
Secure Multi-Party Aggregation for Federated Learning with Malicious Actors

Abstract—Federated learning (FL) is an increasingly popular
approach for machine learning (ML) in cases where the train-
ing dataset is highly distributed. Clients perform local training
on their datasets and the updates are then aggregated into
the global model. Existing protocols for aggregation are either
inefficient, or don’t consider the case of malicious actors in the
system. This is a major barrier in making FL an ideal solution
for privacy-sensitive ML applications. We present ELSA, a
secure aggregation protocol for FL, which breaks this barrier -
it is efficient and addresses the existence of malicious actors at
the core of its design. Similar to prior work on Prio and Prio+,
ELSA provides a novel secure aggregation protocol built out of
distributed trust across two servers that keeps individual client
updates private as long as one server is honest, defends against
malicious clients and is efficient end-to-end. Compared to prior
works, the distinguishing theme in ELSA is that instead of the
servers generating cryptographic correlations interactively, the
clients act as untrusted dealers of these correlations without
compromising the protocol’s security. This leads to a much
faster protocol while also achieving stronger security at that ef-
ficiency compared to prior work. We introduce new techniques
that retain privacy even when a server is malicious at a small
added cost of 7-25% in runtime with negligible increase in
communication over the case of semi-honest server. Our work
improves end-to-end runtime over prior work with similar
security guarantees by big margins - single-aggregator RoFL
by up to 305x (for the models we consider), and distributed
trust Prio by up to 8x.

1. Introduction
Federated learning (FL) [9, 80] is an emerging approach

in privacy-conscious machine learning (ML) that enables
efficient training over large and highly distributed datasets.
In a typical workflow, the application developer runs a server
to maintain a global ML model; the server iteratively up-
dates this model by computing an aggregate of the gradient
updates sent by the clients after local training [9].

In a utopian world with no bad actors, FL allows the
clients to retain full ownership of their data and the appli-
cation developer to efficiently train high-quality ML models.
However, both the clients and the servers can be corrupted
by adversaries leading to a range of attacks [22, 92, 93, 95]
against the system. A rich line of work [17, 19, 20, 24, 33,
35, 38, 55, 59, 63, 67, 79, 81, 98, 100, 103, 109] has identified
two security properties as desirable:

• Privacy of individual gradients. It is well-known that
the gradients submitted by the clients leak informa-
tion about their local datasets [17, 22, 24, 32, 80, 101].

Federated Learning Efficient Malicious Poisoning Trust
Protocols Parties Privacy Resilience Model

FedAvg [80] ✓ ✗ ✗ ◦
SecAgg [17, 24] ✓ ✓ ✗ ◦

Defence [35, 100, 109] ✓ ✗ ✓ ◦
RoFL*[32], [38] ✗ ✓ ✓ ◦

Prio [39] ✗ ✓ ✓ ◦ •
Prio+ [11], [58, 61] ✓ ✗ ✓ ◦ •
ELSA (This work) ✓ ✓ ✓ ◦ •

* It appears that RoFL should provide malicious privacy (not considered
in their paper); we give them the advantage here.

TABLE 1: Qualitative comparison of FL protocols. Only
representative works are shown. Single-aggregator model is
represented by ◦, and ◦ • refers to distributed trust with two
servers behind separate trust domains. Poisoning resilience
refers to some defense against malformed gradients.

Therefore, to be usable in privacy-sensitive applica-
tions, it is imperative that FL preserves the privacy of
individual gradients (and thereby of the datasets)1.

• Filtering out boosted gradients from malicious clients.
Aggregation, which is at the heart of FL, is quite sensi-
tive to out-of-proportion values. Without any defenses
in place, even a single malformed gradient (e.g., with a
very high norm) can arbitrarily bias the global model.
Malicious clients can boost their gradients (scale up to
a large norm) to corrupt the global model, and many
model poisoning attacks [15, 51, 94, 95] rely on this
strategy. An effective FL solution must defend against
boosted gradients. Recent prior work [95, 100] has
shown that filtering gradients based on their ℓ2 norm
(a.k.a. ℓ2 defense) is effective against a large number
of sophisticated poisoning attacks under realistic threat
models for production FL2.

Most existing research either provides privacy [17, 19,
24, 33, 55, 59, 63, 67, 79, 98, 103] or defends against mal-
formed gradients [20, 35, 81, 100, 109]. Some attempts have
since been made to achieve both the properties, but they
are either quite inefficient [32, 38, 39, 97] or resort to weak
threat models [11, 58, 61, 84]. These protocols can be di-
vided based on whether they operate in the single-aggregator
model where a central server facilitates gradient aggregation
(RoFL [32], EIFFeL [38], [84, 97]), or if they distribute the
trust of the central aggregator into two servers hosted behind
separate trust domains (Prio [39], Prio+ [11], [58, 61]).

1. The global update computed after aggregation of the submitted gradi-
ent updates has to be revealed, but individual updates should stay hidden.

2. No defenses are powerful enough to completely stop all poisoning
attacks, and all existing defenses [95] rely on some heuristics.

1

We present ELSA (Efficient Learning with Secure
Aggregation), a secure aggregation protocol for FL which
uses distributed trust and guarantees (Table 1):

• Malicious privacy. Honest clients’ gradients stay pri-
vate even in the face of a strong collusion between
malicious clients and at most one malicious server. As
long as one server is honest, privacy is guaranteed.

• Resilient to boosted gradients. We employ the com-
monly used ℓ2 defense [1, 100] to filter out boosted
gradients. Alongside its efficacy [95], the relative sim-
plicity of this defense makes it ideal for privacy-
preserving systems. In this defense, gradient updates
with ℓ2 norms much larger than usual are discarded.

• Efficiency through lightweight protocols. Our server
and client-side protocols are lightweight, and free of ex-
pensive cryptographic and public-key operations. This
translates to a simpler implementation and highly effi-
cient end-to-end secure FL. In terms of total runtime,
we outperform the single-aggregator and the distributed
trust state-of-the-art by 146-305x and 6-8x (with up to
16x improvement in servers), respectively, while also
requiring lower communication from the clients.

In addition, ELSA has a number of other desirable prop-
erties. Unlike RoFL [32], EIFFeL [38] and Prio [39] who
can’t support bandwidth-constrained clients, ELSA stays
efficient even when a subset of clients have strict band-
width constraints. In ELSA, a few malicious clients cannot
block output delivery (RoFL lacks this property), and it
can withstand client dropouts without runtime degradation
(unlike [17, 24, 67, 98]). ELSA can use an input-independent
offline phase to significantly boost end-to-end runtimes for
when the gradients become available. Unlike many single-
aggregator prior works [17, 24, 38, 67, 98], in our protocol,
clients don’t need to talk to each other; this makes com-
munication for clients much simper. Moreover, the commu-
nication from client to server is one-shot (single message)
after which clients don’t need to be online.

Other applications. Our techniques are more generally
applicable to realizing other defences in FL as long as
they operate independently on each client’s submission (e.g.
ℓ∞ defense [32]), and also achieving malicious privacy in
applications like privacy-preserving telemetry [11, 39].

1.1. Technical Overview
In the single-aggregator setting, RoFL [32] simultane-

ously achieves malicious privacy and enforces norm-based
defenses (ℓ2 and ℓ∞) by using expensive zero-knowledge
proofs (Bulletproofs [31]) which makes them quite ineffi-
cient. We don’t see a way to circumvent this limitation in
their setting, and therefore, focus on distributed trust instead.

Prio+ overview. We start with the design of Prio+ [11]
which operates in the distributed trust setting with two
servers. Their design yields an efficient protocol which
(heuristically) weeds out malformed updates by a “relaxed”
ℓ∞ defense, but doesn’t guarantee privacy in the presence
of a malicious server. The high-level idea behind their con-
struction is to have each client send Boolean secret shares

of its gradient update to the servers, and the servers use the
bit-length of the shares as a proxy to enforce a weaker form
of ℓ∞ defense. For example, restricting the magnitude of
values in the update to be at most 7 can be enforced by al-
lowing bit-lengths of 3. This prevents malicious clients from
sending boosted updates [100] which have large magnitudes
to overpower honest updates and poison the model. Servers
then engage in interactive 2-party computation (2PC) using
oblivious transfer (OT) [65, 82] to convert Boolean shares
to arithmetic, so they can be aggregated.

Malicious privacy challenge in Prio+. If one of the two
servers in Prio+ is malicious, privacy of individual gradients
can’t be preserved. An example malicious strategy would
be that errors introduced in OT messages propagate as a
function of the secret. A direct use of techniques from prior
works on malicious-secure Boolean to arithmetic conver-
sion [42, 49, 89] might seem promising3, but such protocols
are more than an order of magnitude more expensive in
communication than their semi-honest counterparts.

New insights for almost free malicious privacy. We un-
cover new insights into this problem and build a solution
which provides malicious privacy, essentially for free. Our
idea relies on two important observations. First, to ensure
the privacy of gradients, we only need to safeguard the steps
that servers execute on each client’s input shares excluding
the final aggregation step where gradients of all clients are
added together; let’s call them “client-specific steps”. This
is because the aggregation step only admits additive errors
which don’t depend on individual honest gradients [37],
and therefore, don’t affect privacy. Second, for a client c,
knowing the servers’ internal state beforehand for c’s client-
specific steps neither gives it any advantage in successfully
mounting a poisoning attack, nor reveals any information
about other clients’ gradients. Therefore, each client can
share random tapes with the servers which, along with the
clients input shares, makes the messages exchanged between
the servers totally deterministic. This enables clients to lo-
cally generate a digest of the transcript of server interaction,
and send it to the servers helping the honest server catch any
malicious behavior that could violate privacy. We formally
define malicious privacy in Definition 1.

Extending to ℓ2 defense. Stemming from Prio+, the cur-
rent design only supports the relaxed ℓ∞ defense. A more
commonly used and better studied [1, 32, 95, 100] defense
enforces an upper bound on the ℓ2 value of gradient updates.
This can be supported by using Beaver triples [16] to
compute the sum of squares of values within each gradient
vector. However, as a consequence of operating over finite
rings, the ℓ2 defense needs to be paired with relaxed ℓ∞
to maintain soundness [32]. Therefore, servers first convert
Boolean shares to arithmetic, and then use beaver triples to
compute shares of ℓ2.

3. Each client generates its own MAC key and uses that to send authen-
ticated Boolean shares of its gradient. Servers use separate instances of
malicious-secure 2PC to process shares of each client.

2

Tapping into cheaper untrusted randomness. To make our
end-to-end protocol more efficient, we realize that clients
can serve as cheap untrusted sources of the cryptographic
material (correlations) needed by the servers. This material,
which is interactively generated by the servers by engaging
in expensive 2PC, can be locally generated by the client.
The client just samples some random numbers subject to
simple constraints. Once generated, these correlations can
be secret shared between the servers to provide them with
a significant boost. However, malicious clients can’t be
trusted with generating correct correlations, so the servers
need an efficient way to verify these correlations. In our
protocol, servers need OT correlations for Boolean to arith-
metic conversions and Beaver triples for computing shares
of ℓ2. We use ideas from Keller et al. [69] to efficiently
verify all OT correlations while just communicating two
field elements, and for Beaver triples, we use the SPDZ
sacrifice technique [41, 43, 70, 71]. This approach greatly
reduces the total communication and the entire workload
of servers, while also easing the computational effort of
clients (transcript emulation becomes simpler). The only
downside is the increase in communication from clients,
and therefore, we let heavily bandwidth-constrained clients
to individually opt out of this optimization, and still largely
retain our end-to-end efficiency. Note that all the clients
(including regular ones) in our protocol communicate less
than the three prior works (RoFL, EIFFeL and Prio) which
provide similar security guarantees, and none of these prior
works support bandwidth-constrained clients.

Achieving one-shot clients. By using clients as untrusted
correlation sources, there is a part of the random tape of
the servers which can’t be known apriori to the clients.
One can think of this as corresponding to the “random
challenge” which needs to be hidden from the client until
it sends its correlations to the servers (for soundness of the
defense against malformed gradients). This leaves us with
a two-round client because the transcript for a part of the
server-server interaction can’t be generated by the client
until it submits the correlations and receives the random
challenge. Casting our protocol as a public-coin interactive
protocol and using the distributed variant of the Fiat-Shamir
transform [25, 52], we achieve single-round clients.

