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Abstract

In the real world, autonomous driving agents
navigate in highly dynamic environments full
of unexpected situations where pre-trained
models are unreliable. In these situations,
what is immediately available to vehicles is
often only human operators. Empowering au-
tonomous driving agents with the ability to
navigate in a continuous and dynamic environ-
ment and to communicate with humans through
sensorimotor-grounded dialogue becomes criti-
cal. To this end, we introduce Dialogue On the
ROad To Handle Irregular Events (DOROTHIE),
a novel interactive simulation platform that en-
ables the creation of unexpected situations on
the fly to support empirical studies on situ-
ated communication with autonomous driving
agents. Based on this platform, we created
the Situated Dialogue Navigation (SDN), a nav-
igation benchmark of 183 trials with a total
of 8415 utterances, around 18.7 hours of con-
trol streams and 2.9 hours of trimmed audio.
SDN is developed to evaluate the agent’s abil-
ity to predict dialogue moves from humans as
well as generate its own dialogue moves and
physical navigation actions. We further devel-
oped a transformer-based baseline model for
these SDN tasks. Our empirical results indicate
that language guided-navigation in a highly dy-
namic environment is an extremely difficult
task for end-to-end models. These results will
provide insight towards future work on robust
autonomous driving agents1.

1 Introduction
In embodied agents such as autonomous vehicles
(AVs), highly dynamic environments often lead to
unexpected situations, such as challenging environ-
ment conditions (e.g., caused by weather, light, ob-
stacles, etc.), influence of other agents, and change

∗Equal contribution.
†Work done prior to joining Amazon Alexa AI

1The DOROTHIE platform, SDN benchmark, and code for
the baseline model are available at https://github.com/
sled-group/DOROTHIE

of the original goals. In these situations, the agent’s
pre-trained models or existing knowledge may not
be adequate or reliable to make a corresponding
decision. What is immediately available to help
the agent is often only human partners (Ramachan-
dran et al., 2013). As they are not programmers
who can readily change the code in the field, ap-
proaches that enable natural communication and
collaboration between humans and autonomy be-
come critical (Spiliotopoulos et al., 2001; Weng
et al., 2016). Although recent years have seen an
increasing amount of work in natural language com-
munication with robots, and especially the many
benchmarks that have been developed for naviga-
tion by instruction following (Roh et al., 2020; Va-
sudevan et al., 2021; Shridhar et al., 2020; Pad-
makumar et al., 2022), little work has been done to
study language communication under unexpected
situations, particularly in the context of AVs.

To address this limitation, we have developed
Dialogue On the ROad To Handle Irregular Events
(DOROTHIE), an interactive simulation platform
built upon the CARLA simulator (Dosovitskiy et al.,
2017) to specifically target unexpected situations.
The DOROTHIE simulator supports Wizard-of-Oz
(WoZ) studies through a novel duo-wizard setup:
a collaborative wizard (Co-Wizard) that collabo-
rates with the human to accomplish the tasks, and
an adversarial wizard (Ad-Wizard) that generates
unexpected situations (e.g., creating road obstacles,
changing weather conditions, adding/changing
goals, etc.) on the fly. Using DOROTHIE, we
collected the Situated Dialogue Navigation (SDN)
dataset of 183 trials between a Co-Wizard and hu-
man subjects to collaboratively resolve unexpected
situations and complete navigation tasks through
spoken dialogue.

The SDN dataset contains multi-faceted and time-
synchronized information (e.g., first-person view of
the environment, speech input from the human, dis-
crete actions, continuous trajectory and control sig-
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Environment Communication Granularity Data Collection Instruction Type Action SpaceName Domain Fidelity Continuity Turn Form Language Control Lang. Demo. Modal. Replan. Adp. Nav. Man. Continuity

SDN (Ours) Sim C M Freeform H & L H & L H H LVMS 4 4 4 - D & C

CDNLI (Roh et al., 2020) Sim C M Multi Inst L H & L H+T P LVM - 4 4 - D & C
LCSD (Sriram et al., 2019) Sim C S Multi Inst L H H P LVM - - 4 - D
TtW (De Vries et al., 2018) Pano D M Freeform H & L H H H LVM - - 4 - D
Talk2Nav (Vasudevan et al., 2021) Pano D S Multi Inst L H H P LVM - - 4 - D
TouchDown (Chen et al., 2019) Pano D S Multi Inst L H H P LVM - - 4 - D
Street Nav (Hermann et al., 2020) Pano D M Multi Inst L H T P LVM - - 4 - D
Map2Seq (Schumann and Riezler, 2021) Pano D S Multi Inst L H H P LM - - 4 - D
RUN (Paz-Argaman and Tsarfaty, 2019)

Outdoors

Pano D S Multi Inst L H H H LM - - 4 - D

TEACh (Padmakumar et al., 2022) Sim C M Freeform H & L H H H LV - 4 4 4 D
DialFRED (Gao et al., 2022) Sim C M Restricted H & L H H+T P LV - 4 4 4 D
ALFRED (Shridhar et al., 2020) Sim C S Multi Inst H & L H H P LV - 4 4 4 D
HANNA (Nguyen and Daumé III, 2019) Pano D M Multi Inst H & L H H P LV - 4 4 - D
RobotSlang (Banerjee et al., 2020) Phy C M Freeform H & L H H P LV - - 4 - D
TtT and WtW (Ilyevsky et al., 2021) Phy C S Restricted H & L H H P LM - - 4 - D
Robo-VLN (Irshad et al., 2021) Pano C S Multi Inst L H & L H P LV - - 4 - C
VLN-CE (Krantz et al., 2020) Pano C S Multi Inst L H H P LV - - 4 - D
CVDN (Thomason et al., 2020) Pano D M Restricted L H H H LV - - 4 - D
R2R (Anderson et al., 2018)

Indoors

Pano D S Multi Inst L H H P LV - - 4 - D

Table 1: Comparison of language-conditioned task completion settings in terms of Environment Fidelity (Simulated,
Panoramic, Physical), Environment Continuity (Discrete, Continuous), Turns of Communication (Single, Multiple), Com-
munication Form (Freeform Dialogue, Restricted Dialogue, Multiple Instructions), Language Granularity (High: Goal,
Low: Step/Movement), Control Granularity (High: Action, Low: Control), Language Collection (Human, Templated),
Demonstration Collection (Human, Planner), Modalities (Language, Vision, Map, Speech), Instruction Type (Replanning,
Adaptation, Navigation, Manipulation), Action Space (Discrete, Continuous).

nals) as well as fine-grained annotation of dialogue
phenomena at multiple levels. SDN challenges au-
tonomous driving agents to navigate in continuous
and dynamic environments, engage in situated com-
munication with humans, and handle unexpected
events on the fly. As an initial step, we devel-
oped the Temporally-Ordered Task Oriented Trans-
former (TOTO), a transformer-based baseline model
for three tasks: (1) predicting dialogue moves from
human utterances; (2) generating dialogue moves
in response to humans; and (3) generating navi-
gation actions towards the goal. We present our
empirical results and discuss key challenges and
opportunities.

To the best of our knowledge, this is the first ef-
fort on language communication under unexpected
situations in autonomous vehicles. Our contribu-
tions are the following: (1) a novel, high-fidelity
simulation platform, DOROTHIE, that can be used
to create unexpected situations on the fly during
human-agent communication, (2) a fine-grained
benchmark, SDN, for continuous, dynamic, inter-
active navigation with sensorimotor-grounded dia-
logue, and (3) a transformer-based model for action
prediction and decision-making which serves as a
baseline for future development.

