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Abstract

While the application of differential privacy (DP) has been well-studied in cross-
device federated learning (FL), there is a lack of work considering DP and its
implications for cross-silo FL, a setting characterized by a limited number of
clients each containing many data subjects. In cross-silo FL, usual notions of
client-level DP are less suitable as real-world privacy regulations typically concern
the in-silo data subjects rather than the silos themselves. In this work, we instead
consider an alternative notion of silo-specific sample-level DP, where silos set their
own privacy targets for their local examples. Under this setting, we reconsider the
roles of personalization in federated learning. In particular, we show that mean-
regularized multi-task learning (MR-MTL), a simple personalization framework,
is a strong baseline for cross-silo FL: under stronger privacy requirements, silos
are incentivized to federate more with each other to mitigate DP noise, resulting
in consistent improvements relative to standard baseline methods. We provide an
empirical study of competing methods as well as a theoretical characterization
of MR-MTL for mean estimation, highlighting the interplay between privacy and
cross-silo data heterogeneity. Our work serves to establish baselines for private
cross-silo FL as well as identify key directions of future work in this area.

1 Introduction

Recent advances in machine learning often rely on large, centralized datasets [84, 23, 65], but curating
such data may not always be viable, particularly when the data contains private information and must
remain siloed across clients (e.g. mobile devices or hospitals). Recently, federated learning (FL) [71,
50] has emerged as a paradigm for learning from such distributed data, but it has been shown that its
data minimization principle alone may not provide adequate privacy protection for participants [101,
102]. To obtain formal privacy guarantees, there has thus been extensive work applying differential
privacy (DP) [27, 28] to various parts of the FL pipeline (e.g. [32, 73, 41, 48, 4, 63, 44, 83, 34]).

Existing approaches for differentially private FL are typically designed for client-level DP in that
they protect the federated clients, such as mobile devices (“user-level”), tasks in multi-task learning
(“task-level”), or data silos like institutions (“silo-level”), and DP is achieved by clipping and noising
the client model updates. While client-level DP is considered a strong privacy notion as all data of a
single client is protected, it may not be suitable for cross-silo FL, where there are fewer clients but
each hold many data subjects that require protection. For example, when hospitals/banks/schools
wish to federate patient/customer/student records, it is the people owning those records rather than
the participating silos that should be protected. In fact, laws and regulations may mandate such
participation in FL be disclosed publicly [96], compromising the privacy of the federating clients.

In this work, we instead consider a more natural model of silo-specific sample-level privacy (Fig. 1,
with variants appearing in [41, 66, 109, 51]): the k-th silo may set its own (&g, 0 ) sample-level DP
target for any learning algorithm with respect to its local dataset. With this formulation in mind, we
then reconsider the impact of privacy, heterogeneity, and personalization in cross-silo FL. In particular,
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we explore existing baselines for FL (mostly developed in cross-device settings) across private
cross-silo benchmarks, and we find that the simple baseline of mean-regularized MTL (MR-MTL)
has many advantages for this setting rela-

tive to other more common (and possibly ;"o pr e

updates

lex) hods. We then furth Hospital i 1 | Hospital j Hospital i Hospital j
more complex) methods. We then further | L | ﬁ 28 ﬁ
analyze the performance of MR-MTL un- @ @ “ ‘
der varying levels of heterogeneity and pri- T T 5] B
vacy, both in theory and practice. In addi- mo;e;\\‘ / o 3}3\‘ /

tion to establishing baselines for cross-silo (€,0)
FL’ we also ldentlfy interesting future dl- Client-level DP: Participating silos are protected Silo-specific sample-level DP: Individual records

. . . . (with notions of local/central /distributed DP) within silos are protected with silo-specific targets
rections in this area (§7 and Appendix G). ]
We summarize our contributions below: ! Figure 1: Client-level DP vs Silo-specific sample-level DP.

v ::‘ = protected

e We consider the notion of silo-specific sample-level differential privacy (DP) as a more realistic
privacy model for cross-silo federated learning (FL). We analyze its implications on existing FL
algorithms and, in particular, how it interfaces with data heterogeneity across silos.

e We empirically show that mean-regularized multi-task learning (MR-MTL), a simple form of
model personalization, is a remarkably strong baseline under silo-specific sample-level DP. Core
to its effectiveness is its ability to (roughly) interpolate on the model personalization spectrum
between local training and FedAvg with minimal privacy overhead.

e We provide a theoretical analysis of MR-MTL under mean estimation and characterize how
MR-MTL navigates the tension between privacy and cross-silo data heterogeneity.

o Finally, we examine the complications of deploying an optimal MR-MTL instance that stem from
the privacy cost of hyperparameter tuning. Our reasoning also applies to other personalization
methods whose advantage over local training and/or FedAvg hinges on selecting the best hyperpa-
rameter(s). This raises important questions around the practicality of leveraging personalization to
balance the emerging tradeoffs under silo-specific sample-level DP.

2 Preliminaries

Federated Learning (FL) [71, 58, 50] is a distributed learning paradigm with an emphasis on data
protection: in every training round, each client (participant) downloads the current global model from
a central server, trains it with the local dataset, and uploads the model changes (instead of the data)
back to the server, which then aggregates the changes into a new global model. A basic instantiation
of FL is FedAvg [71], where clients are stateless and the server performs a simple (weighted) average.
Cross-device FL refers to settings with many clients each with limited data, bandwidth, availability,
etc. (e.g. mobile devices). In contrast, cross-silo FL typically involves less clients (e.g. banks, schools,
hospitals) but each with more resources. Two distinguishing characteristics of cross-silo FL relevant
to our work are that (1) silos may have sufficient data to fit a reasonable local model without FL, and
(2) each data point in a silo tends to map to a data subject (a person) requiring privacy protection.

Differential Privacy (DP). Despite its ability to mitigate systemic privacy risks, FL by itself does
not provide formal privacy guarantees for participants’ data [50, 102, 101], and differential privacy is
often used in conjunction with FL to ensure that an algorithm does not leak the privacy of its inputs.