2. Preliminaries
ELSA’s design considers two types of actors - servers

and clients. Clients, who can be users running mobile de-
vices (cross-device) or large organizations (cross-silo), have
personalized datasets which they don’t want to reveal to
anyone else, and the servers wish to train an ML model on
this large distributed dataset. Typical to FL, this is achieved
by choosing a subset of clients during each training iteration,
and having them contribute to updating the global model by
training it on their local datasets and sending the updates
back to the servers. Our design considers the distributed
trust setup where two servers deployed in separate trust
domains collectively and securely emulate the task of the
central coordinating server [9, 24], i.e., collecting all updates

1

2

3 Cryptography Module

4

5

6 Model Update Model Update

Gradient
Update
Shares

Secure Aggregation

Model Broadcast

Figure 1: ELSA FL pipeline. S0, S1 denotes servers in
different trust domains who each hold a copy of the current
global model. Ci represents the ith client who performs
local training before using its cryptography module to enable
secure aggregation. Numbers in boxes represent steps.

and integrating them into the global model.
We present our pipeline in Fig. 1. Each training iter-

ation starts with S0 and S1 selecting a common subset
of clients (round participants) and broadcasting the current
global model to each of them (each server knows the global
model in clear). These clients then use their datasets to train
the global model for a few epochs locally, and then use
the cryptography module to securely share the generated
gradient update between the two servers such that each
server individually receives some “random-looking” update.
Servers then engage in an interactive protocol between
themselves to aggregate the updates and finally, integrate
them into the global model.

2.1. Problem Setup
In this work, we primarily focus on constructing the

cryptography module that is run on each client, and the se-
cure aggregation protocol that servers engage in. We assume
that clients generate gradient updates using an ML black-
box, and consider its specifics tangential to our work.

The computation of interest in secure FL is the fol-
lowing: we have a set of clients C chosen for the current
iteration, where client i holds a gradient vector xi of size
m (a.k.a parameter size or #params), and the goal is to
compute the average of these gradient vectors4 [23, 68, 80],
i.e., ∇ = 1

|C|
∑|C|

i=1 xi. We simply refer to this computation
as aggregation, ignoring division by |C| as this is a public
constant in our system.

Sensitive gradients. It has long been established [17, 22, 24,
32, 80, 101] that gradients often leak sensitive information
about clients’ local datasets, and therefore, there is a need
to keep them individually private. To achieve this goal in
ELSA, we use techniques from secure multi-party compu-
tation [11, 46] to ensure that all computation done by the
servers happens in a privacy-preserving fashion, such that
only the final aggregated update is learned by the servers.

4. For the ease of exposition, we consider all clients are assigned equal
weight. Our techniques straightforwardly extend to the general case.

3

Utility of the service. The utility of an FL service relies on
the quality of the gradients xi. A single ill-formed gradient,
if left unchecked, can totally alter ∇. Malicious clients can
boost their gradients to bias the training process [24, 32, 76,
100, 105]. Therefore, to limit the scope of such attacks, it
is imperative to check for ill-formed gradient updates. An
effective strategy that is used by prior FL protocols [1, 11,
32, 39, 95, 100] is for the servers to enforce a norm bound
on the gradients before accepting them. We consider the
problem of selecting an appropriate bound orthogonal to our
work and refer the reader to prior work [32]. Additionally,
we make the common assumption that the chosen bound is
publicly known to everyone.

2.2. Security Guarantees and Threat Model
We consider a strong threat model where corrupted

clients are assumed to be malicious and up to one server is
corrupt. We distill corruption of server into two cases (with
different guarantees): the corrupt server is semi-honest or
malicious. Malicious parties can arbitrarily deviate from the
protocol specification in an attempt to break its guarantees,
while semi-honest parties follow the protocol specification,
but can try to infer as much private information as pos-
sible from the transcript. Like prior works on distributed
trust [11, 39, 40, 44, 45, 104], we assume that both servers
aren’t simultaneously compromised, and therefore, at most
one of them is corrupt. Informally, ELSA guarantees:

• For semi-honest server. Individual gradients of honest
clients maintain privacy (not revealed to anyone other
than the source client itself), and the computation done
by the servers, i.e., ℓ2 checks and aggregation, is correct
(thus both privacy and correctness are maintained).

• For malicious server. Honest clients’ gradients enjoy
privacy, but the computation at servers can be incorrect
(thus only privacy is guaranteed).

We formally prove these properties in theorems A.1
and A.2. Similar to prior work [17, 24, 32, 67, 98] on secure
FL, we consider it a meaningful use of our system when
there are at least 2 honest clients, so that the output of
aggregation doesn’t trivially reveal the honest gradient.

Setting up distributed trust. There has been an ex-
plosion in recent privacy-preserving systems which are
based on distributed trust. Apart from the numerous aca-
demic works [11, 26, 39, 40, 44, 45, 50, 57, 85, 104], it has
been adopted in many real-world deployments including
Firefox telemetry [2], COVID-19 exposure notification an-
alytics [8], oblivious DNS [3], and cryptocurrency wal-
lets [4, 5]. In ELSA, the application developer is responsible
for setting up distributed trust5, and we refer the reader to
prior work (e.g., [2, 8]) on how to do this properly. Given our
security guarantees, this ensures that honest clients no longer
have to put their entire trust in one server for privacy; as long
as the other server is working fine, privacy is guaranteed.

5. Compared to works like RoFL in the single-aggregator model which
base their security on the hardness of solving discrete log, distributed trust
(theoretically) is a somewhat weaker notion of security, but leads to much
more practical solutions.

2.3. Building Blocks

Notation. We denote the servers (a.k.a. aggregators) by Sb

for b ∈ {0, 1} and the set of all participating clients by C.
[n] denotes the set {0, 1, . . . , n − 1}. The set (or vector)
{x0, x1, . . . , xn−1} is denoted by {xi}n−1

i=0 . When it is clear
from the context, we will drop n from {xi}n−1

i=0 and repre-
sent it as {xi}i for brevity. We use ⊕,∧ for bitwise XOR
and AND, respectively. Our protocols support aggregations
over ZL, where L = 2ℓ. x $←− ZL denotes that x is uniformly
randomly sampled from ZL. For a vector y, we denote its
entries by yi for i ∈ [|y|] and all operations performed on
vectors are component-wise. We use ← to set a variable. ||
denotes string concatenation. λ, κ are the computational and
statistical security parameters, respectively.

Vector norms. The Euclidean norm, or ℓ2 norm, of a vector
(x1, . . . , xn) is defined as

√
x2
1 + · · ·+ x2

n, and forms the
main defence in our work against boosted gradients. When
working with cryptographic primitives over finite rings, an
upper bound on the ℓ2 norm of a vector is ineffective in
containing the magnitudes of individual components because
overflowed values wrap around the modulus (as observed
in RoFL [32]). Therefore, we use the relaxed ℓ∞ bound
(using bitlength), denoted by ℓRlx∞ , alongside ℓ2. ℓ∞ norm
of a vector (x1, . . . , xn) is defined as maxi |xi|, and an ℓRlx∞
bound allows this value to be at most 2w for w ∈ N. For
our case, ℓ2 is faithful as long as ℓRlx∞ is set such that n ·
(ℓRlx∞)2 ⩽ L′, where L′ is the ring modulus under which ℓ2
computation happens [32]. We typically choose a very large
ℓRlx∞ (L′ can be appropriately adjusted) to leave enough slack
for honest gradients. Moreover, rather than bounding ℓ2, we
bound ℓ2

2 (with the bound value denoted by µ2), but for
notational simplicity refer to it as ℓ2.

Arithmetic/Boolean secret sharing. In arithmetic secret
sharing [91], a value x ∈ ZL is split into a pair of shares
x(0), x(1) such that x(0)+x(1) = x (mod L). In our setting,
typically, the client who owns the value x creates its shares
as: x(0) $←− ZL and x(1) ≡ x−x(0) (mod L), and sends x(0)

to S0 and x(1) to S1. Given shares of two secret values x and
y, shares of z ≡ x+y (mod L) can be locally computed by
each server Sb setting z(b) ← x(b) + y(b) (mod L). When
L = 2, we get Boolean secret sharing.

Oblivious Transfer (OT). An ℓ-bit “t-choose-1” OT compu-
tation [13, 65, 72], denoted by

(
t
1

)
-OTℓ, allows the receiver

(OTRc) holding a “choice” input j ∈ [t] to receive the
message mj from a set of ℓ-bit messages {mi}t−1

i=0 held
by the sender (OTSn). The sender learns nothing during the
protocol and receiver learns no message other than mj . For
this work, the case of t = 2 is the most relevant. Correlated
OT (COT) [14, 87] is a variant of OT where the sender has
an input m, receiver has a choice bit j, and the protocol
outputs (r, r+m) to the sender and (r+j ·m) to the receiver,
where r $←− {0, 1}ℓ. OT extension [28, 65] protocols generate
polynomially many OTs given λ base OTs.

Beaver triples. Given secret shares of values x, y ∈ ZL,

4

computing the shares of x · y requires interaction. A com-
monly used approach for this secure multiplication is using a
Beaver triple [16] which consists of three elements (α, β, γ)
such that γ ← α · β, and α, β

$←− ZL. Secret shares of a
beaver triple can be used to compute shares of z ← x·y with
each party only communicating 2 ring elements [16, 46, 87].

3. ELSA: Secure Federated Learning
In this section, we describe our protocol for secure FL.

We begin by constructing a simple protocol that enforces
ℓ2 bounds, but is neither efficient nor guarantees malicious
privacy. We then show how to address each of these issues
sequentially, and finally arrive at ELSA.

3.1. Norm Bounding with Semi-Honest Privacy
In Prio+ [11], clients use Boolean secret sharing to share

their gradient updates between the two servers, and the
servers then engage in an interactive protocol to convert
Boolean shares to arithmetic shares which can then be
locally aggregated. This allows the servers to efficiently
enforce an ℓRlx∞ bound on client submissions. In this work,
we follow a similar strategy. Let’s consider the aggregation
task at hand is to compute sum over the ring ZL and we want
to ensure that each individual value is at most 2w−1 in mag-
nitude, for w ⩽ ℓ. Each client locally bit decomposes the
values in its gradient vector and sends Boolean secret shares
to the servers. The servers reject all client submissions which
have more than w bit-shares per component of the gradient
update, thereby retaining only the shares of values which
are bounded by 2w (refer to Appendix C for a discussion
on negative values). These bit-shares are then converted back
to arithmetic shares of the original values by using an COT-
based bit composition protocol [11, 46, 87] (opposite of bit
decomposition), and finally aggregated locally by the servers
to get shares of the final aggregate. This result is opened by
the servers through reconstruction (exchanging arithmetic
share with each other) to yield the output.

As the first step towards building ELSA, we focus
on ℓ2 norm bounding [1, 100] to filter out boosted gradi-
ents from malicious clients. RoFL [32], the state-of-the-
art single-aggregator protocol for secure FL, also considers
ℓ2 bounding as one of their prime defenses. The relative
simplicity of this defence compared to others [20, 81, 109]
makes it suitable when working over secret shares. To
realize this defense over arithmetic secret-shared gradients
(post bit composition), two secure computations need to be
performed. First, arithmetic secret shares of the ℓ2 value
needs to be computed, and second, this value needs to be
securely compared against the upper bound such that the
only information that is revealed is the comparison output,
i.e., whether the ℓ2 value is within bound or not. We refer
to the first step as “ℓ2 computation”, and the second one as
“ℓ2 enforcement”. We now describe how both steps can be
performed, and later in this section, optimize this solution.
Note that when working over finite rings, ℓ2 defense needs
to be paired with a per-component bound, like ℓRlx∞ , to ensure
soundness (see Section 2.3). In our case, the two steps of ℓ2

defense are only performed after the bit composition step,
ensuring that each value6 is individually bounded by 2w.

ℓ2 computation. To compute shares of the ℓ2 value, all we
need is to perform secure multiplication of arithmetic shares
of each component in the gradient update with itself, and
finally add the resulting shares locally. This can be achieved
using Beaver triples; one triple for each value in the vector.
The ring over which aggregation happens (ZL) need not be
the same as the one over which ℓ2 is computed. The ℓ2
ring, Z2u , can be larger than ZL. Since shares of a value
less than L over the ring Z2u can be converted to shares
over ZL by local modulo reduction with L [86], servers can
perform bit composition to output shares over the larger
Z2u , perform ℓ2 computation and checks, and then during
aggregation convert them back to ZL. Shares of the required
Beaver triples can be generated between the two servers
using either COT (requires 2u instances of

(
2
1

)
-COTu per

triple) or homomorphic encryption [46].