2 Related Work

Our work is mostly related to language-conditioned
navigation tasks (Anderson et al., 1991; MacMa-
hon et al., 2006; Paz-Argaman and Tsarfaty, 2019)
and particularly recent work on embodied agents
that learn to navigate by following language in-
structions (Gu et al., 2022). Table 1 summarizes

the comparison between our work and previous
work. Below we highlight some key differences.

Replanning in Unexpected Situations. Most
simulated environments assume that only the
tasked agent can change the state of the world
through navigation and/or manipulation. In out-
door settings, the agent operates in a highly dy-
namic environment where unexpected changes to
the world can often occur due to, e.g., walking
pedestrians, moving vehicles, lighting, and weather
conditions. While previous studies have explored
misleading (Roh et al., 2020) or perturbed (Lin
et al., 2021) instructions, no prior work has looked
into how language instructions can help agents
adapt in these unexpected situations. To our knowl-
edge, SDN is the first dataset where language is
used to assist agents to replan their goals, paths,
and trajectories.

Free-Form Communication. Most prior work
adopts either simple instruction-following (Chen
et al., 2019; Shridhar et al., 2020; Vasudevan et al.,
2021), or restricted QA dialogue (Chai et al., 2018;
Thomason et al., 2020; Gao et al., 2022) that only
allows the agent to ask for help. Except for some
recent work in human-robot dialogue (She and
Chai, 2017; De Vries et al., 2018; Banerjee et al.,
2020; Padmakumar et al., 2022), few efforts have
supported fully free-form communication where
agents can ask, propose, explain, and negotiate un-
der ambiguity or confusion. To the best of our
knowledge, SDN is the first benchmark to enable
navigation in autonomous driving agents condi-
tioned on free-form spoken dialogue.
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Figure 1: An overview of the DOROTHIE design. We extend the traditional Wizard-of-Oz framework by introducing
a pair of Wizards: Co-Wizard and Ad-Wizard. A Human Participant is given a storyboard and is instructed to
communicate with an autonomous vehicle to complete a set of tasks. The Co-Wizard controls the agent’s behaviors
and communicates with the human. The Ad-Wizard creates unexpected situations on the fly. The human and the
Co-Wizard need to collaborate with each other to resolve these unexpected situations.

Continuous Navigation. In discrete navigation,
agents take discrete actions, e.g., tele-transport in
a pre-defined grid world (De Vries et al., 2018) or
a navigation graph with sparsely sampled panora-
mas at each node (Chen et al., 2019; Vasudevan
et al., 2021). More recently, researchers proposed a
continuous navigation setting (Krantz et al., 2020;
Hong et al., 2022) by converting discrete paths
on navigation graphs into trajectories. Unfortu-
nately, these agents are still limited with a discrete
action space such as forward 0.25m. This be-
comes unnatural in outdoor settings because the
default behaviour of outdoor driving agents (e.g.,
autonomous vehicles) is lane-following instead of
staying still. We instead follow the settings of mo-
bile robot navigation (Roh et al., 2020; Irshad et al.,
2021), where the agents are controlled by a con-
tinuous action space with physics like throttle and
steering, leading to continuous control signals with
long-range trajectories.

3 Dialogue On the ROad To Handle
Irregular Events (DOROTHIE) Simulator

Motivated by the wide availability of software sim-
ulations for autonomous vehicles (Rosique et al.,
2019), we set up our experiment in CARLA (Doso-

vitskiy et al., 2017), a driving simulator for au-
tonomous vehicles. We developed a novel frame-
work, Dialogue On the ROad To Handle Irreg-
ular Events (DOROTHIE) (as shown in Figure 1),
to study situated communication under unex-
pected situations based on the Wizard-of-Oz (WoZ)
paradigm (Riek, 2012; Kawaguchi et al., 2004;
Hansen et al., 2005; Eric et al., 2017). In WoZ,
a human participant is typically instructed to in-
teract with an autonomous agent to complete a set
of tasks. The agent’s behaviors, however, are con-
trolled by a human “wizard” (i.e., a researcher).

One important novelty of our framework is that
it extends the traditional WoZ approach by intro-
ducing a pair of wizards. In our duo-wizard setup,
a Co-Wizard controls the agent’s behaviors and
carries out language communication with the hu-
man participant to jointly achieve a goal, and an
Ad-Wizard creates unexpected situations on the
fly. The Co-Wizard and the participant need to
resolve these unexpected situations as they arise.

3.1 Interface for Co-Wizard Activities

We found in pilot studies that a low-level, free-form
controller is not desirable due to the poor quality of
demonstrated trajectories and high cognitive load
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on the Co-Wizard. In line with prior work (Roh
et al., 2020; Codevilla et al., 2018; Mueller et al.,
2018), we developed a set of high-level physical
actions from pilot studies for the Co-Wizard to
control the vehicle. Each action is mapped to a
rule-based local trajectory planner to generate a list
of waypoints that the vehicle will drive through.
The continuous control (steering, throttle, brake)
of the vehicle is performed by a PID controller.

In a complex navigation task with multiple sub-
goals, belief tracking over plans, goals, task status,
and knowledge becomes crucial (Ma et al., 2012;
Misu et al., 2014). Besides controlling the vehi-
cle and communicating with the participant, the
Co-Wizard also annotates the intended actions (re-
ferred to as mental actions) during and after the
interaction, e.g., by noting down the navigation
plan by clicking junctions on the intended trajec-
tory from current position to the destination. The
set of the physical and mental actions is described
in Figure 2 and more implementation details are
available in Appendix A.6.

Physical Actions Args Descriptions

LaneFollow - Default behaviour, follow the current lane.
LaneSwitch Angle (Rotation) Switch to a neighboring lane.
JTurn Angle (Rotation) Turn to a connecting road at a junction.
UTurn - Make a U-turn to the opposite direction.
Stop - Brake the vehicle manually.
Start - Start the vehicle manually.

SpeedChange Speed (±5) Change the desired cruise speed by 5 km/h.
LightChange Light State (On/Off) Change the front light state.

Mental Actions Args Descriptions

PlanUpdate List[Junction ID] Indicate intended trajectory towards a destination.
GoalUpdate List[Landmark] Indicate current goal as an intended landmark.
StatusUpdate Tuple[Landmark,Status] Indicate a change in task status.
KnowledgeUpdate x,y Guess the location of an unknown landmark.
Other - Other belief state updates.

Table 2: The space of primitive physical actions and
mental actions of the Co-Wizard.

3.2 Interface for Ad-Wizard Activities
The Ad-Wizard is able to introduce environmental
exceptions and task exceptions.

• Environmental Exceptions: Triggered by
changes to the environment. These include di-
rect environmental changes, which challenge the
vehicle’s perceptual processing and motivate par-
ticipants to request for adaptations without chang-
ing the plan or goal (e.g., drive slowly in foggy
weather and turn the headlights on at night). En-
vironmental exceptions can also be introduced by
creating roadblocks, which motivate new plans
by blocking the original ones.