Definition 2.1 (Differential Privacy [27, 28]). A randomized algorithm M : X™ — ), where A" is
the set of datasets with n samples and ) is the set of outputs, is (¢, §)-DP if for any subset S C )
and any neighboring x, 2’ differing in only one sample (by replacement), we have

Pr[M(x) € S] < exp(e) - Pr[M(z') € S] + 6. (1)

To apply DP to a dataset query, one commonly used method is the Gaussian mechanism [28], which
involves bounding the contribution (/2-norm) of each sample in the dataset followed by adding
Gaussian noise proportional to that bound onto the aggregate. To apply DP in FL, one needs to
define the “dataset” to protect; typically, as in client-level DP, this is the set of FL participants and
thus the model updates from each participant in every round should be bounded and noised. In
learning settings, we need to repeatedly query a dataset and the privacy guarantee composes. We use
DP-SGD [92, 11, 1] for ensuring sample-level DP for model training, and we use Rényi DP [77] and
zCDP [15] for tight privacy composition. In certain FL algorithms, clients also perform additional

'Code is available at https://github.com/kenziyuliu/private-cross-silo-f1l.
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Figure 2: Two notable phenomena under silo-specific sample-level DP: (1) FedAvg can serve to cancel out
per-silo DP noise and thus outperform local training even when the latter works better without privacy (left); (2)
Local finetuning [104, 19] (FedAvg followed by local training) may not improve utility as expected, as the effect
of noise reduction is removed when finetuning begins (mid & right). Results report mean test acc & std on the
Vehicle dataset over 5 seeds. For simplicity, all silos budgets for the same labeled € with § = 10~". Transparent
curves refer to local/FedAvg runs with the same ¢ labeled for finetuning (compare left & mid).

work such as cluster selection [69, 33] that incurs privacy overhead with respect to its local dataset
that must be accounted for independently from DP-SGD. See Appendix A for additional background.

Personalized FL. Model personalization is a key technique for improving utility under data hetero-
geneity across silos.” Past work has examined the roles of local adaptation [99, 104, 19], multi-task
learning [91, 89], clustering [33, 22, 69, 89], public data [108, 69], meta learning [46, 56, 31], or other
forms of model mixtures [61, 57, 69, 38, 24, 3]. Notably, many methods leverage extra computation to
some extent (e.g. extra iterations [61, 57, 19] or cluster selection [33, 69]), which will result in privacy
overhead under silo-specific sample-level DP as discussed in the following section. Of particular
interest is the family of mean-regularized multi-task learning (MR-MTL) methods [30, 94, 38, 37]
(see Algorithm A for a typical instantiation). We find that MR-MTL, while extremely simple, is a
strong baseline for private cross-silo FL.

3 Revisiting the Privacy Model for Cross-Silo Federated Learning

To date, the prevalent privacy model for federated learning has been to protect the participating clients,
i.e. client-level DP. For cross-silo FL, however, several factors render client-level DP less appropriate.
First, cross-silo FL often involves a small number of clients and it can be utility-wise more costly to
attain the same privacy targets. For example, privacy amplification via sampling [1, 78] may not apply
on the client level since all silos typically participate in every round. Second, many existing methods
focus on enforcing client-level DP in a non-local model and thus defines a shared privacy target for all
participants, but in real-world cross-silo settings, participants under different jurisdictions (e.g. states)
may have varying privacy requirements and thus opt for different privacy-utility tradeoffs. Third,
while silo-level protection implies sample-level protection, it may be too stringent in practice as silos
often have large local datasets. These unique properties for private cross-silo learning motivate us to
consider silo-specific sample-level DP as an alternative privacy model (Fig. 1):

Definition 3.1 (Silo-specific sample-level DP). A cross-silo FL algorithm with K clients (silos)
satisfy {(ex, Ox) }e[r)-"silo-specific sample-level DP” if the local (personalized) model M)}, of every
silo k € [K] satisfies (g, 0 )-DP w.r.t. the silo’s local dataset of training examples.

Characteristics of silo-specific sample-level privacy. Importantly, silo-specific sample-level DP
is defined over the disjoint datasets of the individual silos, rather than the combined dataset of all
silos.® To instantiate this setup in FL, each silo can simply run DP-SGD [92, 11, 1] with a noise scale
calibrated to gradually spend its privacy budget over 7" training rounds, and return the noisy model
update at each round. This privacy notion has several important implications on the dynamics of FL:

1. Silos incur privacy costs with queries to their data, but not with participation in FL. This
follows from DP’s robustness to post-processing: the silos’ model updates in each round already
satisfy their own sample-level DP targets, and participation by itself does not involve extra dataset

*Note that “personalization” refers to customizing models for each client in FL rather than a specific person.

3 A record in such a combined dataset is at most (max; €;, max; 0;)-DP [76, 103, 63]. Moreover, if multiple
records (either within a silo or across silos) map to the same person, then it is more intricate to protect the
person rather than their records. Here we focus on the case where each entity has at most one record across the
combined dataset (e.g. students attending exactly one school). See Appendix B for discussions.



queries (e.g. DP-SGD steps). In contrast, local training without communication can be kept
noise-free under client-level DP, but participation in FL requires privatization. Two immediate
consequences of the above are that (1) local training and FedAvg now have identical privacy costs,
and (2) local finetuning for model personalization may no longer work as expected (Fig. 2).

2. Less reliance on a trusted server. As a corollary of the above, all model updates of silo k satisfy
(at least) (eg, 0x )-DP against external adversaries, including all other silos and the orchestrating
server [28, 109]. In contrast, client-level DP under a non-local model necessitates some trust on
the server, even for distributed DP methods (e.g. [29, 21, 48, 4, 20, 18]).

3. Tradeoff emerges between costs from privacy and heterogeneity. As privacy-perserving noises
are added independently on each silo, they are reflected in silos’ model updates and can thus be
mitigated when the model updates are aggregated (e.g. via FedAvg), leading to a smaller utility
drop due to DP for the shared model. On the other hand, federation also means that the shared
model may suffer from client heterogeneity (non-iid data across silos). This intuition is observed in
Fig. 2: while local training may outperform FedAvg without privacy (as a result of heterogeneity),
the opposite can be true when privacy is added (as a result of noise variance reduction).

The first and last in the above are of particular interest because they suggest that model personalization
can play a key and distinct role in our privacy setting. Specifically, local training (no FL participation)
and FedAvg (full FL participation) can be viewed as two ends of a personalization spectrum with
identical privacy costs; if local training minimizes the effect of data heterogeneity but enjoys no DP
noise reduction, and contrarily for FedAvg, it is then natural to ask whether there exist personalization
methods that lie in between and achieve better utility, and, if so, what methods would work best.