ℓ2 enforcement. Once the ℓ2 computation is done, the next
step is to check whether the value obeys the upper bound
µ2. Opening the ℓ2 value directly, and locally comparing
with µ2 would leak extra information than needed, i.e., the
precise ℓ2 value. Therefore, this comparison needs to happen
using a secure sub-protocol which only reveals whether the
bound is violated or not. In this work, we perform this step
by having the servers first locally compute arithmetic shares
of z ← y − µ2 mod 2u, where y is the ℓ2

2 value, and then
extract its most-significant bit (MSB) by evaluating a secure
adder [46]; secure adders can be computed using COTs [46,
87] with each AND gate requiring two

(
2
1

)
-COT1. The adder

outputs Boolean shares of the sum, and the MSB is then
opened to reveal the output; zero implies bound violation.

3.2. Designing an Efficient Protocol
To achieve an efficient end-to-end protocol, we propose

a novel redistribution of secure computation across parties.

3.2.1. Cheaper Sources of Correlations

We now analyze the current construction, identify the
bottleneck, and propose a technique that completely dis-
solves this bottleneck. For this analysis, we focus on OT-
based primitives instead of homomorphic encryption (HE),
and use the IKNP OT extension (with its derivatives) [14,
65]. Recent PCG-based OT extension protocols [28, 108]
and HE trade-off lower communication for much higher
computation compared to IKNP which makes them trickier
to theoretically analyze. Moreover, as long as the servers
have a good bandwidth connection with each other, these
solutions aren’t too different in end-to-end performance [88,
108], and therefore, IKNP suffices for our analysis.

Bit composition and ℓ2 computation are the only two
phases where the communication between the servers grows
linearly with the size of the gradient updates and the number
of participating clients; all the other phases require only a

6. We consider the same bound on each value for simplicity of exposi-
tion. Our protocol straightforwardly extends to the general case.

5

small fraction of this communication. Of these two, ℓ2 com-
putation is more heavy because generating Beaver triples is
quite expensive. In particular, the communication cost of ℓ2
computation is dominated by m · 2u · (λ + u), while bit
composition incurs m · w · (λ + u) bits. Since u is at least
2w + logm, there is > 4x difference in communication.
This difference is even more pronounced when a commonly
used technique called probabilistic quantization [73] is used
to reduce client communication7. Hence, ℓ2 computation is
the bottleneck in our current protocol, and now we make
this phase significantly cheaper.

More efficient sources of triples and OTs. Generation of
Beaver triples between the servers makes ℓ2 computation
quite expensive. If we could find cheaper ways to source
Beaver triples, then the cost of this phase can be brought
down significantly to the point that it no longer is the
bottleneck. To this end, we realize that each client can
act as an “untrusted” (clients can be malicious) source of
triples corresponding to the ℓ2 computation that servers
need to do for its gradient update. Since the soundness
of the ℓ2 computation relies on the correctness of these
triples, servers need to first validate them before they can
be used. For verification, we use the well-known SPDZ
sacrifice technique [43, 70, 71] which sacrifices one triple to
verify the correctness (statistically) of the other. For gradient
updates of m elements, each client prepares 2m triples and
secret shares them between the servers, where each triple
(αi, βi, γi) is generated by sampling αi, βi

$←− Z2u and set-
ting γi ← αi·βi. The servers then sacrifice m of these triples
to verify the other m, and finally use the surviving triples
for ℓ2 computation phase. The computational work of both
clients and servers is minimal. In terms of communication,
each client sends 6mu bits to each server, and each server
communicates 2mu bits for verification8, followed by 2mu
bits for computing the squares. The communication cost
from clients to the servers can be further reduced to just
2mu bits (total) by using a shared pseudo-random generator
(PRG) seed [75] to generate both shares of αi, βi, and one
share of γi such that the other share of γi is appropriately
set by the client to ensure that the relation γi = αi ·βi holds,
and is the only value that needs to be communicated. Talking
about the end-to-end protocol, this approach increases client
communication9 (mw to mw + 2mu) by almost the same
multiplicative factor as it reduces server communication
(m · (2u + w) · (λ + u) to about mw · (λ + u)), however,
given that the clients communicate only a small fraction of
what servers communicate, we gain substantially in overall
efficiency of the protocol.

Having clients generate Beaver triples not only makes
our protocol significantly more efficient, but also makes it
much simpler (requiring no OT extensions for generating

7. This reduces w, while u stays the same. Boolean shares of gradients
are compressed during transit, and unpacked at the servers to their full size.

8. Performing the zero-check as a part of triple verification can be
batched across all m checks by using a collision-resistant hash function.

9. For communicating Boolean shares of gradient update, the PRG trick
can be used.

triples). We now extend this idea to the COTs used in the
bit composition phase. Although unlike ℓ2 computation, this
won’t improve the efficiency of our end-to-end protocol by
a big margin, it still makes it simpler, and further reduces
the communication and computational load of the servers
while increasing client communication. We default to this
arrangement for a better distribution of work across parties,
and later in this section, discuss the case of bandwidth-
constrained clients.

Recall that the bit composition phase relies on OTs to
convert Boolean shares of gradient updates to arithmetic
shares. If clients generate random OTs (ROTs), i.e., OTs
of the form (m0,m1)

$←− Z2u given to the server acting
as OTSn and (j

$←− {0, 1},mj) to OTRc, then servers can
use them to do bit composition. Consider a bit x that the
servers want to convert from its Boolean shares (x(0), x(1))
to arithmetic form. We make use of the following equation:

(Arithmetic) x = x(0) ⊕ x(1) = x(0) + x(1) − 2(x(0) ∧ x(1))

where additions and subtractions are in the arithmetic do-
main. Notice that the only non-local operation needed is to
compute x(0) ∧ x(1), called bit multiplication. We describe
the protocol ΠBitMultUA to do bit multiplication x(0) ∧ x(1),
where Sb holds x(b) for b ∈ {0, 1}, in Algo. 1; this consumes
an ROT in a straightforward way. This provides a way for
the servers to use client-supplied OTs for bit composition,
but leaves an issue wide-open - how do the servers verify
if the OTs are correct? ROTs cannot be efficiently verified
by the servers, so we rather have clients send a special kind
of COTs, called ∆-COTs, which admit a batch-verification
procedure [69], and convert them back to ROTs at the
servers. In a ∆-COT, every pair of messages held by OTSn
satisfies the constraint m0⊕m1 = ∆ for a fixed but random
∆ ∈ {0, 1}λ. A batch of ∆-COTs {(mi,mi⊕∆), (ji,mji)}i
can be verified by checking their random linear combination
for the ∆-offset property [69], and each of them can then be
converted to ROTs at the servers by the local operation of a
hash function [69] which breaks the correlation and makes
the two messages in each OT look random (just like an
ROT). To reduce the communication from clients to servers,
we again use shared PRG seeds to only communicate mji
to OTRc, and all other values mi,∆, ji are generated by
expanding the PRG at respective parties. When servers gen-
erate the OTs themselves (on the fly), they incur a commu-
nication of mw(λ+u) bits for bit composition which is now
reduced to mw(2u+1), and clients now communicate mwλ
additional bits. We present an optimization in Section 3.2.2
which further cuts the server communication by half, thereby
achieving the same total communication for bit composition
as on-the-fly OT case.

Bandwidth-constrained clients. In situations where clients
are mobile or edge devices who might be bandwidth-
constrained (because of their geographic location, for ex-
ample), sending ∆-COTs for bit composition can be quite
demanding; each client needs to send m(w+2u+wλ) bits
which is completely dominated by mwλ from ∆-COTs. In
these cases, clients can opt out of sending ∆-COTs and have

6

Algorithm 1 Bit Multiplication Πk
BitMultUA

Input: Bit shares x(0), x(1) ∈ Z2 to multiply. If participating
as the sender (OTSn role), then additional inputs include
(m0,m1) ∈ Z2k . If participating as the receiver (OTRc
role), additional inputs include (j,mj), where j ∈ {0, 1}.
Output: y(b) ∈ Z2k s.t. x(0) ∧ x(1) = y(0) + y(1) (mod 2k)

Protocol: Between Servers (Assuming S0 is OTSn)
1: S1 sends d← j ⊕ x(1) to S0.
2: S0 computes the pair (v0, v1)← (u0− r, u1− r+x(0))

and sends it to S1, where r
$←− 2k, and (u0, u1) ←

(m0,m1) if d is 0 (swapped otherwise).
3: S0 sets y(0) ← r, S1 sets y(1) ← vx(1) −mj (mod 2k).

the servers generate them on the fly as mentioned in Sec-
tion 3.1. This frees up their bandwidth burden significantly
while mostly maintaining the end-to-end efficiency of our
protocol, and should be enough for most cases. In the very
rare situation where clients can only communicate the bare
minimum, we let them opt out of even sending the Beaver
triples. This however, comes at the cost of increased work
(computation and communication) at the servers. As long
as only a small fraction of clients are severely bandwidth-
constraint, our protocol still largely maintains its efficiency
guarantees. We experimentally confirm this in Section 4.3.
We next discuss an approach to reduce client communication
without increasing server communication, but at the cost of
increased computation for both roles.

Using Pseudorandom Correlation Generators. Two-party
pseudorandom correlation generators (PCGs) [28, 29, 90]
are defined by two algorithms - Gen and Expand. The
former generates a pair of succinct seeds (k0, k1) which
are distributed between the two servers (Sb gets kb). The
servers use the Expand algorithm to locally expand their
seeds to generate a large number of correlations. Prior
work [28, 29, 90] has presented PCG constructions for both
∆-COTs and beaver triple10 correlations. In our setting, each
client can generate PCG seeds for the correlations it wants
to send, and the servers can then expand them out and
validate them as they would validate regular correlations.
This reduces client communication significantly. Taking ∆-
COT as an example which currently forms the communica-
tion bottleneck of the clients, with Boyle et al.’s [28] (resp.
Schoppmann et al. [90]) silent-OT seeds, clients would com-
municate less than a bit (resp. 6-7 bits) per COT compared
to λ (e.g. 128) bits otherwise. Schoppmann et al. [90] has
higher communication than Boyle et al. [28], but requires
much smaller computation. We leave it to future work to
develop more efficient PCG-based OT extension protocols
(like Ferret [108]) in the trusted dealer model [27] like ours.

3.2.2. Optimizing Correlation Usage
We saw how servers can benefit from getting correlations

like Beaver triples and OTs from the clients. We now pro-

10. Servers can also use OTs to generate beaver triples [46].

Algorithm 2 Aligned Bit Multiplication Πj
BitMult

Input: Bit shares x(0), x(1) ∈ Z2 to multiply. If participating
as the Sender (OTSn role) then additional inputs include
∆, q ∈ F2λ . If participating as the Receiver (OTRc role)
additional inputs include t ∈ F2λ . Let H : [ℓ]× F2λ → Z2λ

be a hash [69] in the random-oracle model.
Output: y(b) ∈ Z2j s.t. x(0) ∧ x(1) = y(0) + y(1) (mod 2j)

Protocol: Between Servers (Assuming S0 is OTSn)
1: S0 computes v0 ← H(c||q) and v1 ← H(c||q+∆) and

sets y(0) ← −v0 (mod 2j), where c is a global counter.
2: S0 sends u← v0 + v1 + x(0) (mod 2j) to S1.
3: S1 computes v ← H(c||t).
4: S1 sets y(1) ← x(1)u+ (−1)x(1)

v (mod 2j)

Algorithm 3 Local OT Correlation Generation LocalOT

Input: Choice bits x ∈ Zn
2 and an offset ∆ ∈ F2λ .

Output: Q and T s.t. Q = T + x ·∆ ∈ Fn
2λ

Protocol: Locally performed at each Client c ∈ C
1: for j ∈ [n] do
2: Sample qj ∈ F2λ . Let xj ∈ F2 be the jth bit of x.
3: Set tj ← qj + xj ·∆ ∈ F2λ

4: end for
5: Set Q← {q0, . . . , qn−1} and T ← {t0, . . . , tn−1}.

pose further optimizations for using both these correlations
which reduces server communication by another 2×.

