ �

R
2,T+i

⇣
d

1000
�1��2

e+1
⌘, and use Azuma-Hoeffding inequality to prove lemma 4.10.

5 Simulations

We simulate the CA mechanism with various learning algorithms: the Hedge algorithms, follow the
perturbed leader, follow the leader, and ✏-greedy, and repeat the process 400 times with 800 rounds
on each algorithm each time. We define the converge proportion in round t as the fraction of the
simulations where both agents report truthfully opt1 (or both use opt2) in all the subsequent rounds.

In our simulations, we use the following private signal distribution that satisfies assumption 2.2:
PX,Y (0, 0) = PX,Y (1, 1) = 0.4, PX,Y (1, 0) = PX,Y (0, 1) = 0.2. Moreover, Alice and Bob
are using the same learning algorithms in our simulations that are listed below: First, Follow the
Leader algorithm (FTL) chooses opti with probability proportional to I[Ri = max{R1, R2, R3, R4}].
Follow the perturbed leader (FPL*, where * can be 1, 4 or 8) adds a uniform random noise between 0

and ⇤ and choose strategy opti with probability Pr
n
Ri + pi = maxj2[4]{Rj + pj}

���pj
iid
⇠ U [0, ⇤]

o
.

We consider FPL1, FPL4, and FPL8. Hedge algorithm 1 choose i with probability proportional to
3Ri/2 that is an implementation by choosing ✏ = 0.5 for the multiplicative weights algorithm of Arora
et al. [2]. Hedge algorithm 2 chooses i with probability proportional to e

Ri that is an implementation
by choosing � = 1 of exponentially weighted averaged forecaster introduced by Freund and Schapire
[10]. Finally, ✏-greedy algorithm uses time varying ✏ = 1

(t+1)2 at round t. Note that ✏-greedy is not
in A but still achieves truthful convergence.

In Figure 2, all our algorithms converge to truth-telling. First, all reward-based online learning
algorithms (the Hedge algorithms, follow the perturbed leader, and follow the leader) exhibit truthful
convergence that aligns with our theoretical result, theorem 4.1. Moreover, although FTL is generally
not no-regret, CA mechanism still works well with it. Additionally, we observe that when an algorithm
explores less (e.g. FPL4 vs FPL8), it converges faster, but very little exploration does not further
improve the convergence rate (e.g. FTL vs FPL2). Finally, we also find that the ✏-greedy with time
decreasing ✏, which is not a reward-based online learning algorithm, also shows truthful convergence.
This suggests that the CA mechanism may have truthful convergence beyond reward-based online
learning algorithms.

6 Conclusions

In this paper, we study sequential peer prediction with learning agents and prove that the notion of
no-regret alone is not sufficient for truthful convergence. We then define a family of reward-based
learning algorithms and show that the CA mechanism is able to achieve truthful convergence when
agents use algorithms in this family. Finally, we give a discussion on the converge rates of different
learning agents based on simulations.

This is the first theoretical study on peer prediction with learning agents. There are many open
problems and future directions to extend this work. We believe similar proof techniques can be used
to extend our results to settings where agents’ private signals are generated by a Markov chain with

9



Figure 2: Convergence Rates of Learning Algorithms in CA.

some assumptions on the transition matrix. Moreover, this work is only restricted to binary signals
and it is still an open problem whether there exists a mechanism for non-binary settings that can
promise truthful convergence. For the learning agents, one could consider a more general family of
learning algorithms such as when f is time-varying.
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