Related privacy settings. Past work on differentially private FL has concentrated on client-level
DP and cross-device FL (e.g. [32, 74, 44, 34, 49, 48, 6]), and the application of DP in cross-silo FL,
particularly where each silo defines its own DP targets for records of its own dataset, is relatively
underexplored. Privacy notions closest to ours first appeared in [95, 56, 41, 109, 66, 51, 63]. In
[95], each client adds its own one-shot noise onto its outgoing update, but in learning scenarios this
provides client-level protection. The works of [56, 66, 109, 41, 63] study analogous privacy notions,
though they respectively focus on boosting utility [56], analyzing statistical rates [66], adapting FL to
f-DP [109, 25], applying security primitives [41], and learning a better global model; the aspects
of heterogeneity, DP noise reduction, the personalization spectrum, and their interplay (e.g. Figs. 2
and 5) were unexplored. The work of [51] also considers a similar privacy notion, but the authors
study a disparate trust assumption where DP noise is not added to local training/finetuning such that
the final personalized models lack privacy guarantees. We note that the trust model most suitable for
private cross-silo FL. may be application-specific; in this work, we focus on the setting where the
outputs of the FL procedure (the personalized models) must remain differentially private.

4 Baselines for Private Cross-Silo Federated Learning

With the characteristics from §3 in mind, we now explore various methods on cross-silo benchmarks.
We defer additional details as well as results on more settings and datasets to the appendix.

Datasets. We consider four cross-silo datasets that span regression/classification and convex/non-
convex tasks: Vehicle [26], School [35], Google Glass (GLEAM) [82], and CIFAR-10 [53]. The
first three datasets have real-world cross-silo characteristics: Vehicle contains measurements of road
segments for classifying the type of passing vehicles, School contains student attributes for predicting
exam scores, and GLEAM contains motion tracking data to classify wearers’ activities. CIFAR-10
has heterogeneous client splits following [94, 90]. See Appendix C.1 for more details and datasets.

Benchmark methods. We consider several representative methods in the personalized FL literature
beyond local training and FedAvg [71]: local finetuning [99, 104, 19] (a simple but strong base-
line for model personalization), Ditto [57] (state-of-the-art personalization method), Mocha [91]
(personalization with task relationship learning), IFCA/HypCluster [33, 69] (state-of-the-art hard
clustering method for client models), and the mean-regularized multi-task learning (MR-MTL) meth-
ods [30, 94, 38, 37] (which we analyze in §5). For fair comparison under silo-specific sample-level
DP, we align all benchmark methods on the total privacy budget by first restricting the total number
of iterations over the local datasets and then account for any privacy overheads (in the form of
necessary extra steps [57] or cluster selection for IFCA/HypCluster [33, 69]). Importantly, many
other personalization methods can either be reduced to one of the above under convex settings (e.g.
[46, 61]) or are unsuitable due to large privacy overheads (e.g. large factor of extra steps for [31]).
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Figure 3: Privacy-utility tradeoffs (privacy budgets ¢ vs. test metrics, mean + std w/ 5 seeds) for various
personalization methods on Vehicle, School, GLEAM, and Heterogeneous CIFAR-10 datasets respectively.
For simplicity, every silo targets for the same (e, §) under silo-specific sample-level DP. A* denotes a tuned
regularization strength where applicable. “Local” denotes local training (clients train and keep their own models).
“IFCA (10%)” denotes forming clusters for only first 10% of training rounds due to privacy overhead (Fig. 4).
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Results. Fig. 3 shows the privacy-utility tradeoffs across four datasets. We observe that MR-MTL
consistently outperforms a suite of baseline methods, and that it performs at least as good as local
training and FedAvg (endpoints of the personalization spectrum), except at high-privacy regimes
(possibly different for each dataset). In particular, there exists a range of ¢ values where MR-MTL
can give significantly better utility over local training and FedAvg under the same privacy budgets
(e = 0.5,6, 1.5 for Fig. 3 (a, b, c) respectively); this is our key regime of interest.

Effects of silo-specific sample-level privacy. In Fig. 2 we saw that local finetuning may not improve
utility as expected, motivating us to reconsider the roles of federation and personalization (§5 below).
In Fig. 4, we consider the implication of silo-specific sample-level DP from the effects of privacy
overhead due to additional dataset queries: (1) If IFCA [33, 69] performs cluster selection at every
round (default behavior), then the extra privacy cost can be prohibitive; (2) Despite its similarity to
MR-MTL, Ditto [57]’s privacy overhead makes it less competitive (see also Fig. 5).

S On the Effectiveness of Mean-Regularized MTL for Private Cross-Silo FL

Following the observations in §4, we now examine the desirable properties of a good algorithm under
silo-specific sample-level privacy and understand why MR-MTL may be an attractive candidate.

Federation as noise reduction. A key message from §3 and Fig. 2 is that the utility cost from DP
can be significantly smaller for FedAvg compared to local training even when the latter spends
an identical privacy budget. This implies that FedAvg may have inherent benefits for DP noise
reduction, despite the noise are added in the gradient space rather than the parameter space (as

in client-level DP). Consider a simple setting of DP gradient descent: the update rule w,(:H) =
w — - (z(t) + 3 g,(ctz) for silo k recursively expands to w!' ) = w!” — L ST L) _

k ng t=
n—"k Z:ol Sk 91(:3 over T steps, where g,(fg is the clipped gradient of the i-th local example at step
t (with norm bound c) out of a total of n; examples, and 20~ N (0,01) is the Gaussian noise

added to the gradient sum at step ¢ that targets for an overall privacy budget of (e, dx) over T steps
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indeed implies that each silo’s model update has an independent Gaussian random walk compo-

nent [88, 7, 100] whose variance can be reduced by averaging with other silos’ updates, as in FedAvg.*
A similar reasoning applies to SGD cases since the additive DP noises are i.i.d. across the minibatches.

Model personalization for privacy-heterogeneity cost tradeoff. A major downside of FedAvg is
that it may underperform simple local training due to data heterogeneity (e.g. [104] and Fig. 2),
particularly given that clients in cross-silo FL often have sufficient data to fit reasonable local models.
This suggests an emerging role for model personalization on top of its benefits in terms of utility [99],
robustness [104], or fairness [57] under heterogeneity: our privacy model allows local training and
FedAvg to be viewed as two endpoints of a personalization spectrum that respectively mitigate
the utility costs of heterogeneity and privacy noise with identical privacy budgets (recall §3); this
means that personalization methods could be viewed as interpolating between these endpoints and
that various personalization methods essentially do so in different ways. However, our empirical
observations motivate the following key properties of a good personalization algorithm:

1. Noise reduction: The effect of noise reduction is present throughout training so that the utility
costs from DP can be consistently mitigated. Local finetuning is a counter-example (Fig. 2).