Pre-aligned ∆-COTs. Bit multiplication using ∆-COTs
(hashed to ROTs) of k bits (Algo. 1) requires 2k + 1
bits of communication across 2 rounds. We can bring this
down to k bits and a single round by proposing the use of
pre-aligned ∆-COT correlations. In a pre-aligned ∆-COT,
the client sets the choice bit to be same as OTRc’s bit-
share which consumes that COT during bit multiplication. In
particular, by setting j ← x(1), the first message d is always
zero, and therefore, doesn’t need to be sent. Moreover, the
two messages (v0, v1) sent by OTSn can also be reduced
to a single message by using ideas from COT extension
protocols [14, 69]. We refer to such ∆-COT correlations
as being pre-aligned, and the optimized bit multiplication
which uses them to be aligned bit multiplication, ΠBitMult,
presented in Algo. 2. For completeness, in Algo. 2, we
assume ∆-COTs as input and include hashing to ROTs as
part of the protocol.

Square correlations. Beaver triples allow multiplication of
any pair of secret-shared values x, y. For our protocol, we
only require computation of squares of secret-shared values,
i.e., when x = y, and therefore, using Beaver triples is sub-
optimal. We introduce square correlations as the optimized
alternative for computing squares (part of ℓ2 computation).
A pair of values (α, γ) form a square correlation over Z2u

if γ = α2 and α
$←− Z2u . Square correlations can be used in

a straightforward way (similar to Beaver triples) to compute

7

Algorithm 4 Bit Composition Πw,ℓ
BitComp

Input: Bit shares x(b) ∈ Zw
2 to convert, where b ∈ {0, 1}.

If participating as the Sender (OTSn role) then additional
inputs include ∆, Q ∈ Fw

2λ . If participating as the Receiver
(OTRc role) additional inputs include T ∈ Fw

2λ .
Output: z(b) ∈ ZL where L = 2ℓ such that

z(0) + z(1) =

w−1∑
i=0

2i(x
(0)
i ⊕ x

(1)
i)

Protocol: Between Servers (Assuming S0 is OTSn)
1: Sb sets z(b) ← 0 ∈ ZL, where b ∈ {0, 1}.
2: for i ∈ {0, . . . , w − 1} do.
3: Let ℓ′ = ℓ− (i+ 1).
4: S0 sets y(0) ← Πℓ′

BitMult(x
(0)
i ,∆, Qi).

S1 sets y(1) ← Πℓ′

BitMult(x
(1)
i , Ti).

5: Set z(b) ← z(b) + 2i(x
(b)
i − 2y(b)) mod L, where

x(b), y(b) are considered as elements of ZL.
6: end for

squares over secret-shared values. However, the tricky part
is their verification. Following an approach similar to SPDZ
sacrifice [41, 43, 70, 71] for Beaver triples, soundness boils
down to the distribution of quadratic residues in the finite
ring. We prove in Lemma 2 that using an odd value as
the random challenge in the verification step can provide
soundness with just a 3-bit loss in statistical security.

End-to-end protocol. We present our end-to-end semi-
honest private protocol for FL in Algo. 5.

Algorithm 5 Secure Aggregation for FL (ΠAgg)

Input: Gradient vectors of size m. Let n = m·w+2u+λ+κ.
τ denotes the minimum no. of clients whose gradients need
to be aggregated each round. µ is the ℓ2 bound to enforce.
We assume that Server S0 is the OTSn and S1 is the OTRc.
Output: Global aggregate vector with m values, where co-
positioned w-bit values across clients’ vectors are aggre-
gated over ZL.

Input Sharing Phase: (Locally at each Client)
1: For each client c ∈ C, let x denote the data of this client

(clipped to the current ℓ2 bound, µ) which consists of a
vector of size m with w-bit values. Let xi,j ∈ Z2 where
i refers to the vector index and i ∈ {1, 2, · · · ,m} and
j ∈ [w] is the bit-index.

2: Generate shares x(0), x(1) of x over Zm×w
2 and send

x(b) to server b.

OT Generation: (Locally at each Client)

1: Each client c ∈ C samples ∆ $←− F2λ and r
$←− Z2u+λ+κ

2 .
2: Each client generates OT correlations Q,T and Q′, T ′

using the LocalOT sub-routine on inputs x(1) ∈ Zm×w
2

(flattened) and ∆ and r,∆ respectively:

(Q,T) ←− LocalOT(x(1),∆)

(Q′, T ′)←− LocalOT(r,∆)
(1)

3: Each client sends ∆ and Q← (Q||Q′) to the S0 (OTSn
Server), and r and T ← (T ||T ′) to S1.

Square Correlation Generation: (Locally at each Client)
1: Set v ← u+ κ+ 3.
2: Each client c ∈ C samples {ai}2mi=1

$←− Z2v .
3: Each client generates arithmetic shares W (0),W (1) of
{(ai, di)}2mi=1, where di = a2i mod 2v and sends them
to the respective server.

OT Verification: (Between Servers)
Servers perform the following steps for each c ∈ |C|:

1: Servers S0, S1 collectively sample random values
{χ1, . . . , χn} ∈ Fn

2λ . S1 (OTRc role) parses x̂ ←−
(x(1)||r) ∈ Fn

2 and computes:

x̃←
n∑

j=1

x̂j · χj and t̃←
n∑

j=1

Tj · χj (2)

where Tj ∈ F2λ is the jth correlation in T .
2: S1 sends x̃, t̃ to S0 and S0 computes

q̃ ←
n∑

j=1

Qj · χj (3)

where Qj ∈ F2λ is the jth correlation in Q.
3: S0 checks if t̃ = q̃+ x̃ ·∆ and reject the client if it fails.
4: S0, S1 discard the last (λ + κ) OT correlations. They

further split the remaining correlations into two sets
(QA, TA), (QB , TB) with mw in the first set. They
parse QA, TA to their folded form ∈ Fm×w

2λ
.

Square Correlation Verification: (Between Servers)
Servers perform the following steps for each c ∈ |C|:

1: Sb sets Ŵ (b) ← {}.
2: for each pair of correlations (a(b), d(b)), (â(b), d̂(b)) ∈

W (b) do
3: Collectively sample an random odd value t ∈ Z2v

4: Servers open e← ta− â.
5: S0 computes t2d(0) − d̂(0) − 2tea(0) + e2

S1 computes t2d(1) − d̂(1) − 2tea(1)

6: Servers check that they computed shares of zero; If
yes, Ŵ (b) ← Ŵ (b)||(a(b), d(b)) else reject client.

7: end for
8: Servers parse Ŵ (b) as {(a(b)i , d

(b)
i)}i.

Bit Composition Phase: (Between Servers)
Servers perform the following steps for each c ∈ |C|:

1: for i ∈ [m] do
2: S0 sets z

(0)
i ← Πw,u

BitComp(x
(0)
i ,∆, QA

i)

S1 sets z
(1)
i ← Πw,u

BitComp(x
(1)
i , TA

i)
3: end for

ℓ2 Computation Phase: (Between Servers)
Servers perform the following steps for each c ∈ |C|:

1: Sb sets z(b) ← 0 ∈ Z2u , where b ∈ {0, 1} and i ∈ [m].
2: for i ∈ [m] do
3: Servers open e← zi − ai.

8

4: S0 sets z(0) ← z(0) + d
(0)
i + 2ez

(0)
i − e2 mod 2u

S1 sets z(1) ← z(1) + d
(1)
i + 2ez

(1)
i mod 2u

5: end for

ℓ2 Enforcement Phase: (Between Servers)
Servers perform the following steps for each c ∈ |C|:

1: S0 sets z(0) ← z(0) − µ2.
2: S0, S1 extract the sign bit of z by evaluating an adder

securely ([46]) with inputs z(b). For AND computations,
S0 uses QB ,∆ and S1 uses r, TB . Each AND uses two
Π1

BitMultUA invocations (details deferred to full version).
3: If the sign bit is zero, reject the client.

Aggregation Phase: (Between Servers)
1: For i ∈ [m] and b ∈ {0, 1}, Sb adds the z

(b)
i values of

all the clients together into y
(b)
i .

2: Reconstruct yis from shares if inputs from more than τ
fraction of clients got aggregated. Otherwise output ⊥.

3.3. Achieving Malicious Privacy
The protocol that we have built so far is efficient,

supports ℓ2 defense, and guarantees privacy against a semi-
honest server. In this section, we present new ideas for
guaranteeing privacy in the face of a maliciously corrupt
server while incurring an extremely low overhead compared
to our semi-honest protocol. Unlike a semi-honest server,
a malicious server can send malformed protocol messages
to violate privacy of individual gradients. As an example,
consider aligned bit multiplication (Algo. 2) where S0 is
malicious. To ensure privacy, we require that S0 learns
nothing about the bit x(1) held by S1. Since a malicious S0

can send malformed messages, it can construct its message
as u ← v0 + v1 + x(0) + δ, where δ is some error that
it introduces. Now, δ will contribute to the final aggregate
only if x(1) was one because this is only when u is used
by S1. Therefore, the final result (which is opened to both
servers) reveals x(1) to S0. This is just one way in which a
malicious server may compromise gradient privacy. We need
to eliminate these attacks to reach our goal of malicious
privacy. We start by looking at existing MPC techniques
which are commonly used to achieve malicious security.

A naı̈ve way to achieve malicious privacy would be to
directly use a malicious-secure arithmetic black box [41,
42, 49] for all the operations that we need in our protocol.
However, this will require all clients in C and the two servers
to act as (full) parties in the MPC protocol, making this
solution completely impractical for many reasons - MPC
protocols don’t scale well with so many parties, each client’s
communication becomes too high, and they have to interact
with each other and the servers across multiple rounds for
just one invocation of secure aggregation. Additionally, this
solution assumes that each client is as resource-capable as
the servers, which doesn’t hold for many setups like cross-
device FL. A better solution would be to do malicious-secure
2PC between the two servers, and have the clients send au-
thenticated bit-shares of their gradients to the servers. If we
ignore collusion between the malicious server and a subset

of clients for a moment, then a global authentication key
(MAC key [41, 49, 83]) can be kept secret-shared between
the servers, while the clients can know the key in clear.
This allows the clients to generate authenticated Boolean
shares of their gradients locally. However, under collusion,
this approach breaks down because the malicious server
can easily learn the key through any corrupted client. To
withstand this, clients can be allowed to interact with the
servers to authenticate their Boolean shares, but this is quite
inefficient, and moreover, gives a single malicious client the
power to abort the entire protocol by adding inconsistencies
during authentication. Although servers can introduce more
steps to check for valid authentication, this approach has a
big overhead over semi-honest.

Distilling privacy-sensitive steps. To build a satisfactory
solution, we observe that not all steps in the protocol need to
be maliciously secure; the final aggregation phase (Algo. 5)
is a step which doesn’t need to be malicious secure. This
is because any error δ introduced by the malicious server
during reconstruction of the final aggregate is uncondition-
ally reflected in the output, and therefore, doesn’t leak any
private information. In other words, the aggregation phase
only admits an additive error attack [37] which doesn’t
affect privacy. However, it does affect correctness of the
output, and that is why, we don’t guarantee correctness of
aggregation when a server is malicious. Given this insight,
if we consider using information-theoretic MACs for mali-
cious privacy, then we can have each client generate its own
MAC key, use it to locally generate authenticated Boolean
shares of its gradient update, and send them to the server
along with arithmetic shares of the MAC key. The servers
can then use malicious-secure 2-party Boolean-to-arithmetic
conversion protocols [42, 49] and secure multiplication using
authenticated Beaver triples [41] to perform the ℓ2 defence.
The final step of aggregation can ignore the MACs because,
firstly, they vary across clients and can’t be aggregated, and
secondly, we don’t need to catch malicious tampering in
this phase. Despite being the most efficient solution that
uses MACs which we have drafted so far, it still puts a
communication overhead of more than an order of magni-
tude over the semi-honest base owing to the Boolean-to-
arithmetic conversion step [49].

In this work, we take a different direction for guarantee-
ing malicious privacy. We observe that all the steps (Algo. 5)
run by the servers which require malicious protection (OT
verification, square correlation verification, bit composition,
ℓ2 computation, and ℓ2 enforcement) are run independently
for each client; the aggregation phase, on the other hand,
doesn’t have this independence property, but can be safely
ignored for malicious protection. It will be convenient to
think of it this way - the servers start |C| separate and
independent instances implementing the ℓ2 defence where
each instance is dedicated to a specific client. As long as
we can guarantee that for each instance, the corresponding
client can know apriori all the messages that the servers
send to each other without affecting soundness of the ℓ2
defence, then we can achieve malicious privacy by transcript

9

emulation. For each instance, we let the corresponding client
emulate the entire transcript of server interaction, and send it
to both the servers. The honest server can now cross-check
the transcript it observes while interacting with the other
server against the transcript from the client, and easily detect
malicious tampering. If tampering is detected, we stop any
further processing (censor the client) on the inputs of the
concerned client to maintain their privacy and carry on with
the rest of the protocol. If the fraction of censored clients
go beyond a configured threshold τ (e.g., all but one clients
get censored), the honest server aborts the protocol.