• Task Exceptions: Brought by changing the tasks
specified in the storyboard by deleting, adding,
or changing a landmark to visit. The Ad-Wizard

will send a message to prompt the participant in
the message interface with appropriate context,
and modify the task interface that specifies the
landmarks to visit. Since the Co-Wizard does
not have a task interface, the participant needs to
communicate with the Co-Wizard in natural lan-
guage to inform the status of a subgoal, especially
when a change of current subgoal is indicated by
the Ad-Wizard.

The rich dynamics of the environment and tasks
in DOROTHIE create uncertainty and ambiguity,
which requires the Co-Wizard to actively initi-
ate conversation with the human partner and find
a way to handle these unexpected situations col-
laboratively. More illustrated details of the Ad-
Wizard interface is available in See Figure 10 in
Appendix A.7.

3.3 Data Collection
Using DOROTHIE, we recruited 40 naïve human sub-
jects as participants for data collection. Each sub-
ject went through an average of 4.5 sessions. In
each session, a storyboard was given to the subject
which required the agent to visit two to six land-
marks/destinations. Each storyboard was generated
from four different towns, with all task templates,
landmark locations, street names and departure lo-
cations randomly shuffled. While shown the map,
the Co-Wizard (an experimenter) did not have ac-
cess to some of the destinations, e.g., the location
of a friend’s house or a person to pick up. Such
knowledge disparities motivate rich situated com-
munication and challenge the agent to understand
language instructions of different granularity. As
the Co-Wizard and the human subject communi-
cated with each other to achieve the goal, the Ad-
Wizard (another experimenter) was tasked to create
different types of unexpected events that were rele-
vant to the current goal. The knowledge disparity
and unexpected events together drive the commu-
nication. Details of the task setups are available in
Appendix A.4.

4 Situated Dialogue Navigation (SDN)

Our data collection effort has led to the Situated
Dialogue Navigation (SDN), a fine-grained outdoor
navigation benchmark. Each session was replayed
at 10 FPS following prior work (Roh et al., 2020) to
obtain multi-faceted and time-synchronized infor-
mation, e.g., a first-person view of the environment,
speech input from the participant, discrete actions,
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Figure 2: The coding scheme of dialogue moves as a decision tree. The leaf nodes of the decision tree specify the
set of dialogue moves we used for annotation.

a continuous trajectory, and control signals. The
benchmark also includes dialogue structure annota-
tion, which we analyzed for dialogue behaviors.

4.1 Dialogue Structure Annotation

Following prior work in human-robot dia-
logue (Marge et al., 2017; Traum et al., 2018;
Marge et al., 2020) and dialogue discourse process-
ing (Sinclair et al., 1975; Grosz and Sidner, 1986;
Clark, 1996), we annotate each dialogue session
using four levels of linguistic units:

• Transaction Units (TUs): Sub-dialogues that
start when a task is initiated and end when it is
completed, interrupted, or abandoned.

• Exchange Units (EUs) Sequences of dialogue
moves towards common ground. These start with
an initiating utterance that has a purpose (e.g.,
a question) and end when the expectations are
fulfilled or abandoned (e.g., an answer).

• Dialogue Moves Sub-categories of dialogue
acts that drive conversation and update domain-
specific information state within an exchange.

• Dialogue Slots Parameters that further deter-
mine the semantics of dialogue moves, including
Action, Street, Landmark, Status, Object.

We follow the coding scheme of Carletta et al.
(1997) to represent dialogue moves as a decision
tree, with a slight modification to adjust to our
domain, as presented in Figure 2. The 14 dia-
logue moves, together with Irrelevant, specify
the space of conversational action in the human-
vehicle dialogue. We present an example dialogue
with annotations in Figure 4, with more samples
available in Appendix B.4.

4.2 Data Statistics
The dataset is split into training, validation, and
test sets and defines seen (Town 1, 3, 5) and unseen
(Town 2) sub-folds for validation and test. The
SDN dataset captures rich dialogue behaviors be-
tween the human and the agent to collaboratively re-
solve unexpected situations and achieve joint goals.
Table 3a shows some basic statistics.

Metric Value

Control Stream 18.7 h
Trimmed Audio 2.9 h

# Utterances 8415
# Words 50398

Vocabulary 1373
# Transactions 578
# Exchanges 4089

# Dialogue Moves 11623
# Slot Values 8618

# Physical Actions 9448

Fold (Split) # Sessions

Train 123
Val (Seen) 14

Val (Unseen) 6
Test (Seen) 25

Test (Unseen) 15

(a) Dataset Statistics and
split information.

0 2 4
Avg. Move/Slot per TU

ReplyU
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ReplyN
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Check
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ReplyY

Irrelevant
QueryYN
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QueryW
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Instruct
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HUM
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(b) The distribution of dialogue
moves and slots per TU.

Figure 3: Dataset description.

Figure 3b shows the frequencies of dialogue
moves and slots taken by the human and the agent
respectively. Not surprisingly, due to the nature of
the joint tasks, the human mostly instructs and the
agent constantly provides acknowledgement and
confirmation. Both the human and the agent ask
questions and give answers. The agent appears to
provide more explanation about its own behaviors
and decisions.

4.3 Dialogue Behaviors
The SDN also demonstrates some interesting and
unique behaviors between partners to handle unex-
pected situations. In particular, we investigate the
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Figure 4: A simple exemplar session in (SDN) with annotations. Each color bar represents a transaction unit and
each box represents an exchange unit. The tasks challenge the agent to understand input dialogue move and imitate
Co-Wizard’s decision on the next navigation action and dialogue move to take.

distinctive behaviors displayed by the human and
the agent to handle different exceptions introduced
by the Ad-Wizard. Figure 5 shows a comparison
of distributions of dialogue moves and slots in EUs.
The EUs are categorized by whether they handle
an environmental exception, a task exception, or
no exceptions introduced by the Ad-Wizard. We
observe that under environmental exceptions, the
agent takes more initiative to describe the situation
and ask for help, with frequent use of Explain and
Ask moves and use of Action and Object slots. In
return, the humans initiate less Instruct moves
but provide more Inform moves. Under task excep-
tions, humans initiate more Instruct moves with
frequent use of Landmark and Status slots, in or-
der to describe the change of plan. The agent makes
confirmations with increasing use of Inform.

5 Task Definition

While many challenging tasks can be tackled us-
ing SDN, within the scope of this paper, we for-
mulate three tasks that are critical for enabling
situated dialogue for navigation. We first intro-
duce some notations then describe our task for-

mulation. The agent is provided with domain
knowledge K, including a list of street names
{stri} and (possibly incomplete) landmarks {lmi}
on the map topology M . At time t, the inter-
action history (possibly empty) is represented as
Ht = {OHt−1, 〈UHt−1,HUM, UHt−1,BOT〉} which includes
visual observations (OHt−1) and dialogue utterances
from the human (UHt−1,HUM) and the agent (UHt−1,BOT).
The action history, represented as At, captures the
sequence of navigation actions and the dialogue
moves from both the human and the agent. Given
these representations, we define three tasks based
on the SDN benchmark.

Dialogue Understanding for Navigation (UfN)
The UfN task challenges the agent to understand
human intention (i.e., dialogue moves) from an in-
coming utterance. We consider each point in the
SDN where the human makes an utterance as an
inference point τ . The task is to, at each infer-
ence point τ , predict the dialogue move-slots pair
〈d, {s, v}〉 of the incoming utterance uτ given the
knowledge and history {K,M,Hτ , Aτ}.
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Figure 5: The average number of dialogue moves and slots per exchange unit (EU). Different colors of the bars
categorize the EUs by whether they handle an environmental exception (Env), a task exception (Task), or no
exceptions (None). Darker colors indicate the move/slot is produced by the agent (BOT), and lighter colors indicate
those produced by human participants (HUM).