2. Minimal privacy overhead: There are little to no additional local dataset queries to prevent extra
noise for DP-SGD under a fixed privacy budget. In effect, such privacy overhead can shift the
utility tradeoff curve downwards, and Ditto [57] may be viewed as a counter-example (Fig. 4).

3. Smooth interpolation along the personalization spectrum: The interpolation between local
training and FedAvg should be fine-grained (if not continuous) such that an optimal tradeoff
should be attainable. Clustering [33, 69] may be viewed as a counter-example when there are no
clear heterogeneity strucutre across clients.

These properties are rather restrictive and they render many promising algorithms less attractive. For
example, model mixture [61, 13, 24] and local adaptation [104, 19] methods can incur linear overhead
in dataset iterations, and so can multi-task learning [57, 91, 89] methods that benefit from additional
training. Clustering methods [33, 22, 69, 89] can also incur overhead with cluster selection [33, 69],
distillation [22], or training restarts [89], and they discretize the personalization spectrum in a way
that depends on external parameters (e.g., the number of clients, clusters, or top-down partitions).

The case for mean-regularization. These considerations point to mean-regularized multi-task
learning (MR-MTL) as one of the simplest yet particularly suitable forms of personalization. MR-
MTL has manifested in various forms in the literature [30, 105, 94, 38, 19, 44] with the key idea
that a personalized model w;, for each silo k£ should be close to the mean of all personalized
models @ via a regularization penalty */2||wy, — w||3 (see Algorithm A1 for a typical instantiation).
The hyperparameter A serves as a smooth knob between local training and FedAvg, with A = 0
recovering local training and a larger A forces the personalized models wy, to be closer to each other
(“federate more”). However, it is an imperfect knob as A — oo may not recover FedAvg under

a typical optimization setup as the regularization term may dominate the gradient step w,(:H) =
w,(f) -7 (gt + A (w,(f) — ﬁ)(t))) where g; is the noisy clipped gradient, and MR-MTL may thus
underperform FedAvg in high-privacy regimes that necessitate a large A to mitigate DP noise (Fig. 3).

MR-MTL has the attractive properties that: (1) noise reduction is achieved throughout training via a
soft constraint that personalized models are close to an averaged model; (2) for fixed A it has zero
additional privacy cost compared to local training/FedAvg as it does not involve extra dataset queries;
and (3) A provides a smooth interpolation along the personalization spectrum. Moreover, compared
to other regularization-based MTL methods, it adds only one hyperparameter A (cf. [45, 110, 36]);
this has important practical implications as will be discussed in §7. It also has fast convergence [106]
and easily extends to deep learning with good empirical performance in the primal [94, 44] (cf.
[10, 91, 64]). It is also sufficently extensible to handle structured heterogeneity (discussed below).

* The work of [49] examines the benefits of adding negatively correlated (instead of independent) noises z:
across time steps. While this is a potential orthogonal extension to our use of local DP-SGD within each silo, it
may not be directly applicable to our main focus of reducing noise variance across silos, since for each silo k to
satisfy its own (£, 0 ) requirement, it must add noise independent to other silos.
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Figure 6: Test acc + std on Rotated & Masked MNIST. (IFCA 5%) denotes warm-starting the method by
running IFCA [33, 69] for first 5% of rounds followed by running the method within the cluster structures.

We argue through the following empirical analyses that these properties make MR-MTL a strong
baseline under silo-specific sample-level DP.

Navigating the emerging privacy-heterogeneity
cost tradeoff. In Fig. 5 we study the effect of the
regularization strength A on the model utility di-
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MR-MTL under structured heterogeneity. We further study (1) the extensibility of MR-MTL as a
strong baseline method to handle clustering structures of silo data distributions and (2) its flexibility
to handle varying heterogeneity levels, by manually introducing two layers of heterogeneity to the
MNIST dataset [54]. The first layer is 4-way rotations: train/test images are evenly split into 4 groups
of 10 silos, with each group applying {0°,90°, 180°,270°} of rotation to their images. The second
layer is silo-specific masking: each silo generates and applies its unique random mask of 2 x 2 white
patches to its images, with varying masking probability. Together, the 1st layer creates 4 well-defined
silo clusters, and the 2nd layer (gradually) adds intra-cluster heterogeneity. Importantly, our goal is
not to contrive a utility advantage of MR-MTL (in fact, the added heterogeneity is disadvantageous
to mean-regularization), but to examine its extensibility and flexibility as a strong baseline method
to match the best methods by construction. Under the 1st layer of heterogeneity, clustered FL
methods [33, 69] should be optimal if the correct clusters are formed since there is no intra-cluster
heterogeneity; with increasing silo-specific heterogeneity in the 2nd layer, local training should be
increasingly more attractive. See Appendix C.1 for more details on the setup and examples of images.

We propose a simple heuristic to precondition or “warm-start” MR-MTL with a small number of
training rounds by running private clustering (with IFCA [33, 69]) followed by mean-regularized
training within each formed cluster (see Appendix D for details). We find that this simple heuristic,
with convergence properties carried forward from its components [33, 30, 106], enables MR-MTL
to excel at all levels of heterogeneity: in Fig. 6 (a), the preconditioning allows MR-MTL to match
IFCA (optimal by construction) while local training (full personalization) does not benefit from
the same preconditioning; in Fig. 6 (b, ¢, d), MR-MTL remains optimal across different levels of
silo-specific heterogeneity (the 2nd layer) while the gains from warm-start gradually drop. We
argue that extensibility and flexibility are good properties that make MR-MTL a strong baseline, as
heterogeneity in practical settings is likely less adversarial than what we presented.



6 Analysis

In this section we provide a theoretical analysis of MR-MTL under mean estimation as a simplified
proxy for (single-round) FL using a Bayesian framework extending on [57]. We provide expressions
for the Bayes optimal estimator MR-MTL (A*) and describe how MR-MTL behaves with varying A
in relation to the personalization spectrum to characterize our observations from Fig. 5. Proofs and
extensions are deferred to Appendix E.