Coming back to the assumption we made above that
knowing protocol messages doesn’t affect soundness of the
defence, we now argue why this holds. Consider the ℓ2
defence outside the secure computation context. It takes
bits as inputs, converts them to elements of a larger ring,
computes sum of their squares and checks if they obey an
upper bound. Nowhere in this process do we rely on any
secret value (like a random challenge) which needs to be
hidden from the client. The computation being done by the
servers is deterministic from the client’s perspective. As we
shift to secure computation, the only change that happens
is that all these operations are replaced by their secure
counterparts which consume cryptographic correlations like
∆-COTs and square correlations. If these correlations are
valid, we have soundness. In our protocol, since we get these
correlations from the clients, their validity is questionable,
and therefore, servers need to perform validity checks on
them. Unlike the ℓ2 defence, these validity checks base their
soundness on a random challenge (χi in OT verification, and
t in square correlation verification) being hidden from the
client until it submits the correlations. Therefore, we split
the client protocol into two rounds - in the first round, clients
send Boolean shares and cryptographic correlations to the
servers, and on receiving the random challenge back from
the servers, in the second round, clients send the transcript
of server-server interaction for all steps except the final
aggregation phase.

Reducing transcript communication. We can reduce client
communication by having them send a short digest of
the protocol transcript; this can be implemented using a
collision-resistant hash function. However, naı̈vely using this
optimization doesn’t provide malicious privacy because the
honest server cannot cross-check the observed transcript
against the digest until the protocol has reached the end of
ℓ2 enforcement phase, and the results of intermediate checks
(OT, square correlation verification, and ℓ2 enforcement) can
reveal sensitive information. We fix this issue by deferring
the opening of result of these intermediate checks until the
ℓ2 enforcement phase is complete. We change the transcript
digest to only include the messages in the privacy-sensitive
phases which don’t convey results of intermediate checks.
For example, in square correlation verification, all messages
until the zero-check (conveys result) are part of the digest
and the messages in zero-check are ignored for the digest11.

11. Isolated errors in the result-conveying messages of intermediate
checks are only limited to additive attacks [37] which don’t violate privacy.

After receiving the digests from the clients, the servers first
cross-check the digest, and only if it passes, they execute
the opening step of intermediate checks.

We now dive deeper into how transcript emulation hap-
pens, and later discuss how we can squish the rounds of
clients from two to one, thereby achieving one-shot clients.

3.3.1. Transcript Emulation
For a client to emulate the interaction between the

servers, all we need is for the server protocol to be de-
terministic in the client’s view. Recall from Section 3.2 that
our protocol has two variants - one where clients supply
cryptographic correlations to the servers, and other where
the servers generate them on the fly. We now discuss how
clients emulate server interaction for both these cases.

Client-generated correlations. When clients supply OT and
square correlations to the servers, all privacy-sensitive steps
in the server protocol except the OT and square correlation
verification can be determined locally by the client because
there is no external randomness involved (the Boolean input
shares also come from the client). OT and square correlation
verification rely on a random challenge that is generated by
the servers and can only be known by the client once it
submits the correlations. By making the client protocol two-
round, we ensure that after the first round, the client learns
this random challenge from the servers, and therefore, it can
generate the entire transcript of the server side computation
by the second round.

Server-generated correlations. When a subset of clients
are bandwidth-constrained, a part or all of the correlations
for processing their inputs are interactively generated by
the servers. Given that this interactive sub-protocol (such
as the IKNP OT extension [65]) uses randomness unknown
to the clients, they cannot directly generate the transcript.
To address this, we maintain a unique common random
tape for each client-server pair which is used in the interac-
tive correlation-generating sub-protocol between the servers.
Each server has its own common random tape with each
client, and given this tape, all messages sent by the server are
deterministic in the client’s view. In practice, large random
tapes can be efficiently shared using PRGs.

One-Shot Clients. As a final optimization, we make our
client protocol single-round (one-shot clients). Due to space
constraints, we defer the discussion to Appendix C.

4. Evaluation
In our evaluation, we focus on the secure aggregation

task12, and answer the following questions:
• How does ELSA compare to state-of-the-art FL solu-

tions which consider malicious actors? (Section 4.1)
• What is the breakdown of performance of individual

components in our protocol? (Section 4.2)
• How is our performance affected when a subset of

clients are bandwidth-constrained? (Section 4.3)

12. We ignore local training since that is tangential to this work.

10

Implementation. We implemented ELSA in Rust and make
our code public13. To handle a large amount of simultaneous
client sessions, we use Tokio [6] as our communication
backend. For finite field multiplication, we employ optimiza-
tions from Keller et al. [69] and EMP Toolkit [7]. We use
miTCCR [56] as our hash function and hardware-accelerated
AES for PRG. When OTs are to be generated between
the servers (in Prio+ and for bandwidth-constrained clients
in ELSA), we use IKNP [65] OT extension. Our implemen-
tation does not include the one-shot clients optimization.

Experimental Setup. To emulate a realistic scenario of each
client opening a separate connection with the servers, we
implement a meta-client; it opens independent connections
per client and ensures the allocated bandwidth for each
connection stays reasonable. We deploy our meta-client on
an r5n.16xlarge AWS instance (Ohio) with 64 vCPUs, and
servers on two r5.8xlarge instances (Ohio and N. Virginia)
with 32 vCPUs and 10Gbps bandwidth. This is quite similar
to RoFL’s setup in terms of compute power and bandwidth.
We use a t2.medium instance when evaluating the compu-
tational overhead of a single client. Throughout our experi-
ments, server time is measured after all communication from
the clients for that round is finished. Unless otherwise stated,
we consider individual values in the gradients as 32 bits, and
perform aggregation and ℓ2 computation over 64 bits, i.e.,
w = 32, ℓ = u = 64 and v = 128.

4.1. FL with Malicious Actors
We begin our evaluation by focusing on prior systems

for FL which consider malicious parties. The rest of the
section is split into two parts depending on the trust model
of the baseline system.

Comparison with distributed trust baseline. Prio [39]
is a system for privacy-preserving collection of aggregate
statistics, and secure aggregation for FL is a subset of its
supported functionality. We use the rust crate for Prio [10]
and merge it into our framework for a similar multithreading
to ELSA. Since its implementation doesn’t directly support
the ℓ2 defense, we rather perform this comparison over only
the relaxed ℓ∞ defense (using their count functionality).
Table 2 shows the results of our comparison. The server
runtime in ELSA is about 8.5-16x faster than Prio, and
the client is 2-3.6x faster, while the total runtime enjoys
up to 8x improvement. The runtime of clients increase
when more clients are selected per round because of the
overhead associated with handling more concurrent active
connections at the receiving end (servers) and rationing of
slightly lower bandwidth per client by our meta-client. In
terms of communication, each client in ELSA communicates
a little less than Prio, but the server communication in Prio is
negligible (artifact of their proofs) compared to our protocol.
The total communication of ELSA and Prio (all clients and
servers included), on the other hand, is still comparable
with ELSA communicating about 1.5x of Prio.

13. URL redacted for anonymity.

Comparison with single-aggregator baseline. Next, we
compare with RoFL [32], the state-of-the-art single-
aggregator FL protocol which is more practical than EIF-
FeL [38]14. RoFL supports ℓ2 defense, and while the au-
thors don’t consider malicious privacy as a property of
their system, we believe their techniques should provide
this property, and give them the advantage here. Given
the similarity of our experimental setup with that consid-
ered in their paper, we use results from their evaluation
section15. We use 8-bit probabilistic quantization [73] for
gradient values to match their setup. Table 3 shows the
comparison for three parameter sizes, each corresponding
to a network evaluated by RoFL. CIFAR-10 S and CIFAR-
10 L correspond to LeNet5 [77] and ResNet-18 [60] trained
on CIFAR-10 [74], respectively, and SHAKESPEARE is an
LSTM [62] trained on the Shakespeare dataset [34]. We
achieve 146-305x end-to-end runtime improvement while
incurring about the same total communication as RoFL. In
RoFL, all communication is from clients to servers, and
clients in ELSA communicate 1.6-1.8x lower than RoFL.

#Clients #Params Prio ELSA

Client Server Client Server

50 100k 14.3 (59.1) 23.3 (0.002) 4.6 (51.6) 2.7 (640)

100 100k 14.8 (59.1) 48.9 (0.005) 7.1 (51.6) 3.8 (1280)

200 100k 16.5 (59.1) 99.5 (0.010) 8.4 (51.6) 6.1 (2560)

50 500k 63.6*(262.2) 102.9 (0.002) 17.5 (258.0) 11.2 (3200)

100 500k 67.7*(262.2) 218.4 (0.005) 23.2 (258.0) 17.3 (6400)

200 500k 78.3*(262.2) 457.9 (0.010) 38.0 (258.0) 31.4 (12800)
* Client ran out of memory. We report underestimates here.

TABLE 2: Comparison of runtime (sec) and data sent (MB
in parenthesis; per client and per server) in ELSA vs Prio
for ℓRlx∞ defence (with malicious privacy).

#Params RoFL ELSA

Runtime Comm. Runtime Comm.

62k (CIFAR-10 S) 278 0.8 1.9 0.9 (0.5, 0.4)
273k (CIFAR-10 L) 2229 3.8 7.3 4.0 (2.1, 1.9)

818k (SHAKESPEARE) 4742 11.4* 18.1 12.0 (6.3, 5.7)

* Corrected from what RoFL reported.

TABLE 3: Comparison of ELSA with RoFL for ℓ2 defence
with malicious privacy (only secure aggregation). Values
denote end-to-end runtime (sec) and total data sent (GB).
Parenthesis show split of communication between all clients
and servers, respectively. |C| = 48, w = 8 and ℓ = 64.

4.2. Performance Breakdown of ELSA

In this section, we look into how different parts of our
protocol impact performance. First, we consider protocol-
level costs starting from our base protocol which provides
privacy only against semi-honest server and enforces ℓRlx∞
bound and going up to our malicious private protocol with
ℓ2 bounds; we refer to this as the layerwise cost. Second,

14. EIFFeL clients require about an order of magnitude more bandwidth.
15. We couldn’t successfully run their code for our experiments.

11

we look deeper into how different phases of our protocol
affect the end-to-end runtime.

Layerwise cost. We call our first layer “ELSA SH ℓRlx∞ ” and
it is quite similar to Prio+ with a difference that OTs are all
supplied by the clients and validated by the servers before
using them for bit composition. Then the second (resp. third)
layer, called “ELSA SH ℓ2” (resp. “ELSA MP ℓ2”), add
ℓ2 defence with semi-honest (resp. malicious) privacy. We
present the runtime and communication costs of these layers
in Fig. 2. When the number of clients is large (e.g., 200) and
gradients are moderately sized (e.g., 200k), our end-to-end
runtime with malicious privacy and ℓ2 defense is comparable
to Prio+ even when our defense subsumes theirs and defends
against the more powerful malicious server; this is because
moderate sized gradients have cheaper transcript emulation
than large ones, and we observe that for the same amount of
data communicated from the clients, more clients with each
sending lesser data is faster than the flip case (this doesn’t
benefit Prio+ where client communication is already quite
small). For malicious privacy, the added overhead is very
small ranging from 7-25% of the semi-honest runtime given
that it can withstand the much stronger malicious corruption.
In terms of communication, our first layer protocol has the
same total communication as Prio+ (with IKNP), and the
SH ℓ2 layer incurs an added cost of about 14%. With mali-
cious privacy, owing to our optimization of using transcript
digests, the additional overhead on total communication is
negligible. Note that although Prio+ can be instantiated with
the PCG-based OT extension [28, 29, 108] backends to bring
down total communication (at the cost of more compute) to
about a third of the IKNP backend, as mentioned in Sec-
tion 3.2.1, ELSA can also be used in the PCG mode to
enjoy similar benefits in total communication. Moreover,
in the PCG mode, the client communication of ELSA is
comparable to Prio+. We leave the experimental evaluation
of this mode for future work.