Dialogue Response for Navigation (RfN) The
RfN task challenges the agent to generate the ad-
equate dialogue move-slot pair to drive commu-
nication. We consider each point in SDN where
the Co-Wizard selected a dialogue action and/or
navigation action as a decision point. The task is
to, at each decision point τ , generate the dialogue
move-slots pair 〈d, {s, v}〉 given the knowledge
and history {K,M,Hτ , Aτ}.

Navigation from Dialogue (NfD) The NfD task
challenges the agent to follow human instruc-
tions from dialogue history. The task is to, at
each decision point τ for navigation, generate the
action-argument pair 〈p, α〉 for navigation given
the knowledge and history {K,M,Hτ , Aτ}.

Evaluation To ensure all unexpected events and
future dialogue still make sense, tasks are defined
and evaluated in a teacher-forcing manner (Lamb
et al., 2016; Anderson et al., 2018), e.g., the action
history Aτ presented to the model will always be
the ground truth during data collection, instead of
those predicted by the model at inference time. For
the UfN and RfN tasks, we report the move accu-
racy and dialogue slot F1-score of each dialogue
move and slot-value pair. In the NfD task, the argu-
ment for navigation actions is a yaw rotation angle
α ∈ [−180, 180). During evaluation, a prediction
that deviates for less than 15 degrees will be con-
sidered accurate. We report the action accuracy
with and without argument.

6 Temporally-Ordered Task-Oriented
Transformer (TOTO)

Motivated by recent advances in decision-making
transformers (Chen et al., 2021; Pashevich et al.,
2021; Zhang and Chai, 2021), we present
Temporally-Ordered Task-Oriented Transformer

(TOTO), a Transformer-based baseline. TOTO is
temporally-ordered as it assigns sinusoidal tempo-
ral encodings for input history instead of recurrent
updates of hidden state, and is task-oriented as a
unified architecture for all 3 tasks on the SDN bench-
mark. The text, speech, and vision inputs are each
encoded using frozen pre-trained unimodal mod-
els. After encoding, the temporally encoded input
is concatenated and passed through a multi-layer
transformer. The output embeddings are sent to
fully-connected layers to decode task outputs. The
model architecture is illustrated in Figure 6, and
more details are provided in Appendix C.2.

Long-Term Semantic Memory For each known
landmark, we encode it with a look-up table for
its location and a pre-trained BERT model (De-
vlin et al., 2019) for its name. While each street
corresponds to a subgraph on the map topology,
we first encode the map with a graph attention
layer (Veličković et al., 2018), and then concate-
nate the pooling of each subgraph with the BERT
embedding for street names. Since the knowledge
K and map topology M are provided from the be-
ginning of a session, each knowledge and street
embedding is assigned with a zero temporal encod-
ing.

Long-Term Episodic Memory We encode the
complete dialogue history and action history in this
module. The transcribed dialogue history, together
with special speaker role tokens, is tokenized and
encoded by a pre-trained BERT model. The full
navigation action history, including both navigation
actions and dialogue moves with their arguments
and slots, is encoded with look-up tables following
prior work (Pashevich et al., 2021). Each utter-
ance and action embedding is assigned with their
corresponding temporal encoding.
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Figure 6: An overview of the architecture of the Temporally-Ordered Task-Oriented (TOTO) Transformer.

Short-Term Working Memory Given the long-
range nature of SDN, encoding the complete vision
and trajectory history is not computationally real-
istic. We instead assign a fixed window size of
T = 100 with a step ∆t = 4 to sample and encode
the nearest vision and trajectory history. We refer
to this module as the short-term working memory
encoder. Each location on the trajectory is encoded
with the same look-up table in semantic memory,
and each image in the visual stream is encoded with
a pre-trained ResNet-50 (He et al., 2016) backbone.

Situation Awareness Situational awareness is
crucial to handle unexpected events. To this end,
we attend to the current speech input with a pre-
trained HuBERT (Hsu et al., 2021) encoder. In ad-
dition, we train a transformer-based object detector
from 30k images sampled from seen splits in CARLA.
The model is based on Deformable DETR (Zhu
et al., 2021) and SegFormer (Xie et al., 2021), pre-
trained from the supervision of bounding boxes as
well as depth and semantic segmentation obtained
from pseudo-sensors. The speech and object em-
beddings are assigned with the temporal encoding
of current timestamp t.

7 Experiments and Results

We summarize the experiment results in Table 3.
Our initial end-to-end transformer model is able
to handle all tasks uniformly on both the seen and
unseen splits of the test set, and outperform the
majority of the unimodal baselines (See Table 5 for
full results). In general, the performance is more
comparable on inference tasks than decision tasks,
e.g., predicting the dialogue moves from human
utterances is a more approachable task than pre-
dicting the dialogue moves and navigation actions
in response. We also noticed that the results on

the unseen splits are uniformly better than the seen
set. This can partially be explained by the fact
that the unseen environment (Town 2) is signifi-
cantly smaller in size and simpler in map topology.
Overall, our experiment has shown that the tasks in
SDN are challenging. Comparatively, the Episodic
Transformer (E.T.) (Pashevich et al., 2021) baseline
particularly underperforms in the inference task,
i.e., UfN move prediction. The fine-tuned language
model baseline can handle dialogue move predic-
tions very well, but significantly fails on other tasks.
We further provide a set of ablation studies, and
discuss potential reasons why SDN is a challenge for
end-to-end models. Additional results are available
in Appendix C.4.

Ablation on Input Modalities To understand
how each input modality contributes to task perfor-
mance, we conduct ablation studies by removing
one of the input modalities. All experiments on
action-level tasks (inferring or predicting dialogue
moves or physical actions) are mostly influenced
by the action history, which can be explained by
the fact that ground truth action history is available
in the teacher-forcing setup. Not surprisingly, the
understanding of the incoming utterance is also
largely influenced by the input of current speech.
Counter-intuitively, we noticed that removing the
map and knowledge encoder does not lead to de-
creased performance. This observation suggests
that the end-to-end approach may not be reliable
in tasks that require reasoning and planning over
graphs, especially route planning. Overall, there
is no statistically significant evidence that the full
model benefits from perceptual history. We also
notice that the slot-F1 scores stays relatively con-
stant across ablation, indicating that the slot-value
prediction remains challenging for TOTO.
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Model UfN (Seen) RfN (Seen) NfD (Seen)
Move Acc. Slot F1 Move Acc. Slot F1 Action Acc. Act-Arg Joint Acc.