Setup. We start with a total of K silos where the k-th silo holds n training samples X}, £ {zK,; €
R}ie[n]’ each normally distributed around a hidden center wy, with variance o2 ie. Tk = Wk + 2k
with z; ~ N(0,07). To quantify heterogeneity, the silo centers {wy}e (k] are also normally
distributed around some unknown fixed meta-center # with variance 72; i.e. w, = 6 + z with
z ~ N(0,72). A large T means that the silo centers are distant from each other and thus their local
objectives are heterogeneous, and contrarily for a small 7. Our goal is for each silo £ to compute a
sample-level private estimate of wy, that minimizes the generalization error (i.e. on unseen points
from the same local distribution). Each silo targets (¢, d) sample-level DP and runs the Gaussian

mechanism with noise scale opp = ¢4/21n(1.25/6) /¢ and clipping bound ¢.” Under this setting,
the MR-MTL objective for the k-th silo is

~ A
hi(w) = Fi(w) + 3 [lw — @3- 3)

Here, Fj(w) £ 3(w— 1(& + X0, @4, - min(1, ¢/||2k,:]|2)))? is the local objective to privately
estimate the mean of the local data points with privacy noise & ~ N (0,0%p). Since the data are
(sub-)Gaussian, we assume one can choose ¢ such that no clipping error is introduced w.h.p., so
Wy, £ argmin Fy(w) = £ (§ 4+ >, Tx,;) is the best local estimator. @ = 7= >, Wy, is the average
estimator across silos, which is the same as the FedAvg estimator under mean estimation. We also
consider the external average local estimators for silo k, defined as w\k £ ﬁ > itk w;. The
following lemma gives the best MR-MTL estimator () as a function of A.

Lemma 6.1. Let A > 0 and o = % € (1/K,1]. The minimizer of hy(w) is given by

ﬁ)k()\):a~wk+(lfa)~ﬁ)\k‘ (4)

Note that the best ) is always O for training error (i.e. estimating the empirical mean of the local data
{zk,;}); our hope is that with some A > 0, Wy () yields a better generalization error.

We now present the main takeaways. At a high level, the basis of our analysis relies on expressing the
true center wy, in terms of 1y and 1\, conditioned on the local datasets { X } (k). Let
2 a9 > ohp
Oloc — ; + ? (5)
denote the “local variance” of wy, around wy, due to both data sampling and privacy noise.
Behavior of MR-MTL at optimal \*. We first derive the following lemma using Lemma 11 of [68].
Lemma 6.2. Given wy, W\, and { X }we[i), we can express wy, = puy, + Gk, where (. ~ N(0, a2),

1 K—1 \*! 1 K1
2 A A2 A ~
”w‘(%*muafoc) and “k‘”w(w 'w”muafogw\k)' ©

loc

Lemma 6.2 expresses the unobserved true silo centers wy, in terms of the (private) empirical estimators
W and w\ ;. This expression requires conditioning on the datasets X} as they form the Markov
blankets of wy. Combining Lemma 6.1 and Lemma 6.2 gives the optimal \.

Theorem 6.3 (Optimal MR-MTL estimate). The best \* for the generalization error is given by

* . . P 1 o2
A* = argminE | (wy — wx(N))” | W, W\, {Xk}ke[K]} =—— <02 + DP) . @)

A nrt n
Theorem 6.3 suggests that there indeed exists an optimal point @ (A*) on the personalization spectrum.
Moreover, \* grows smoothly with stronger privacy (03 — oc) to encourage silos to “federate
more” with others. This was empirically observed in Fig. 5. We now characterize the utility of @ (\*).

3 For simplicity, we start with the same n, o, opp for all silos and extend to silo-specific values in Appendix E.



Corollary 6.4 (Optimal error with @w(\*)). The MSE of the optimal estimator ©w(\*) is given by

2 (2 2

+ K7°)

E*éE we — W (N 2 UA},UA} ,X :U2:Uloc(gloc 8

[(wr = Dk (N))* | i, e, { Xk bre(re)] = o e ) ®

Note also that @ (\*) is the MMSE estimator of wy,. Using Corollary 6.4, we can compare wy (A*)

against the endpoints of the personalization spectrum (local training and FedAvg) with the following
propositions.

Proposition 6.5 (Optimal error gap to local training). Let Eioc £ E [(wy, — wx)? | X| = o, be
the error of the local estimate. Then, compared to the optimal estimator w(\*) (Corollary 6.4), the
local estimator incurs an additional error of

A N £ =1 1 Ufloc (9)
loc — ¢loc = K 0120C + 72
Proposition 6.6 (Optimal error gap to FedAvg). Let Eeq = E [(wi, — 0)? | { Xk }rer]] be the
error under FedAvg. Then, compared to the optimal estimator w(\*) (Corollary 6.4), the FedAvg
estimator incurs an additional error of

Ay bgg—er—(1-L)y. ™ (10)
fed — Cfed - K 0120(;"‘7—2.

Together, Propositions 6.5 and 6.6 suggest that the effects of stronger privacy (03p, 02, — 00)
on how MR-MTL compares against the personalization endpoints are mixed, with the benefit of
MR-MTL increasing against local training and diminishing against FedAvg. They also suggest that
MR-MTL has an optimal utility advantage over both the endpoints when o . & 72 and local training
performs on par with FedAvg, and the utility “bump” under privacy observed in Fig. 5 can be viewed
as a result of this balance. It is worth noting that since the data variance o and heterogeneity 72 are
often fixed in practice, the freedom for silos to vary their privacy targets (¢ and o2 ) makes the utility
advantage of MR-MTL more flexible compared to non-private settings.

Behavior of MR-MTL as a function of \. The above captures how MR-MTL behaves at its optimum,
but in Fig. 5 we also observed that MR-MTL has the desirable property that the utility cost from DP
shrinks smoothly with larger A (§5). Lemma 6.7 and Theorem 6.8 below provides a characterization.

Lemma 6.7 (Error of w;(\)). Let E(A) £ E [(wy, — wi(A))? | g, ©i, { Xk }rer]] be the error

. 1\ o2 AN2r2 ol
of MR-MTL as a function of \. Then, E(\) = (1 — ?) w + =g
Using Lemma 6.7 we can now characterize how ) affects the utility cost from DP (recall from Figs. 2
and 5 that federation helps with noise reduction). As a side note, Lemma 6.7 also suggests that
MR-MTL’s utility as a function of A would have a quasi-concave shape, as was empirically observed
in Fig. 5. This could potentially help make heuristic or automated search over \ easier.

Theorem 6.8 (Private utility gap). Let iy () and wP¥ (\) be the non-private and private estimate
of wy, with 02, < o%/n and o2 . < o*/n + o p/n? respectively. Let E(X) and EPT(N) be the
error of Wy (\) and WPT (\) respectively as in Lemma 6.7. Let App(\) = EPP(X) — E(N) be the

2 2
utility cost due to privacy as a function of \. Then, App(\) = (1 — %) ﬁ Zhp 4 b

Theorem 6.8 suggests that with a larger A, the utility cost from privacy can be smoothly mitigated by
up to a factor of K, matching the empirical observation in Fig. 5.