Finer breakdown. We provide a detailed breakdown of the
runtime costs of different parts of our protocol in Fig. 3.
Client prepare and transcript emulation refer to the local
computation at clients where the former captures everything
except generation of the transcript digest of server inter-
action (captured by the latter). This is followed by client
communication. Correlation verification refers to verifica-
tion of square correlations at the servers. Other phases are
self-explanatory. As expected, the runtimes of the prominent
phases are largely governed by the amount of communica-
tion they require. The client communication phase is most
expensive during which both clients and the servers have to
be online, and it is closely followed by bit composition that
happens between the servers. Rest of the phases take only
a fraction of the total time.

4.3. Clients with Limited Bandwidth

Our work supports bandwidth-constrained clients by
shifting the generation of correlated randomness to the
servers. We now show how this strategy affects our per-

0 10 20 30 40 50 60

200k, 50
200k, 50
800k, 50
800k, 50

200k, 200
200k, 200

Prio+ SH Rel. L∞ w/ SH L2 w/ MP L2

(a) End-to-end runtime (sec)

0 10 20 30 40

200k, 50

200k, 50

800k, 50

800k, 50

200k, 200

200k, 200

Prio+ SH Rel. L∞ w/ SH L2 w/ MP L2

(b) Total comm. (GB)

Figure 2: Comparison of different layers of ELSA with
Prio+. SH and MP denotes privacy against semi-honest and
malicious servers, respectively. Rel. ℓ∞ refers to ℓRlx∞ bound.
Vertical axis denotes parameter size, number of clients.

0 5 10 15 20 25

100k, 50

300k, 50

100k, 150

Client prepare Transcript emulation Client comm.
Correlation verif. Bit comp L2 comp

Figure 3: Runtime (sec) breakdown of ELSA with malicious
privacy. The phases not shown in the figure have negligible
costs. Vertical axis denotes parameter size, no. of clients.

formance as a function of the fraction of such clients and
the degree of their constraint.

Moderate bandwidth constraint. Clients fall in this case
when they have enough bandwidth to assist servers by
sending square correlations, and save on communication
compared to regular clients by not sending OT correlations.
For the rings we consider in our evaluation, this corresponds
to 16x reduction in bandwidth requirement for constrained
clients. Given such significant savings, most (if not all)
constrained clients should be able to fit the requirements of
this case. Fig. 4 shows that end-to-end runtime and server
communication grow very slowly with increasing fraction
of moderately bandwidth-constrained clients. When 10%
are constrained, time and server communication increase

0

5

10

15

20

25

0
5

10
15
20
25
30
35
40

0 0.1 0.2 0.3 0.4 0.5

Se
rv

er
 C

om
m

. (
G

B
)

R
un

tim
e

(s
)

Fraction of constrained clients

Runtime Extreme Runtime Moderate
Comm. Moderate Comm. Extreme

Figure 4: Effect of increasing fraction of bandwidth-
constrained clients on performance of semi-honest private
variant of ELSA. Extreme refers to the case of severely
limited bandwidth where clients send no correlations, and
in the moderate case, they only send square correlations.

12

by just 5% and 15%, respectively. Even in the hypothetical
situation where half of the clients are constrained, server
communication increases by < 2x and total runtime by
< 1.3x. This shows that our protocol preserves its efficiency
guarantees under such circumstances.

Extreme bandwidth constraint. When clients are ex-
tremely bandwidth constrained, our protocol doesn’t require
them to send any correlations to the servers, resulting in a
137x reduction in bandwidth compared to regular clients for
the rings we consider. From Fig. 4, we observe that the effect
of increasing fraction of constrained clients on runtime and
server communication is much more pronounced in this
case. If 10% clients fall in this category, both end-to-end
runtime and server communication increase by about 2x,
and this rises to 3x for runtime and 6x for communication
when half of the clients are constrained (highly unlikely).

Remark. Note that neither of our baselines (RoFL and Prio)
work for bandwidth-constrained clients. Moreover, ELSA
can use PCGs [28, 29] as another way to support bandwidth-
constrained clients (see Section 3.2.1). We leave it to future
work to implement this mode in our code.

5. Related Work

FL with single aggregator. This model has been adopted in
a large class of privacy-preserving systems which are based
on secret sharing [17, 24, 53, 67, 98, 106], homomorphic
and functional encryption [107, 110], differential privacy
(DP) [19, 55, 63], or a combination of these techniques [33,
59, 79, 103]. However, none of these works defend against
malformed gradients. Zero-knowledge proofs [18, 21, 54]
have been suggested [24, 96] to enforce norm defenses, but
at unreasonably high overheads. Recent work RoFL [32]
uses Bulletproofs [31] to enforce ℓ2 and ℓ∞ defense, and
EIFFeL’s [38] defenses use SNIPs (proofs in Prio [39])
where all the clients and the central aggregator do the
verification collectively. Both of them, however, are quite
inefficient. Moreover, other works that provide both privacy
and defenses either assume unrealistic threat models [84],
or are largely theoretical (and leak pairwise gradient dis-
tances) [97]. Tangential to the privacy-preserving FL solu-
tions, Federated Averaging [80] was the first FL protocol
which was improved in subsequent work [20, 35, 81, 100,
109] by adding defenses against malformed gradients.

FL with distributed trust. In this model, existing ap-
proaches include specialized systems for FL [58, 61] as well
as systems for privacy-preserving collection of aggregate
statistics like Prio [39] and Prio+ [11]. Prio uses specialized
zero-knowledge proofs (SNIPs) to enforce arbitrary defenses
against malformed gradients, and guarantees privacy against
at most one malicious server (in the two server case). Rest
of the works [11, 58, 61] only provide privacy against a
semi-honest server, and therefore, leave much to be desired.
Recently, Boneh et al. [25] proposed improvements to the
proof size of Prio’s SNIPs when the verification circuit

has repeating substructures16. We estimate that the clients
in ELSA are close to an order of magnitude more computa-
tionally efficient than their constructions. Moreover, ELSA
can achieve significantly reduced client bandwidth (e.g.,
64x) compared to [25] by using the PCG mode or our ideas
for resource-constrained clients; their clients need to secret
share individual bits of gradients as arithmetic shares to
efficiently realize the ℓ2 (with ℓRlx∞) defense. Presently, their
implementation is limited to languages much simpler than
needed for FL, and the soundness of their most efficient
proof (FLIOP with Fiat-Shamir) isn’t well understood [30].

Other works. To provide some notion of gradient privacy,
prior work has employed techniques like encoding gradients
to higher dimensions [64] and Gaussian random projec-
tions [66]. [36] uses a pair of mixes with central aggregator,
and defends against poisoning by clients. Rappor [48] and
Privex [47] use DP, where the latter combines it with MPC
in Tor to collect stats over anonymous communication.

6. Limitations and Future Work
Our techniques for defending against malformed gradi-

ents while achieving malicious privacy are only applicable
when the defense operates independently on the gradients of
each client. This excludes defenses like trimmed mean and
median [109], Krum [20], and Bulyan [81]. Running such
complex defenses inside secure computation (2PC) would
be completely impractical, and as shown by Shejwalkar et
al. [95], ℓ2 defense performs as good against untargeted
poisoning for production FL.

In this work, our main focus has been to protect privacy
of individual gradients during aggregation. To limit what the
global aggregate might leak, the honest server(s) can add
differentially private noise to the global aggregate before
opening it; in the vein of global DP. On the other hand,
supporting local DP isn’t as straightforward when clients
are malicious and defenses are enforced.

ELSA cannot distinguish between a certain malicious
server and a malicious client and thus we can’t guarantee
“fairness”, i.e., every honest client’s inputs will be used in
the computation can’t be guaranteed. If a malicious server
frequently censors some clients, the honest server can detect
that and take action.

We only guarantee malicious privacy in this work, and
leave the exploration of malicious security (privacy with
correctness) for future work. Efficiently achieving malicious
security seems quite challenging given that standard tech-
niques aren’t compelling for the large number of parties in
our system.

Lastly, as mentioned in Section 3.2.1, in future, we
would like to explore the PCG mode in more detail and
develop PCG-based OT extension protocols in the trusted
dealer model that are specialized for our setting. As of now,
some existing efficient constructions like Ferret [108] don’t
directly extend to this model.

16. This additionally requires a 2PC comparison since doing the entire
ℓ2 check inside the proof violates the repeating substructures property.

13

References
[1] https://www.tensorflow.org/federated/tutorials/tuning

recommended aggregators.

[2] https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-
preserving-telemetry-with-prio/.

[3] https://blog.cloudflare.com/oblivious-dns/.

[4] https://sepior.com/products/advanced-mpc-wallet.

[5] https://www.fireblocks.com/platforms/mpc-wallet/.

[6] [Online]. Available: https://github.com/tokio-rs/tokio

[7] “Emp toolkit,” https://github.com/emp-toolkit.

[8] “Exposure notification privacy-preserving analytics (enpa) white
paper,” https://covid19-static.cdn-apple.com/applications/covid19/
current/static/contact-tracing/pdf/ENPA White Paper.pdf.

[9] “Federated learning: Collaborative machine learning without cen-
tralized training data,” https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html.

[10] “libprio-rs,” https://github.com/abetterinternet/libprio-rs.

[11] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A. Polychroni-
adou, “Prio+: Privacy Preserving Aggregate Statistics via Boolean
Shares,” in IACR ePrint Archive 2021/576, 2021.

[12] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
throughput semi-honest secure three-party computation with an hon-
est majority,” in CCS, 2016.

[13] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in
CCS, 2013.

[14] ——, “More efficient oblivious transfer and extensions for faster
secure computation,” in 2013 ACM SIGSAC CCS’13, 2013.

[15] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Cir-
cumventing defenses for distributed learning,” in NeurIPS, 2019.

[16] D. Beaver, “Efficient multiparty protocols using circuit randomiza-
tion,” in CRYPTO, 1991.

[17] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly)logarithmic overhead,”
in CCS, 2020.

[18] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“Snarks for C: verifying program executions succinctly and in zero
knowledge,” in CRYPTO (2), 2013.

[19] A. Bhowmick, J. C. Duchi, J. Freudiger, G. Kapoor, and R. Rogers,
“Protection against reconstruction and its applications in private
federated learning,” CoRR, 2018.

[20] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer,
“Machine learning with adversaries: Byzantine tolerant gradient
descent,” in NeurIPS, 2017.

[21] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-
knowledge and its applications,” in Providing Sound Foundations
for Cryptography, 2019.

[22] F. Boenisch, A. Dziedzic, R. Schuster, A. S. Shamsabadi, I. Shu-
mailov, and N. Papernot, “When the curious abandon honesty:
Federated learning is not private,” CoRR, 2021.

[23] K. A. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan,
T. V. Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards
federated learning at scale: System design,” in MLSys, 2019.

[24] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for privacy-preserving machine learning,” in CCS, 2017.

[25] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai,
“Zero-knowledge proofs on secret-shared data via fully linear pcps,”
in CRYPTO (3), 2019.

[26] ——, “Lightweight techniques for private heavy hitters,” in 42nd
IEEE S&P, 2021.

[27] E. Boyle, N. Chandran, N. Gilboa, D. Gupta, Y. Ishai, N. Kumar, and
M. Rathee, “Function secret sharing for mixed-mode and fixed-point
secure computation,” in EUROCRYPT 2021, 2021.

[28] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal,
and P. Scholl, “Efficient two-round OT extension and silent non-
interactive secure computation,” in CCS, 2019.

[29] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl,
“Efficient pseudorandom correlation generators: Silent OT extension
and more,” in CRYPTO (3), 2019.

[30] E. Boyle, N. Gilboa, Y. Ishai, and A. Nof, “Practical fully secure
three-party computation via sublinear distributed zero-knowledge
proofs,” in CCS, 2019.

[31] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell, “Bulletproofs: Short proofs for confidential transactions
and more,” in IEEE S&P, 2018.

[32] L. Burkhalter, H. Lycklama, A. Viand, N. Küchler, and A. Hithnawi,
“Rofl: Attestable robustness for secure federated learning,” CoRR,
2021.

[33] D. Byrd and A. Polychroniadou, “Differentially private secure multi-
party computation for federated learning in financial applications,”
in ICAIF, 2020.

[34] S. Caldas, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and
A. Talwalkar, “LEAF: A benchmark for federated settings,” CoRR,
2018.

[35] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust: Byzantine-robust
federated learning via trust bootstrapping,” in NDSS, 2021.