TOTO 40.9(±3.9) 36.9(±0.0) 29.2(±0.7) 55.7(±0.2) 41.2(±2.5) 36.0(±3.4)

TOTO (+ Belief Tracking) 39.5(±2.2) 37.0(±0.1) 28.8(±0.9) 55.7(±0.2) 40.7(±3.6) 34.0(±4.7)
TOTO (- Action History) 30.5(±1.5) 36.9(±0.0) 23.5(±1.7) 55.7(±0.0) 27.6(±2.8) 24.6(±4.0)
TOTO (- GT Transcript) 39.8(±1.9) 36.9(±0.1) 29.2(±0.8) 55.6(±0.1) 40.4(±3.4) 31.6(±4.3)
TOTO (- Object Detection) 42.5(±2.8) 37.0(±0.2) 30.4(±0.7) 55.8(±0.1) 39.2(±3.5) 34.4(±5.8)
TOTO (- Vision History) 41.9(±1.3) 37.0(±0.2) 29.1(±0.5) 55.8(±0.2) 42.0(±3.1) 36.1(±4.0)
TOTO (- Current Speech) 35.1(±2.7) 36.7(±0.5) 29.9(±0.9) 55.9(±0.2) 39.7(±1.9) 33.7(±3.0)
TOTO (- Map Knowledge) 42.6(±1.2) 36.9(±0.0) 29.3(±0.9) 55.8(±0.2) 44.6(±3.3) 39.1(±3.3)

Episodic Transformer 36.6(±3.6) 37.0(±0.2) 29.4(±1.2) 55.9(±0.2) 40.0(±2.8) 32.2(±4.0)
Fine-tuned BERT 66.8(±2.0) 24.9(±5.5) 52.7(±1.0) 46.0(±2.5) 32.4(±1.2) 16.2(±2.7)

Model UfN (Unseen) RfN (Unseen) NfD (Unseen)
Move Acc. Slot F1 Move Acc. Slot F1 Action Acc. Act-Arg Joint Acc.

TOTO 49.2(±3.0) 26.2(±0.0) 31.0(±1.7) 54.0(±0.7) 45.8(±3.8) 41.1(±2.8)

TOTO (+ Belief Tracking) 47.1(±3.5) 26.2(±0.0) 29.0(±2.0) 53.7(±0.7) 47.6(±4.5) 38.8(±3.1)
TOTO (- Action History) 35.5(±3.2) 26.1(±0.1) 28.2(±3.9) 54.8(±0.0) 36.8(±0.8) 36.0(±1.7)
TOTO (- GT Transcript) 46.7(±2.4) 26.2(±0.0) 31.6(±2.6) 54.2(±0.8) 46.2(±5.9) 37.6(±6.9)
TOTO (- Object Detection) 50.0(±1.8) 26.2(±0.1) 32.7(±2.2) 53.8(±1.2) 45.7(±5.2) 40.3(±5.4)
TOTO (- Vision History) 48.7(±2.3) 26.2(±0.1) 31.5(±2.9) 54.3(±0.7) 45.9(±4.2) 42.3(±3.5)
TOTO (- Current Speech) 42.8(±2.5) 25.8(±0.3) 33.8(±1.4) 55.1(±0.4) 46.5(±4.9) 39.4(±5.2)
TOTO (- Map Knowledge) 48.2(±1.0) 26.2(±0.1) 31.9(±1.2) 54.9(±0.8) 51.7(±3.4) 46.0(±4.0)

Episodic Transformer 45.1(±3.8) 26.1(±0.1) 33.4(±2.2) 54.7(±0.8) 46.6(±3.3) 37.0(±5.9)
Fine-tuned BERT 67.2(±1.5) 16.2(±3.5) 57.0(±0.9) 46.9(±2.2) 37.1(±1.5) 19.6(±3.6)

Table 3: Experiment results of TOTO and baselines on the three tasks in the SDN benchmark. We use accuracy as
the primary evaluation metric for navigation actions and dialogue moves, and use F1-score as the primary metric
for dialogue slot, both in percentage. Each experiment is repeated with 5 random seeds. In each run, the model is
validated on the complete validation fold (including both seen and unseen splits). The model is trained until overfit
or reaching the max epochs. The model with lowest loss on the validation fold will be used for inference.

Ablation on Belief Tracking Prior work (Ma
et al., 2019; Zhang and Chai, 2021) has indicated
the power of task monitoring. To understand if
end-to-end belief tracking would benefit the com-
putational model, we additionally introduce a belief
head with auxiliary loss, which is tasked to predict
the location of the next timestamp on the trajec-
tory and the location of the goal landmark anno-
tated during data collection. According to Table 3,
we observe marginal but no statistically significant
improvement. This observation suggests that for
long-range navigation tasks with unexpected goal
changes, end-to-end approaches can hardly benefit
from end-to-end belief tracking. Other modeling
approaches should be explored to make full use of
the rich belief update annotations of SDN.

8 Conclusion

We introduced DOROTHIE, a high-fidelity simu-
lation platform to support WoZ studies for sit-
uated communication with autonomous driving
agents that can adapt to unexpected events. We
defined and collected SDN, a fine-grained bench-
mark for continuous, dynamic, interactive naviga-

tion with sensorimotor-grounded dialogue. Our
DOROTHIE platform, together with our SDN bench-
mark, contribute a valuable resource for several
lines of work in Robotics Navigation and Human-
Robot Communication. We presented Temporally-
Order Task Oriented Transformer (TOTO), a fully
transformer-based baseline model for the SDN task.
Our empirical results have shown that such long-
horizon navigation tasks with rich dialogue phe-
nomena and unexpected situations can be very chal-
lenging for end-to-end approaches. This work has
shown that language-guided navigation in a highly
dynamic environment (e.g., in the context of AVs)
is an extremely difficult task. Our DOROTHIE simu-
lation environment, the SDN benchmark, and base-
line models provide a stepping stone towards future
efforts in this challenging space.
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Limitations

While the SDN collects control streams of the vehi-
cle, we scope our preliminary experiment on high-
level robotic action prediction due to the complex-
ity of the full problem. Specifically, our current
task setup only involves the prediction of physical
action and dialogue moves, and is based on several
assumptions. First, there is an oracle that decides
when to initiate a physical action or dialogue move.
Second, we assume a ground truth low-level local
planner that maps a navigation action to a sequence
of control. Third, we bypass the complexity of
language generation. We also ignore the adaptive
and epistemic actions (speed and light changes)
involved and focus on navigation. These assump-
tions allow us to focus on the understanding and
response of situated dialogue in the navigation task
and enable automatic evaluation.

In the future, we will expand the model to fully
autonomous navigation settings, with sequential
decision-making and hierarchical control policies.
We are also interested in computational approaches
for situated dialogue state tracking and manage-
ment, especially involving in natural language gen-
eration and human partner modeling. With the
above milestones accomplished, we will look into
Sim2Real transfer and deploy our algorithm in
physical autonomous driving agents.

Ethics Statement

The institution’s Institutional Review Board (IRB)
considered this project exempt from ongoing re-
view. The SDN benchmark contains human gener-
ated data (speech and demonstrations). Due to the
Wizard-of-Oz nature of the study, the participants
consent preceding the study and are debriefed at
the end of the study. The data collection among
research staff and volunteers are in line with stan-
dard ethical practice. For broader social impact,
DOROTHIE aims at empowering autonomous vehi-
cles with the ability to harness human knowledge
and expertise through dialogue, and enabling natu-
ral language communication and collaboration in
tackling unexpected situations. Since the dataset
was developed from the simulator, the safety con-
cerns are minimal. A complete ethical statement is
available in Appendix D.
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A Simulation Platform Setup Details

A.1 Duo-Wizard-of-Oz
The majority of the VLN benchmarks separates lan-
guage from demonstration in data collection, i.e.,
generate the trajectory first and then annotate them
with language descriptions. Our data collection,
however, is inspired by the task-oriented in-vehicle
dialogue corpora (Kawaguchi et al., 2004; Hansen
et al., 2005; Eric et al., 2017) collected through
Wizard-of-Oz (WoZ) systems (Riek, 2012). In each
gameplay session, a naïve participant, who is un-
aware of the Wizard, will communicate with the
vehicle to visit goal locations specified in a story-
board. Each task in the storyboard can potentially
be changed due to unexpected alterations of the
goal or environmental conditions on-the-fly. In this
way, DOROTHIE is unique in that it involves human
subjects and data collection with unexpected events
in naturalistic scenarios. Compared to stage-wise
data collection, WoZ studies ensure synchronous
and natural human-agent interaction, leading to
more realistic interaction (Dahlbäck et al., 1993).