7 Discussions

In previous sections, we empirically and theoretically studied the benefits of the best personalization
hyperparameter A* for MR-MTL, but it remains open as to how such A* may be obtained. In this
section, we take an honest look at the complications of deploying MR-MTL through the lens of
the privacy cost of finding \*. There are in general several approaches: (1) a non-adaptive search
(e.g. grid/random search [12]); (2) an adaptive search (e.g. grad student descent); or (3) an online
estimation during training (e.g. [97, 8, 80]). Here, we focus on approach (1) since it is generic to all
personalization methods and is a setting for which we have the best privacy accounting tools [62, 79]
to our knowledge. We defer technical details and further discussions to Appendix F. Note that while
we focus on MR-MTL, our reasoning in principle extends to all personalization methods whose
advantage depends on having the best hyperparameter(s).
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Figure 7: Privacy costs of tuning A on mean estimation (setup follows §6). Labels “Private” and “Non-
Private” denote the errors of varying A with and without silo-specific sample-level DP (the privacy cost of tuning
A is not included). “Private, TNB/Poisson” [79] denotes the same errors but accounts for the privacy cost of
trying on average E[h] = 10 values of A\, with h sampled from the truncated negative binomial distribution with
parameters 7), 7y / the Poisson distribution with parameter 1 to arrive at the same E[h]. To interpret, observe that
the lowest points of “Private, TNB/Poisson” may be still higher than one of the endpoints of “Private”.

Recall that for a typical tuning procedure, a baseline algorithm M is executed h times with different
hyperparameters and the best result is recorded. The work of [62, 79] shows that, with a constant h,
there exists M that satisfies (¢, d = 0)-DP where the output of tuning is not (£, 0)-DP for any & < he,
with analogous negative results for Rényi DP (thus also for § > 0). This implies that naive tuning
(as done in practice) can incur a prohibitive privacy overhead and obliterates the utility advantage of
MR-MTL (A*) over local training/FedAvg. Instead, by making h random, we can make & constant
w.r.t. h or at most £ < O(log E[h]) [62, 79]. However, using the simplified setting of mean estimation
(§6), we find that even with this improved randomized protocol, there exist scenarios (Fig. 7) where
the realistic cost of trying a moderate E[h] = 10 values of A may significantly diminish, or even
outweigh, the utility advantage of A\* over local training and FedAvg—that is, we might be better off
by not privately tuning X at all.

The above has several important implications. On the negative side, it suggests that the true efficacy
of MR-MTL can be smaller in practice. Moreover, it raises the broader open question of whether the
emerging privacy-heterogeneity cost tradeoff is best balanced by model personalization, as many
existing methods including MR-MTL inherently require at least one hyperparameter to specify “how
much to personalize” for general utility improvements over local training and FedAvg. Alternatively,
the hyperparameter(s) may be estimated during training (approach (3) in the first paragraph), though
such procedures may not be general and/or scalable and may need to be tailored to the specific
personalization method. On the positive side, it is unclear whether the choice of A can meaningfully
leak privacy in practice. MR-MTL may also be viewed favorably as a strong baseline since it only
needs one hyperparameter to attain its benefits, while other existing methods that require more tuning
will incur even larger privacy costs from hyperparameter tuning.

8 Concluding Remarks

In this work, we revisit the application of differential privacy in cross-silo FL. We examine silo-
specific sample-level DP as a more appropriate privacy notion for cross-silo FL, and we point
out several meaningful ways in which it differs from client-level DP commonly studied under the
cross-device setting, particularly when analyzing tensions between privacy, utility, and heterogeneity.
We explore and establish baselines under this privacy setting and identify desirable properties for
a personalization method for balancing an emerging tradeoff between utility costs from privacy
and heterogeneity. We then analyze a simple, promising method (MR-MTL) and discuss key open
questions for the area at large. Some future directions include (1) extending the privacy model to cases
where data subjects have multiple records across silos, (2) extending our theoretical characterization
to deep learning cases or performing a large-scale empirical study, and (3) developing auto-tuning
algorithms for personalization hyperparameters with minimal privacy overhead.

Acknowledgements. We thank Sebastian Caldas, Tian Li, Yash Savani, Amrith Setlur, and Peter
Kairouz for helpful discussions and feedback and Thomas Steinke for guidance on implementing
privacy accounting for hyperparameter tuning [79]. This work was supported in part by the NSF
Grants 1IS1838017 and 1IS2145670, a Meta Faculty Award, an Apple Faculty Award, the Intel
Private AI Center, and the CONIX Research Center. ZSW was supported in part by the NSF Award
CNS2120667. Any opinions, findings, and conclusions or recommendations expressed herein are
those of the author(s) and do not necessarily reflect the NSF or any other funding agency.

10



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, pages 308-318, 2016.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI). The alzheimer’s disease neuroimaging
initiative (adni). adni.loni.usc.edu, 05 2022. https://adni.loni.usc.edu/.

Alekh Agarwal, John Langford, and Chen-Yu Wei. Federated residual learning. arXiv preprint
arXiv:2003.12880, 2020.

Naman Agarwal, Peter Kairouz, and Ziyu Liu. The skellam mechanism for differentially private federated
learning. Advances in Neural Information Processing Systems, 34, 2021.

Mohammad Alaggan, Sébastien Gambs, and Anne-Marie Kermarrec. Heterogeneous differential privacy.
Journal of Privacy and Confidentiality, 7(2), 2016.

Nasser Aldaghri, Hessam Mahdavifar, and Ahmad Beirami. Feo2: Federated learning with opt-out
differential privacy. In NeurlPS 2021 Workshop on New Frontiers in Federated Learning: Privacy,
Fairness, Robustness, Personalization and Data Ownership, 2021.

Guozhong An. The effects of adding noise during backpropagation training on a generalization perfor-
mance. Neural computation, 8(3):643-674, 1996.

Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially private
learning with adaptive clipping. Advances in Neural Information Processing Systems, 34, 2021.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature learning.
Machine learning, 73(3):243-272, 2008.

Aviad Barzilai and Koby Crammer. Convex multi-task learning by clustering. In Artificial Intelligence
and Statistics, pages 65-73. PMLR, 2015.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In IEEE Symposium on Foundations of Computer Science, 2014.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of machine
learning research, 13(2), 2012.