[36] R. Chen, I. E. Akkus, and P. Francis, “Splitx: high-performance
private analytics,” in SIGCOMM, 2013.

[37] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lin-
dell, and A. Nof, “Fast large-scale honest-majority MPC for mali-
cious adversaries,” in CRYPTO, 2018.

[38] A. R. Chowdhury, C. Guo, S. Jha, and L. van der Maaten, “Eiffel:
Ensuring integrity for federated learning,” CoRR, 2021.

[39] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, robust, and scalable
computation of aggregate statistics,” in NSDI, 2017.

[40] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An anony-
mous messaging system handling millions of users,” in 2015 IEEE
S&P, 2015.

[41] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing,
“SPDZ2k: Efficient MPC mod 2k for dishonest majority,” in
CRYPTO, 2018.

[42] I. Damgård, D. Escudero, T. K. Frederiksen, M. Keller, P. Scholl,
and N. Volgushev, “New primitives for actively-secure MPC over
rings with applications to private machine learning,” in IEEE S&P,
2019.

[43] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in CRYPTO,
2012.

[44] E. Dauterman, E. Feng, E. Luo, R. A. Popa, and I. Stoica, “DORY:
an encrypted search system with distributed trust,” in USENIX ODSI,
2020.

[45] E. Dauterman, M. Rathee, R. A. Popa, and I. Stoica, “Waldo: A
private time-series database from function secret sharing,” in IEEE
S&P, 2022.

[46] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in NDSS,
2015.

[47] T. Elahi, G. Danezis, and I. Goldberg, “Privex: Private collection of
traffic statistics for anonymous communication networks,” in CCS,
2014.

14

https://www.tensorflow.org/federated/tutorials/tuning_recommended_aggregators
https://www.tensorflow.org/federated/tutorials/tuning_recommended_aggregators
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.cloudflare.com/oblivious-dns/
https://sepior.com/products/advanced-mpc-wallet
https://www.fireblocks.com/platforms/mpc-wallet/
https://github.com/tokio-rs/tokio
https://github.com/emp-toolkit
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://github.com/abetterinternet/libprio-rs

[48] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: randomized
aggregatable privacy-preserving ordinal response,” in CCS, 2014.

[49] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Im-
proved primitives for MPC over mixed arithmetic-binary circuits,”
in CRYPTO (2), 2020.

[50] S. Eskandarian, H. Corrigan-Gibbs, M. Zaharia, and D. Boneh,
“Express: Lowering the cost of metadata-hiding communication with
cryptographic privacy,” in USENIX Security, 2021.

[51] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poisoning
attacks to byzantine-robust federated learning,” in USENIX Security,
2020.

[52] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in CRYPTO ’86, 1986.

[53] A. Fu, X. Zhang, N. Xiong, Y. Gao, and H. Wang, “VFL: A
verifiable federated learning with privacy-preserving for big data
in industrial iot,” CoRR, 2020.

[54] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct nizks without pcps,” in EUROCRYPT, 2013.

[55] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” CoRR, 2017.

[56] C. Guo, J. Katz, X. Wang, C. Weng, and Y. Yu, “Better concrete
security for half-gates garbling (in the multi-instance setting),” in
CRYPTO (2), 2020.

[57] T. Gupta, N. Crooks, W. Mulhern, S. T. V. Setty, L. Alvisi, and
M. Walfish, “Scalable and private media consumption with popcorn,”
in 13th USENIX NSDI, 2016.

[58] M. Hao, H. Li, G. Xu, H. Chen, and T. Zhang, “Efficient, private
and robust federated learning,” in ACSAC, 2021.

[59] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang, “Towards efficient and
privacy-preserving federated deep learning,” in ICC, 2019.

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016.

[61] L. He, S. P. Karimireddy, and M. Jaggi, “Secure byzantine-robust
machine learning,” CoRR, 2020.

[62] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neu-
ral Comput., no. 8, 1997.

[63] Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, and Y. Gong, “DP-ADMM:
admm-based distributed learning with differential privacy,” IEEE
Trans. Inf. Forensics Secur., 2020.

[64] M. Imani, Y. Kim, M. S. Riazi, J. Messerly, P. Liu, F. Koushanfar,
and T. Rosing, “A framework for collaborative learning in secure
high-dimensional space,” in CLOUD, 2019.

[65] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in CRYPTO, 2003.

[66] L. Jiang, R. Tan, X. Lou, and G. Lin, “On lightweight privacy-
preserving collaborative learning for internet-of-things objects,” in
IoTDI, 2019.

[67] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran,
“Fastsecagg: Scalable secure aggregation for privacy-preserving fed-
erated learning,” CoRR, 2020.

[68] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. A. Bonawitz, Z. Charles, G. Cormode, R. Cummings,
R. G. L. D’Oliveira, H. Eichner, S. E. Rouayheb, D. Evans, J. Gard-
ner, Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser,
Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu,
M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konečný, A. Korolova,
F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri,
R. Nock, A. Özgür, R. Pagh, H. Qi, D. Ramage, R. Raskar,
M. Raykova, D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh,
F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X.
Yu, H. Yu, and S. Zhao, “Advances and open problems in federated
learning,” Found. Trends Mach. Learn., no. 1-2, 2021.

[69] M. Keller, E. Orsini, and P. Scholl, “Actively secure OT extension
with optimal overhead,” in CRYPTO (1), 2015.

[70] ——, “MASCOT: faster malicious arithmetic secure computation
with oblivious transfer,” in CCS, 2016.

[71] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making SPDZ great
again,” in EUROCRYPT (3), 2018.

[72] V. Kolesnikov and R. Kumaresan, “Improved OT extension for
transferring short secrets,” in CRYPTO (2), 2013.

[73] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving com-
munication efficiency,” CoRR, 2016.

[74] A. Krizhevsky and G. H. et al., “Learning multiple layers of features
from tiny images.”

[75] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “Cryptflow: Secure tensorflow inference,” in IEEE S&P,
2020.

[76] R. S. S. Kumar, M. Nyström, J. Lambert, A. Marshall, M. Goertzel,
A. Comissoneru, M. Swann, and S. Xia, “Adversarial machine
learning-industry perspectives,” in SP Workshops, 2020.

[77] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, and L. D. Jackel, “Backpropagation applied to
handwritten zip code recognition,” Neural Comput., no. 4, 1989.

[78] Y. Lindell, “How to simulate it - A tutorial on the simulation proof
technique,” IACR ePrint Archive 2016/046, 2016.

[79] Y. Liu, Z. Ma, X. Liu, S. Ma, S. Nepal, R. H. Deng, and K. Ren,
“Boosting privately: Federated extreme gradient boosting for mobile
crowdsensing,” in ICDCS, 2020.

[80] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in AISTATS, 2017.

[81] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden
vulnerability of distributed learning in byzantium,” in ICML, 2018.

[82] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
SODA, 2001.

[83] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra, “A
new approach to practical active-secure two-party computation,” in
CRYPTO, 2012.

[84] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation
for federated learning,” IEEE Transactions on Signal Processing,
pp. 1142–1154, 2022.

[85] R. Poddar, S. Kalra, A. Yanai, R. Deng, R. A. Popa, and J. M.
Hellerstein, “Senate: A maliciously-secure MPC platform for col-
laborative analytics,” in USENIX Security, 2021.

[86] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma,
N. Chandran, and A. Rastogi, “SIRNN: A Math Library for Secure
RNN Inference,” in IEEE S&P, 2021.

[87] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Ras-
togi, and R. Sharma, “Cryptflow2: Practical 2-party secure infer-
ence,” in CCS, 2020.

[88] D. Rathee, T. Schneider, and K. K. Shukla, “Improved multiplication
triple generation over rings via rlwe-based AHE,” in CANS, 2019.

[89] D. Rotaru and T. Wood, “Marbled circuits: Mixing arithmetic and
boolean circuits with active security,” in INDOCRYPT 2019, 2019.

[90] P. Schoppmann, A. Gascón, L. Reichert, and M. Raykova, “Dis-
tributed vector-ole: improved constructions and implementation,” in
CCS, 2019.

[91] A. Shamir, “How to share a secret,” Communications of the ACM,
no. 11, 1979.

[92] V. Shejwalkar and A. Houmansadr, “Manipulating the byzantine:
Optimizing model poisoning attacks and defenses for federated
learning,” in NDSS, 2021.

15

[93] ——, “Manipulating the byzantine: Optimizing model poisoning
attacks and defenses for federated learning,” in NDSS, 2021.

[94] ——, “Manipulating the byzantine: Optimizing model poisoning
attacks and defenses for federated learning,” in NDSS, 2021.

[95] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back
to the drawing board: A critical evaluation of poisoning attacks on
federated learning,” CoRR, 2021.

[96] E. Shi, T. H. Chan, E. G. Rieffel, R. Chow, and D. Song, “Privacy-
preserving aggregation of time-series data,” in NDSS, 2011.

[97] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE J. Sel. Areas Commun., no. 7, 2021.

[98] ——, “Turbo-aggregate: Breaking the quadratic aggregation barrier
in secure federated learning,” IEEE J. Sel. Areas Inf. Theory, no. 1,
2021.

[99] W. D. Stangl, “Counting squares in n,” Mathematics Magazine,
vol. 69, no. 4, 1996.

[100] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you
really backdoor federated learning?” CoRR, 2019.

[101] A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan, “Distributed
mean estimation with limited communication,” in ICML, 2017.

[102] J. Thaler, “Proofs, arguments, and zero-knowledge,” 2022.

[103] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang,
and Y. Zhou, “A hybrid approach to privacy-preserving federated
learning,” in AISec@CCS, 2019.

[104] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia,
“Splinter: Practical private queries on public data,” in NSDI, 2017.

[105] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal,
J. Sohn, K. Lee, and D. S. Papailiopoulos, “Attack of the tails: Yes,
you really can backdoor federated learning,” in NeurIPS, 2020.

[106] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure
and verifiable federated learning,” IEEE Trans. Inf. Forensics Secur.,
2020.

[107] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig, “Hy-
bridalpha: An efficient approach for privacy-preserving federated
learning,” in AISec@CCS, 2019.

[108] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang, “Ferret: Fast
extension for correlated OT with small communication,” in CCS,
2020.

[109] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Byzantine-
robust distributed learning: Towards optimal statistical rates,” in
ICML, 2018.

[110] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning,”
in USENIX ATC, 2020.

Appendix
1. Semi-Honest Server

We begin by first proving some results about correctness
of our sub-protocols and verification phases.

1.1. Correctness of Sub-Protocols
OT verification. We use clients as untrusted sources of
COT∆, i.e., OTs where the OT sender gets (m,∆) ∈
F2λ×F2λ and OT receiver gets (b,m+b·∆) ∈ {0, 1}×F2λ ,
where + is addition in F2λ which is the same as addition in
Fλ
2 (i.e. bitwise XOR), and · is multiplication in finite field.

Lemma 1. If the OT verification in Algo. 5 succeeds, the
COT∆ correlations sent by the client are correct except with
probability 2−λ.

Proof. The random coefficients {χ0, . . . , χn−1} ∈ Fn
2λ are

sampled uniformly after all the OT correlations have been
received. Therefore, the correlations were constructed by the
client without the knowledge of {χi}i. The check over F2λ

performed by S0 is (ej is error injected in Qj by the client):

t̃ = q̃ + x̃ ·∆ =

n−1∑
j=0

Qj · χj + x̂j · χj ·∆ = t̃+

n−1∑
j=0

ej · χj

For this check to pass,
∑n−1

j=0 ej ·χj has to be 0 in F2λ . In the
case of incorrect OT correlations, ∃ at least one index i such
that ei ̸= 0. Since ei·χi is uniformly random in F2λ (because
for any two field elements u, v, if ei ·u = ei ·v, then u = v),∑n−1

j=0 ej ·χj is also uniformly random, and therefore, is zero
with probability 2−λ when OTs are incorrect.

Square correlation verification.

Lemma 2. If the square correlation verification in Algo. 5
succeeds, the square correlations selected by the servers are
correct modulo 2u except with probability 2−κ.

Proof. Let us consider a pair of (potentially erroneous)
correlations (a, d), (â, d̂), where d← a2+δ and d̂← â2+δ′.
During the check, servers sacrifice the secondary corre-
lation (â, d̂) to validate the primary one (a, d). To val-
idate the correlations, the servers check if the following
is zero: t2d − d̂ − 2tea + e2 where e ← ta − â and t
is a random odd element. Replacing for e, d, d̂, we get
t2d− d̂− 2tea+ e2 = t2δ − δ′.