We further extend the single Wizard framework
by introducing a pair of Wizards in the loop: a Col-
laborative Wizard (Co-Wizard) that serves the role
of the original Wizard, and an Adversarial Wizard
(Ad-Wizard) to control the environment and task
interface to generate adversarial events on-the-fly.
Without the Co-Wizard’s and participant’s aware-
ness, the Ad-Wizard will challenge their collabo-
ration by creating environmental changes and/or
introducing task changes with appropriate context.
The Co-Wizard and participant need to communi-
cate and negotiate to arrive at an alternative plan in
order to address the unexpected situations and com-
plete the navigation tasks. The complete setup is
supported by the Dialogue On the ROad To Handle
Irregular Events (DOROTHIE) platform we devel-
oped (illustrated in Figure 1).

A.2 Framework and Notations
The autonomous driving agent has a continuous
control action space A as a triple over the nor-
malized throttle φ, steering angle θ, and brake b,
which controls the vehicle in the simulated environ-
ment. The agent is equipped with domain knowl-
edge K, including a list of street names {stri}
and (possibly incomplete) landmarks {lmi} on the
map topology M . At any time t, the interaction
history Ht includes previous observation and di-
alogue {OHt−1, 〈UHt−1,hum, U

H
t−1,agent〉}. The agent

Human👤 
     Environment
 (Ad-Wizard👿)

Other Agents
{1,2,...,N}
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Action
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Physical 
Action/Arg
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Figure 7: An overview of the framework of the
DOROTHIE platform.

is, in an end-to-end manner, a system that takes
Ht and action history At to produce an utterance
ut,agent and an action at ∈ A. Due to the long-
range driving and rich interactive context, training
such an end-to-end policy is unrealistic (Roh et al.,
2020). Following existing systems with a modular
pipeline (Skinner et al., 2016; Franke, 2017; Doso-
vitskiy et al., 2017), we break the problem down
into perception, planning, control, and interaction,
and summarize the framework in Figure 7.

Navigation Actions To navigate, the agent
has a discrete and finite physical action space
P = Pnav ∪ Padp ∪ Peps. Each nav-
igation action in Pnav = {LaneFollow,
LaneSwitch, JTurn, UTurn, Stop, Start} and its
argument α ∈ Θ is taken by the local planner to
produce the continuous action a. The local planner
defines a low-level policy π ∈ Π : Pnav ×Θ→ A.

Adaptive Action An adaptive action p ∈ Padp :
Π → Π adapts the low-level policy, e.g., by
changing the target speed. In our case Padp =
{SpeedChange}, with an increment of 5.

Sensors and Epistemic Action The sensors of
the agent defines an observation function ω ∈ Ω :
S → O that maps the world state s to an obser-
vation o (in particular, an RGB image). An epis-
temic action (Kirsh and Maglio, 1994) is an action
taken to facilitate mental computation instead of
task completion, usually by manipulating sensors,
e.g., selecting active sensor types and changing
camera transforms. It changes the observation func-
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tion Peps : Ω → Ω. We assume for now a fixed
first-person RGB camera with no noise, with only
Peps = {LightChange}.
Interaction To interact with human, the agent
select a the dialogue move-slots pair 〈d, {s, v}〉, as
described in Section 4.1. The language generation
module generates natural language as a sequence
of tokens and produces the utterance uagent with
Google Text-to-Speech (gTTS)2.

A.3 Simulated Environment Details
CARLA supports waypoint precision of 2cm to
benchmark the continuity of robotics navigation,
as well as HD Maps under the OpenDrive 1.4 Stan-
dard (Dupuis and Grezlikowski, 2006), with unique
IDs for lanes, roads, and junctions to represent
high-level navigation plans. To benchmark the rich
environmental dynamics of outdoor navigation, we
simulate multi-agent traffic with other active vehi-
cles, bikers, and pedestrians, as well as different
weather and light conditions in CARLA.

Multi-agent Environment Weather and light
conditions can be controlled and configured on-the-
fly. CARLA simulates multiple agents sharing the
same environment, including vehicles and pedes-
trians. We use CARLA’s built-in traffic manager to
simulate realistic traffic behaviour.

Multi-sensory Perception CARLA allows flexi-
ble sensor suites on agents, including realistic sen-
sors (e.g., RGB, LIDAR, Radar, IMU, GNSS) and
pseudo-sensors of ground truth (e.g. depth, seman-
tic segmentation, obstacle detector). While our
experiment involves only RGB images with object
bounding boxes, depth, and semantic segmentation
for supervision, it is possible to obtain additional
sensory data for more complicated multi-modal
studies.

A.4 Navigation Task Setup
Task Configuration In each trial, a storyboard
will specify the names and contexts of two to six
landmarks to visit. Except for the final destina-
tion, the intermediate subgoals are unordered. The
participant and Co-Wizard need to collaborate to
guide the vehicle through all the intermediate land-
marks, starting from a departure location to a des-
tination landmark. Each session configuration is
seeded from four different towns and a set of story-
board templates, with all landmark locations, street

2https://gtts.readthedocs.io/

names and departure locations randomly shuffled.
An example storyboard template is presented as
follows:

{
"story":
"Your friend Annabel is moving to a new house,
and you decided to help her by doing some
shopping for her. You need to get $I1 and
$I2 from $P1 and $I3 from $P2, and head to
Annabel's new $P3 to help her clean the house.",

"subgoals": [
{"destination": "$P1",
"description": "Pick up $I1 and $I2 from $P1"},
{"destination": "$P2",
"description": "Pick up $I3 from $P2"},

{"destination": "$P3",
"description": "Arrive at Annabel's new $P3"}

],

"variables":
[["P1", "places.stores"],
["P2", "places.stores"],
["P3", "places.residential"]],

"dependents":
[["I1", "P1.items"],
["I2", "P1.items"],
["I3", "P2.items"]],

}

Knowledge Disparity Both the Co-Wizard and
the participant perceive the environment through a
stream of RGB images. To replicate realistic out-
door navigation, an aerial map of the environment,
with landmarks and current location, is provided
to both the participant and the Co-Wizard. While
both players have access to some landmarks (e.g.,
the location of a restaurant or grocery store), the
Co-Wizard does not have access to some of the
landmarks (e.g., the location of a friend’s house or
a person to pick up). Such knowledge disparities
motivate situated communication beyond control
asymmetry and challenge the agent to understand
language instructions of different granularity. For
example, in the storyboard above, the Co-Wizard
has no access to the location of Annabel’s new
house.