Alberto Bietti, Chen-Yu Wei, Miroslav Dudik, John Langford, and Zhiwei Steven Wu. Personalization
improves privacy-accuracy tradeoffs in federated optimization. In International Conference on Machine
Learning. PMLR, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX:
composable transformations of Python+NumPy programs, 2018.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and lower
bounds. In Theory of Cryptography Conference, pages 635—658. Springer, 2016.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Kone¢ny, H Brendan McMahan,
Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. In NeurIPS 2019
Workshop on Federated Learning for Data Privacy and Confidentiality, 2019.

Clément L Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for differential privacy.
Advances in Neural Information Processing Systems, 33:15676—15688, 2020.

Wei-Ning Chen, Ayfer Ozgur, and Peter Kairouz. The poisson binomial mechanism for unbiased federated
learning with secure aggregation. In International Conference on Machine Learning, pages 3490-3506.
PMLR, 2022.

Gary Cheng, Karan Chadha, and John Duchi. Fine-tuning is fine in federated learning. arXiv preprint
arXiv:2108.07313, 2021.

Albert Cheu. Differential privacy in the shuffle model: A survey of separations. arXiv preprint
arXiv:2107.11839,2021.

Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed differ-
ential privacy via shuffling. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 375—403. Springer, 2019.

Yae Jee Cho, Jianyu Wang, Tarun Chiruvolu, and Gauri Joshi. Personalized federated learning for
heterogeneous clients with clustered knowledge transfer. arXiv preprint arXiv:2109.08119, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

11


https://adni.loni.usc.edu/

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]
[43]

[44]

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian differential privacy. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 84(1):3-37, 2022.

Marco F Duarte and Yu Hen Hu. Vehicle classification in distributed sensor networks. Journal of Parallel
and Distributed Computing, 64(7):826-838, 2004.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of cryptography conference, pages 265-284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211-407, 2014.

Ulfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2468-2479.
SIAM, 2019.

Theodoros Evgeniou and Massimiliano Pontil. Regularized multi—task learning. In Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 109-117,
2004.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with theoretical
guarantees: A model-agnostic meta-learning approach. Advances in Neural Information Processing
Systems, 33:3557-3568, 2020.

Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client level
perspective. In NIPS 2017 Workshop: Machine Learning on the Phone and other Consumer Devices,
2017.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for clustered
federated learning. Advances in Neural Information Processing Systems, 33:19586-19597, 2020.

Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh. Shuffled
model of differential privacy in federated learning. In International Conference on Artificial Intelligence
and Statistics, pages 2521-2529. PMLR, 2021.

Harvey Goldstein. Multilevel modelling of survey data. Journal of the Royal Statistical Society. Series D
(The Statistician), 40(2):235-244, 1991.

Pinghua Gong, Jieping Ye, and Changshui Zhang. Robust multi-task feature learning. In Proceedings
of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
895-903, 2012.

Filip Hanzely, Slavomir Hanzely, Samuel Horvéth, and Peter Richtdrik. Lower bounds and optimal
algorithms for personalized federated learning. Advances in Neural Information Processing Systems,
33:2304-2315, 2020.

Filip Hanzely and Peter Richtdrik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez del Rio,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357-362, September 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dolldr, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2022.

Mikko A Heikkild, Antti Koskela, Kana Shimizu, Samuel Kaski, and Antti Honkela. Differentially private
cross-silo federated learning. In Privacy Preserving Machine Learning (PPML) and Privacy in Machine
learning (PriML) Joint Workshop at NeurIPS 2020, 2020.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX, 2020.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. In Workshop on Federated Learning for Data Privacy and
Confidentiality, NeurIPS 2019, 2019.

Shengyuan Hu, Zhiwei Steven Wu, and Virginia Smith. Private multi-task learning: Formulation and
applications to federated learning. arXiv preprint arXiv:2108.12978, 2021.

12



[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Ali Jalali, Sujay Sanghavi, Chao Ruan, and Pradeep Ravikumar. A dirty model for multi-task learning.
Advances in neural information processing systems, 23, 2010.

Yihan Jiang, Jakub Kone¢ny, Keith Rush, and Sreeram Kannan. Improving federated learning personal-
ization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Zach Jorgensen, Ting Yu, and Graham Cormode. Conservative or liberal? personalized differential
privacy. In 2015 IEEE 31St international conference on data engineering, pages 1023-1034. IEEE, 2015.

Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete gaussian mechanism for federated
learning with secure aggregation. In International Conference on Machine Learning, pages 5201-5212.
PMLR, 2021.

Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng Xu.
Practical and private (deep) learning without sampling or shuffling. In International Conference on
Machine Learning, pages 5213-5225. PMLR, 2021.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends®) in Machine Learning, 14(1-2):1-210, 2021.

Pallika Kanani, Virendra J Marathe, Daniel Peterson, Rave Harpaz, and Steve Bright. Private cross-silo
federated learning for extracting vaccine adverse event mentions. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 490-505. Springer, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In In-
ternational Conference on Machine Learning, pages 5132-5143. PMLR, 2020.

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Daniel Levy, Ziteng Sun, Kareem Amin, Satyen Kale, Alex Kulesza, Mehryar Mohri, and
Ananda Theertha Suresh. Learning with user-level privacy. Advances in Neural Information Processing
Systems, 34, 2021.

Jeffrey Li, Mikhail Khodak, Sebastian Caldas, and Ameet Talwalkar. Differentially private meta-learning.
In International Conference on Learning Representations, 2020.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pages 6357-6368. PMLR,
2021.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50-60, 2020.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems,
2:429-450, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. In International Conference on Learning Representations, 2020.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with local
and global representations. In NeurIPS 2019 Workshop on Federated Learning, 2020.

Jingcheng Liu and Kunal Talwar. Private selection from private candidates. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pages 298-309, 2019.

Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng Meng. Projected federated averaging with
heterogeneous differential privacy. In International Conference on Very Large Databases. VLDB
Endowment, 2022.

Sulin Liu, Sinno Jialin Pan, and Qirong Ho. Distributed multi-task relationship learning. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
937-946, 2017.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11976-11986, 2022.

Andrew Lowy and Meisam Razaviyayn. Private federated learning without a trusted server: Optimal
algorithms for convex losses. arXiv preprint arXiv:2106.09779, 2021.