If the primary correlation is incorrect, i.e., δ ̸= 0 mod
2u, then we sketch an argument similar to SPDZ2k [41]. For
servers to pass the check, we require that t2δ ≡ δ′ mod 2v.
Let g be the largest power of two which divides δ. We know
that 0 < g < u given that δ ̸= 0 mod 2u. Since the lower g
bits of t2δ are zeros, if the check passes, then the upper v−g
bits of δ, δ′ follow t2 ≡ δ′

2g
δ
2g

−1
mod 2v−g, and therefore,

it would mean that the client guessed v−g bits of t2. Since
t is a randomly sampled odd element in Z2v (i.e., it is a
unit [99]), the distribution of its quadratic residues t2 mod
2v−g is uniform and takes 2v−g−3 values [99]. Given that
we set v ← u + κ + 3, passing the check means that the
client would have guessed > κ random bits. The probability
of this happening is at most 2−κ.

Refer to the full version of our paper for more detailed
proofs (including proofs of other sub-protocols).

1.2. Correctness and Privacy

We prove security (correctness and privacy) of our
protocol in the simulation paradigm of MPC [78] in the
(FCoinFlip,FRO)-hybrid model [78]. FCoinFlip is invoked by a
pair of parties and returns the same set of freshly sampled
random coins to both. In practice, this can be realized
by using a simple commit-and-open sub-protocol [69]. We
work in the random oracle model where the hash function
H used in our protocol is modeled as a random oracle.
The functionality FRO facilitates this by returning the output

16

of a randomly chosen function on requested inputs, and in
practice, SHA-2 or AES [69] can be used.

Ideal Functionality F . We define a stateful iterative ideal
functionality for FL. In each round:

• F receives gradient updates from clients selected in the
current round.

• It enforces ℓ2 and power-of-two ℓ∞ bounds (by check-
ing the number of received bits) on each submission.
All the non-complying submissions are rejected.

• Outputs the aggregate of surviving gradients. If fewer
than τ fraction of clients survive, output ⊥.

Theorem A.1. For every non-uniform probabilistic
polynomial-time (PPT) adversary A controlling a set of
malicious clients and having access to the view of at most
one (semi-honest) server, there exists a non-uniform PPT
adversary S in the ideal world which only interacts with
the ideal functionality F such that the distributions{

IdealF,S(z)({Xi}|C|i=1, λ, κ)
}
{Xi}|C|

i=1,z,λ,κ{
RealΠ,A(z)({Xi}|C|i=1, λ, κ)

}
{Xi}|C|

i=1,z,λ,κ

are indistinguishable except with probability O
(
|CM | ·

(2−λ + 2−κ)
)

in the (FCoinFlip,FRO)-hybrid model, where
C is the set of all clients with any inputs {Xi}|C|i=1 such
that ∀(i, j), |Xi| = |Xj |, z ∈ {0, 1}∗ is an auxil-
iary input by the adversary to capture malicious strat-
egy, CM is the set of malicious clients, and λ, κ are
computational and statistical security parameters, resp.
IdealF,S(z)({Xi}, λ, κ),RealΠ,A(z)({Xi}, λ, κ) denote the
output pairs of honest parties and the adversary in ideal
and real world, respectively, on protocol inputs {Xi} and
auxiliary input z.

Proof. Due to space constraints, detailed proof has been
deferred to the full version of this paper.

The real and ideal world distributions that we want to
show indistinguishability for can be boiled down to showing
that the joint distribution of 1) the output of F , and 2) the
view (all internal state, and messages sent and received) of
the semi-honest corrupt server, say PS , in the real world
and its simulated counterpart in the ideal world, are indis-
tinguishable. Figures 5a and 5b show the setup.

Simulator S. S needs to simulate messages to A in the ideal
world that are indistinguishable from the real world, and also
extract the gradients of CM , so that they can be fed to F
to generate the correct output. Since S only interacts with
A and F , it doesn’t see the gradients of honest clients, and
moreover, it needs to extract the malicious clients’ gradients
only from whatever messages it gets from A. To address
the first issue, we let S use zero vectors as honest gradients
and later correct this assumption by adding back the sum of
honest gradients (subtracting the sum of extracted malicious
gradients from the output of F) in the final message to A
sent in the aggregation phase. For the second issue, S can

(a) Real world interaction. (b) Ideal world interaction.

Figure 5: P and CH denote honest server and honest clients,
respectively. PS and CM denote semi-honest server and
malicious client, respectively. Parties fully under adversary’s
control, i.e. CM , are shown with dashed outline. The simula-
tor S internally maintains some state for each party shown
by S(·). Shaded parties run server protocol. Solid arrows
denote protocol interaction, dashed arrows denote transfer of
information from semi-honest server to A and interactions
within the simulator, and dotted arrows denote ideal world
interactions. X,X ′ denote honest and malicious clients’
inputs, respectively.

do the extraction by reconstructing the Boolean shares of
malicious gradients sent by A to S(P) and S(PS)

17.

Hybrid argument. Starting from the real world, we replace
the actual inputs of honest clients with zero vectors and add
a correction in the end to ensure the output is correct. We
argue that the view of A (corresponding to PS) remains
indistinguishable because 1) the distribution of the OT verifi-
cation message received by OTSn remains indistinguishable
from the fact that additional λ+κ OTs were sacrificed in the
verification; formally proved by Keller et al. [69], and 2) the
distribution of the rest of the messages remains unchanged.
We incur a loss of |CM | · (2−λ + 2−κ) in advantage to the
adversary because of the soundness error in our OT and
square correlation verification procedure.

2. Malicious Server
We now shift our focus to proving the guarantees of our

protocol against malicious corruption of at most one server.
We guarantee privacy of individual gradients in such a
situation, but not correctness of the output. We first formally
define a more general notion of malicious privacy than pre-
viously considered [12] followed by the ideal functionality.

Definition 1. Let f : ({0, 1}∗)p → ({0, 1}∗)p be a p-
party functionality, and f̂ be its corruptible counterpart
which sends the evaluation of f on the inputs of parties
to the adversary and, based on that, allows it to specify
the final output. Let Π be an n-party protocol (n ⩾ p)
with p primary parties (with inputs) and n− p helpers that
correctly computes f . Π (t, s)-privately realizes f in the
presence of static malicious adversaries if for every non-
uniform probabilistic polynomial-time (PPT) adversary A
controlling at most t primary parties and s helpers in the
real world, there exists a non-uniform PPT adversary S in

17. One could also prove security by putting PS inside A and having
S extract gradient inputs of malicious clients through FRO calls made by
PS . However, as we consider in our proof, the semi-honest nature of PS

means S can run its tape for A, and therefore, extraction is simpler.

17

(a) Real world interaction. (b) Ideal world interaction.

Figure 6: Most of the details same as the caption of Fig. 5.
PM denotes malicious server component of the adversary A.
Dashed arrows denote transfer of information within A and
S. F̂ denotes corruptible ideal functionality corresponding
to F . c is the censor list, Xc̄ are the inputs of clients outside
the censor list, and Y is the final corrupted output of F̂ .

the ideal world which only interacts with f̂ , such that the
distributions{

Idealf̂ ,S(z)({Xi}pi=1, λ, κ)
}
{Xi}p

i=1,z,λ,κ{
RealΠ,A(z)({Xi}pi=1, λ, κ)

}
{Xi}p

i=1,z,λ,κ

are computationally indistinguishable, where variables are
defined as in Theorem A.1.

Ideal Functionality F ′ and corruptible F̂ . F ′ is similar to
F from the proof of Theorem A.1 with a difference that A
specifies a censor list which includes clients whose inputs
won’t be considered in the computation. F ′ receives the list
and discards the inputs of clients present in it. F̂ is the
corruptible counterpart of F ′ (Definition 1). For a pictorial
representation of F̂ , refer to Fig. 6b

Theorem A.2. Our (|C| + 2)-party protocol (|C| − 1, 1)-
privately computes the |C|-party functionality F ′ in the
(FCoinFlip,FRO)-hybrid model in the presence of static ma-
licious adversaries.

Proof. Formal proof18 deferred to full version of this paper.
We present a sketch below (see figures 6a and 6b for setup).

Simulator S. This construction is quite similar to the one
in the proof of Theorem A.1 with the two noteworthy
differences (other than the differences in the protocol itself
like transcript emulation). First, whenever any check (in-
cluding transcript mismatch) fails while processing inputs
of a certain client, that client is added to the censor list c
(whether the check failed because of the malicious server
or not doesn’t matter here) and this list is communicated
to F . Second, since gradients of malicious clients can’t be
extracted here, S sends zero vectors as input of malicious
clients to F , receives back the aggregate of honest gradients
(outside of c), and uses that to correct (because zero vectors
were used for honest gradients too) the final message it sends
to A (similar to the semi-honest case). Although unlike the
semi-honest case, the output of F̂ is completely governed
by A through the final message it sends to S, and therefore,
extraction of malicious inputs isn’t needed here.

18. We assume that clients send entire transcript to the servers for
simplicity. The optimized case of using transcript digests follows similarly.

Hybrid argument. We construct a simpler adversary A′

in the real world such that RealΠ,A′(z)({Xi}pi=1, λ, κ) is
always identical to RealΠ,A(z)({Xi}pi=1, λ, κ). An important
characteristic of A′ is that it follows the protocol as dictated
by the transcript (sent by clients), and in the end submits a
list of clients to censor and outputs the same final message
in the aggregation phase as A. With this simpler adversary,
we then use a similar sequence of hybrids as used in the
proof of Theorem A.1 until we reach the final hybrid which
represents the ideal world. Our simpler adversary runs A
inside it, and plays the role of the honest server to A, and
on the other side, plays as a “semi-honest” adversary to the
outside world (by using the transcript when A deviates).

3. Supplementary Material for Section 3
Negative values. Till now we have assumed that w bits are
enough to secret share all values with magnitude bounded by
2w−1. However, this doesn’t hold when negative values are
also present. In that case, Boolean shares of an extra sign
bit can be used by the servers to securely multiplex [87]
between either x or 2u − x after bit composition is per-
formed, where x is the value being processed. Using the
protocol from CrypTFlow2 [87], this requires only two calls
to

(
2
1

)
-OTu per component of the gradient vector.

One-shot clients. In settings (like cross-device FL) where
the availability of client devices is quite uncertain, one-
shot clients are desirable. Moreover, our solution has the
additional benefit of obviating the need for a secure coin-
flipping protocol to sample common random values between
S0, S1 (steps 1, 4 in Algo. 5).

Our current protocol divides the client-server interaction
into two rounds because the soundness of the correlation
verification phases rely on the client not knowing the ran-
dom challenge sampled by the servers. Once the client has
already submitted the correlations, the random challenge
no longer needs to be hidden. If the clients can somehow
generate the random challenge locally without breaking the
soundness of our verification phases, then we get one-shot
clients. We begin by observing that this part of our protocol
can be cast as the so-called public-coin protocol [25, 102]
where the clients act as provers, and the servers collectively
act as a distributed verifier. The Fiat-Shamir transform [52]
(analyzed in the random-oracle model) provides a way for
the prover to locally generate verifier’s challenge while still
maintaining soundness. The idea behind the transform is to
generate the challenge by applying a secure hash function to
the protocol inputs and transcript observed so far. Since the
verifier in our protocol is a virtual party distributed across
the two servers, we can’t apply the Fiat-Shamir transform
directly, and appeal to the distributed variant introduced by
Boneh et al. [25]. In the full version of this paper, we
describe in more detail how we use this transform.

18

	Introduction
	Technical Overview

	Preliminaries
	Problem Setup
	Security Guarantees and Threat Model
	Building Blocks

	Elsa: Secure Federated Learning
	Norm Bounding with Semi-Honest Privacy
	Designing an Efficient Protocol
	Cheaper Sources of Correlations
	Optimizing Correlation Usage

	Achieving Malicious Privacy
	Transcript Emulation

	Evaluation
	FL with Malicious Actors
	Performance Breakdown of Elsa
	Clients with Limited Bandwidth

	Related Work
	Limitations and Future Work
	References
	Appendix
	Semi-Honest Server
	Correctness of Sub-Protocols
	Correctness and Privacy

	Malicious Server
	Supplementary Material for [sec:main]Section 3