{
"hidden_from_wizard": ["P3"]

}

A.5 Interface Components

Figure 1 shows the conceptual overview of our in-
terface design, including 4 major components: the
Camera View, the Aerial View, the Task Interface,
and the Communication Protocol. They are illus-
trated and described in Figure 8.
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(a) The participant’s interface.

(b) The Co-Wizard’s interface.

Figure 8: Graphical interfaces for the participant and Co-Wizard.

Camera View Both the participant and the Co-
Wizard have access to a first-person view of the
simulated environment, similar to that of a driver.

Aerial View Both the participant and the Co-
Wizard have access to a 2D aerial map of the town,
with the location and heading direction of the ego-
vehicle. Various annotations are included to facil-
itate operation, including trajectory history, street
names and landmarks. The Co-Wizard is addition-
ally shown the planned waypoints, possible trajec-
tories at junctions, and vehicle status.

Task Interface The task interface is for human
participants only. It displays the landmarks to visit
as specified by the storyboard template. A subgoal
is automatically fulfilled when the vehicle stops
within 2 meters from the waypoint closest to the
landmark, and the corresponding subgoal on the
participant’s interface will turn from white to green.
The participant needs to communicate with the Co-
Wizard in natural language to inform the status of
a subgoal. When a subgoal is added, changed, or
deleted by the Ad-Wizard, the task interface will
correspondingly change.

Communication Protocol Instead of typing on a
keyboard, our Communication Protocol contains a
dialogue interface and speech-text conversion to al-
low press-and-talk communication, requiring min-
imal distraction from operating the vehicle. This
also allows the Co-Wizard to speak to the subject
via speech synthesis to maintain the illusion of an
automated operator to fulfill the WoZ purpose.

A.6 Co-Wizard Interface and Actions

Physical Actions We found in pilot studies that
the low-level free-form controller with continuous
action space is not desirable, due to the poor qual-
ity of demonstrated trajectories and high cognitive
load on the Co-Wizard. On the other hand, a high-
level, point-to-point maneuver controller (Dosovit-
skiy et al., 2017) does not support the flexibility
of human command, especially in our study with
heavy replanning. Motivated by prior work (Roh
et al., 2020; Codevilla et al., 2018; Mueller et al.,
2018), we developed a set of high-level physical
actions from pilot studies for the Co-Wizard to con-
trol the vehicle. Similar to Mueller et al. (2018),
we first map each action to a rule-based local trajec-
tory planner to generate a list of waypoints that the
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connecting road (Jturn)
same road (LaneSwitch) 
reverse road (UTurn)

Physical Actions Args Descriptions

LaneFollow - Default behaviour, follow the current lane.
LaneSwitch Angle (Rotation) Switch to a neighboring lane.
JTurn Angle (Rotation) Turn to a connecting road at a junction.
UTurn - Make a U-turn to the opposite direction.
Stop - Brake the vehicle manually.
Start - Start the vehicle manually.

SpeedChange Speed (±5) Change the desired cruise speed by 5 km/h.
LightChange Light State (On/Off) Change the front light state.

Mental Actions Args Descriptions

PlanUpdate List[Junction ID] Indicate intended trajectory towards a destination.
GoalUpdate List[Landmark] Indicate current goal as an intended landmark.
StatusUpdate Tuple[Landmark,Status] Indicate a change in task status.
KnowledgeUpdate x,y Guess the location of an unknown landmark.
Other - Other belief state updates.

Figure 9: The space of primitive physical actions and mental actions of Co-Wizard.
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(b) Unexpected event at plan level.
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(c) Unexpected event at goal level.

Figure 10: The Ad-Wizard is able to change the environment and tasks on-the-fly.

vehicle will drive through, then feed the waypoints
to a PID controller to produce the control signals
for the agent.

Mental Actions In a complex navigation task
with multiple subgoals, belief tracking over plans,
goals, task status and knowledge becomes cru-
cial (Ma et al., 2012; Misu et al., 2014). Besides
controlling the vehicle and communicating with
the participant, the Co-Wizard also annotates the
mental actions during and after the interaction.

• PlanUpdate: Indicate a change in the intended
trajectory towards a destination. This is done dur-
ing interaction, by noting down the navigation
plan by clicking junctions on the intended trajec-
tory from current position to the destination.

• GoalUpdate: Indicate the current subgoal, i.e.,
an intended landmark. This is done during in-
teraction, by clicking a known landmark on the
aerial view interface.

• StatusUpdate: Indicate a change in the belief
of the task status. Since the task interface is not
available to the Co-Wizard, this is done post-
interaction, by annotating which participant ut-
terances indicate a change of task status.

• KnowledgeUpdate: Guess the location of an un-

known landmark. Since some landmarks are hid-
den from the Co-Wizards, they need to guess
where the destination is by comprehending the
participant’s descriptions. This is done during
interaction, by clicking an arbitrary point on the
aerial view interface.

A.7 Ad-Wizard Interface and Actions

The Ad-Wizard is able to introduce environmental
exceptions and task exceptions.

• Environmental Exceptions: Triggered by the
change to the environment. These include direct
environmental changes (Figure 10a), which chal-
lenge the vehicle’s perceptual processing and mo-
tivate participants to request for adaptations with-
out changing the plan or goal (e.g., drive slowly
in foggy weather and turn the headlights on at
night). Environmental exceptions can also be in-
troduced by creating road blocks (Figure 10b),
which motivate changes of plan by failing an
original navigation plan towards a landmark.

• Task Exceptions: Brought by changing the tasks
specified in the storyboard by deleting, adding,
or changing a landmark to visit (Figure 10c). The
Ad-Wizard will send a message to prompt the par-
ticipant in the message interface with appropriate
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context, and modify the task interface that speci-
fies the landmarks to visit. Since the Co-Wizard
does not have a task interface, the participant
needs to communicate with the Co-Wizard in nat-
ural language to inform the status of a subgoal,
especially when a change of current subgoal is
indicated by the Ad-Wizard.

The Ad-Wizard is able to create environmen-
tal changes by modifying the weather and light
conditions, and spawning more agents. To mo-
tivate changes of plan on the fly, the Ad-Wizard
can create roadblocks on the paths towards a des-
tination. Besides controlling the environment, the
Ad-Wizard can also change the tasks specified in
the storyboard by deleting, adding, or changing a
landmark to visit. For example, in Figure 1, the
Ad-Wizard attempts to change the original plan by
sending a text to the human subject.

B Dataset Details

B.1 Comparison of Settings

We elaborate on our comparison of settings with
existing language-conditioned navigation tasks in
Table 1 in the following dimensions:

• Environment Fidelity: The environment in
which the agent operates. Depending on the fi-
delity, the settings are categorized into Simulated
environment, Panoramic photos, and Physical en-
vironment.

• Environment Continuity: Whether the environ-
ment is Discrete or Continuous.

• Turns of Communication: Whether the com-
munication between human and agent is Single-
term or Multi-term in a task.

• Communication Form: Whether the form of
human-agent communication is in Freeform Di-
alogue, Restricted Dialogue that involves turn-
taking QAs, or consists of Multiple Instructions
from the human only.

• Language Granularity: Whether the instruc-
tions are on the goal level (High) or step-by-step
on the movement level (Low).

• Control Granularity: Whether the actions are
on the discrete action level (High) or on the con-
tinuous control level (Low).

• Language Collection: Whether the language is
collected from real Humans or generated from
pre-defined Templates.

• Demonstration Collection: Whether the
demonstrations or trajectories are collected from
real Humans or generated from Planners.