13



[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

(80]

[81]

[82]

(83]

[84]

(85]

[86]

(87]

(88]

[89]

Linpeng Lu and Ning Ding. Multi-party private set intersection in vertical federated learning. In 2020
IEEFE 19th International Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom), pages 707-714. IEEE, 2020.

Hessam Mahdavifar, Ahmad Beirami, Behrouz Touri, and Jeff S Shamma. Global games with noisy
information sharing. IEEE Transactions on Signal and Information Processing over Networks, 4(3):497—
509, 2017.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for personal-
ization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

Ryan McKenna and Daniel R Sheldon. Permute-and-flip: A new mechanism for differentially private
selection. Advances in Neural Information Processing Systems, 33:193-203, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pages 1273-1282. PMLR, 2017.

H Brendan McMahan, Galen Andrew, Ulfar Erlingsson, Steve Chien, Ilya Mironov, Nicolas Papernot,
and Peter Kairouz. A general approach to adding differential privacy to iterative training procedures. In
NeurlPS 2018 Privacy Preserving Machine Learning Workshop, 2018.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. In International Conference on Learning Representations, 2018.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. In International Conference on Learning Representations, 2018.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’07), pages 94—103. IEEE, 2007.

Frank D McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data analysis.
In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pages
19-30, 20009.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium
(CSF), pages 263-275. IEEE, 2017.

Ilya Mironov, Kunal Talwar, and Li Zhang. Rényi differential privacy of the sampled gaussian mechanism.
arXiv preprint arXiv:1908.10530, 2019.

Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with renyi differential privacy. In
International Conference on Learning Representations, 2022.

Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X Yu, Sashank J Reddi, and Sanjiv Kumar.
Adaclip: Adaptive clipping for private sgd. arXiv preprint arXiv:1908.07643, 2019.

Lianggiong Qu, Niranjan Balachandar, and Daniel L Rubin. An experimental study of data heterogeneity
in federated learning methods for medical imaging. arXiv preprint arXiv:2107.08371, 2021.

Shah Atiqur Rahman, Christopher Merck, Yuxiao Huang, and Samantha Kleinberg. Unintrusive eat-
ing recognition using google glass. In 2015 9th International Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth), pages 108—111. IEEE, 2015.

Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews, Galen Andrew, H Brendan McMahan, and
Francoise Beaufays. Training production language models without memorizing user data. arXiv preprint
arXiv:2009.10031, 2020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. Technical report, OpenAl, 2022.

Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Kone¢ny, Sanjiv
Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International Conference on
Learning Representations, 2021.

F Reith, ME Koran, G Davidzon, and G Zaharchuk. Application of deep learning to predict standardized
uptake value ratio and amyloid status on 18f-florbetapir pet using adni data. American Journal of
Neuroradiology, 41(6):980-986, 2020.

Ryan Rogers and Thomas Steinke. A better privacy analysis of the exponential mech-
anism. DifferentialPrivacy.org, 07 2021. https://differentialprivacy.org/
exponential-mechanism-bounded-range/.

Thorsteinn Rognvaldsson. On langevin updating in multilayer perceptrons. Neural computation, 6(5):916—
926, 1994.

Felix Sattler, Klaus-Robert Miiller, and Wojciech Samek. Clustered federated learning: Model-agnostic
distributed multitask optimization under privacy constraints. /EEE transactions on neural networks and
learning systems, 32(8):3710-3722, 2020.

14


https://differentialprivacy.org/exponential-mechanism-bounded-range/
https://differentialprivacy.org/exponential-mechanism-bounded-range/

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In International Conference on Machine Learning, pages 9489-9502. PMLR, 2021.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task learning.
Advances in neural information processing systems, 30, 2017.

Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differentially
private updates. In IEEE Global Conference on Signal and Information Processing, 2013.

Pranav Subramani, Nicholas Vadivelu, and Gautam Kamath. Enabling fast differentially private sgd via
just-in-time compilation and vectorization. Advances in Neural Information Processing Systems, 34,
2021.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes.
Advances in Neural Information Processing Systems, 33:21394-21405, 2020.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou.
A hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th ACM workshop
on artificial intelligence and security, pages 1-11, 2019.

Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan
Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon
Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Bottinger, Zahi A
Fayad, Girish N Nadkarni, Fei Wang, and Benjamin S Glicksberg. Federated learning of electronic health
records improves mortality prediction in patients hospitalized with covid-19. medRxiv, 2020.

Koen Lennart van der Veen, Ruben Seggers, Peter Bloem, and Giorgio Patrini. Three tools for practical
differential privacy. In Privacy Preserving Machine Learning (PPML) Workshop at NeurIPS 2018, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Francoise Beaufays, and Daniel Ramage.
Federated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252, 2019.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings
of the 28th international conference on machine learning (ICML-11), pages 681-688. Citeseer, 2011.

Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein. Fishing for user data in
large-batch federated learning via gradient magnification. arXiv preprint arXiv:2202.00580, 2022.

Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See through
gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16337-16346, 2021.

Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. Differentially private model
publishing for deep learning. In 2019 IEEE Symposium on Security and Privacy (SP), pages 332-349.
IEEE, 2019.

Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local adaptation.
arXiv preprint arXiv:2002.04758, 2020.

Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging sgd. Advances
in neural information processing systems, 28, 2015.

Yu Zhang and Qiang Yang. A survey on multi-task learning. /EEE Transactions on Knowledge and Data
Engineering, 2021.

Han Zhao, Otilia Stretcu, Alexander J Smola, and Geoffrey J Gordon. Efficient multitask feature and
relationship learning. In Uncertainty in Artificial Intelligence, pages 777-787. PMLR, 2020.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated learning
with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Qinging Zheng, Shuxiao Chen, Qi Long, and Weijie Su. Federated f-differential privacy. In International
Conference on Artificial Intelligence and Statistics, pages 2251-2259. PMLR, 2021.

Jiayu Zhou, Jianhui Chen, and Jieping Ye. Clustered multi-task learning via alternating structure
optimization. Advances in neural information processing systems, 24, 2011.

Jiayu Zhou, Jianhui Chen, and Jieping Ye. Malsar: Multi-task learning via structural regularization.
Arizona State University, 21:1-50, 2011.

15



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 7 as well as the
appendix.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Discussions
are provided in the appendix.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 6.
We also included additional details in the appendix.
(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs are
included in the appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Code has been
open sourced; see details in the appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Details are provided in the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Most experiments are repeated at least 5 times and Fig. 6
is repeated at least 3 times where computing resources permit.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Details are provided in the
appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Details are provided in the appendix.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Code has been open sourced; see details in the appendix.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A ]

16