• Instruction Type: The types of instructions initi-
ated by a human, including possibly Replanning
that requires a change of plan; Adaptation that
requires adapting the manner of actions without
changes of plans; Navigation that specifies a nav-
igation action, or Manipulation that requests the
agent to interact with an object.

• Modalities: The input modality to the agent’s
sensors, including possibly Language (text),
Vision (images/videos), Map, or Speech.

• Action Space: The output granularity of the
agent’s motors, possibly Discrete or Continuous.

B.2 Replay and Synchronization

We use CARLA 0.9.11 with Unreal 4.24 for data
collection. We apply asynchronously simulation
at recording time for smooth interaction, and syn-
chronous simulation at replaying time to retrieve
sensory data at all frames without loss. For each
game, we record an interaction log and a game log
under a fix time step of 30 FPS with 16 substeps
for physics computation, and replay the session at
10 FPS following prior work (Roh et al., 2020).
The interaction log stores the timestamped activity
history of the two wizards and the participant, in-
cluding action history, spoken dialogue utterances,
annotated mental actions, system prompts of the
completion of tasks, etc. The game log stores the
world state at each timestamp to reproduce a game,
including locations, orientations, bounding boxes,
velocity, and physical control signals of vehicles
and states of traffic lights, etc. By attaching sensors
to the ego-vehicle in replay, we are able to log RGB
perception streams together with the ground truth
pseudo-sensors (depth and semantic segmentation).

B.3 Dialogue Annotation

Annotating Transcripts The trimmed audio
clips are first sent to Google Speech Recognition3

for raw text. We then listen to each trimmed clip
and type the ground truth transcripts. Based on
the ground truth transcripts, we further annotate
each dialogue session using four levels of linguis-
tic units, described as follows.

Annotating Transactions Transaction Units
(TUs) are sub-dialogues that starts when a task is

3https://pypi.org/project/SpeechRecognition/
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initiated and ends when it is completed or aban-
doned. We observed in the corpus that the partici-
pant sometimes describes the next tasks to perform
when current task is still ongoing, leading to small
pieces of conversation standing alone from the ma-
jor transaction unit for that subgoal. Due to the ad-
dition, change, or deletion of a subgoal, some trans-
actions are interrupted and continued afterwards
(Figure 4). Therefore, we assign each utterance to
the subgoal it aims for, and one of the task status in
Ongoing, Complete, Abandoned, Pending to each
subgoal whenever there is a change specified by
the utterance.

Annotating Exchanges Exchange Units (EUs)
are sequences of dialogue moves towards common
ground. They starts with an initiating utterance
that has a purpose (e.g., a question) and ends when
the expectations are fulfilled or abandoned (e.g., an
answer). We observed in the corpus that some ex-
change units overlaps because the participant and
the Co-Wizard spoke up at the same time. This
is particularly common when the Co-Wizard ini-
tiates a conversation asking for instructions and
meanwhile the participant is giving the command.
The annotators are tasked to match each utterance
to an exchange unit, represented by its initiating
utterance.

Annotating Dialogue Moves Dialogue Moves
are sub-categories of dialogue acts that drive con-
versation and update domain-specific information
state within an exchange. We follow the coding
scheme of Carletta et al. (1997) to represent dia-
logue moves as a decision tree, with a slight mod-
ification to adjust to our domain ontology, as pre-
sented in Figure 2. The 14 dialogue moves, to-
gether with Irrelevant, specify the space of con-
versational action in the human-vehicle dialogue.
The annotators are tasked to first split each utter-
ance into text spans that contain only one dialogue
move, and then assign the move to the span follow-
ing the decision tree.

Annotating Dialogue Slots Dialogue Slots are
parameters that further determine the semantics of
dialogue moves. We consider 5 slot labels: Action,
Street, Landmark, Status, Object. For each slot
label, the slot value belongs to a finite set of possi-
ble values defined by the domain ontology, e.g., the
Action is specified by the physical action space,
and the Object is specified by CARLA’s built-in vi-
sual semantics.

• 10 values for Action: Queried, Unknown,
LaneFollow, LaneSwitch, JTurn, UTurn, Stop,
Start, SpeedChange, LightChange.

• 17 values for Street: Queried, Unknown,
Baits, Beal, Bishop, Bonisteel, Broadway,
Division, Draper, Duffield, Fuller,
Hayward, Hubbard, Murfin, Plymouth, Upland,
Highway.

• 12 values for Landmark: Queried, Unknown,
BurgerKing, Coco, Ikea, KFC, Panera, Qdoba,
SevenEleven, Shell, House, Person.

• 6 values for Status: Queried, Unknown,
Ongoing, Complete, Abandoned, Pending.

• 24 values for Object: Queried, Unlabeled,
Building, Fence, Pedestrian, Pole,
RoadLine, Road, SideWalk, Vegetation,
Vehicles, Wall, TrafficSign, Sky,
Ground, Bridge, RailTrack, GuardRail,
TrafficLight, Static, Dynamic, Water,
Terrain, Other.

Kappa Analysis We report the average Cohen’s
kappa (κ) (Cohen, 1960) for each pair of anno-
tators sharing common judgements in 20 com-
mon sessions with 1045 utterances. We obtain
κ = 0.77 ± 0.02 for dialogue move annotation,
and κ = 0.85± 0.02 for dialogue slot annotation.

B.4 Additional Dialogue Samples

The human and the agent communicate about ob-
jects in the scene, and the human frequently checks
the perceptual capability of the agent.

[Human]  watch out for the biker 
[Human]  let's be careful
[Bot]    okay I'll keep it in mind
[Human]  yep let's go to Baits now slowly
[Bot]    okay
[Human]  are you able to see the biker ahead
[Bot]    yes I can see the biker ahead

When a new task is introduced, the human and
the agent negotiate towards a mutually agreed plan
before the agent takes action.

[Human]  do you see the people on the other side 
         of the road 
[Human]  that's my friend 
[Human]  let's go pick him up
[Bot]    okay 
[Bot]    I think I need to be coming from 
         Broadway Street to go on the correct 
         side of the road 
[Bot]    would you like for me to do that
[Human]  okay then make a right turn 
[Human]  and then make a right turn at Murfin
[Bot]    okay I'll do that
[Human]  yes please let's go
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When the human gets confused by the agent’s
action, they would ask the agent to describe and
explain its plan. This requires the agent to rea-
son about the route planning task, and generate
language description of it.

[Human]  what are you doing
[Bot]    I'll continue going straight and then 
         at the roundabout 
[Bot]    I'll make a u-turn and then go to the 
         Division Place
[Human]  why don't you make a right turn here
[Bot]    I won't be able to go on the correct 
         side of the road to pick up your friend
[Bot]    I actually think I have to come from 
         south on Bonisteel Avenue for that
[Bot]    would you like for me to do that instead
[Human]  no just do what you had in mind before

Episodic memory is also crucial to complete the
tasks in SDN. The agent needs to keep track of the
dialogue and visual history in order to resume a
previously abandoned task.

[Human]  my aunt's house is going to be on the 
         right side
[Bot]    okay could you tell me when to stop on 
         Beal Street

<Ad-Wizard> You forgot your bag in the KFC>
[Human]  let's go back to KFC
[Bot]    okay I'll go back to KFC
[Bot]    I think we're at the KFC now
[Human]  okay great now we're going to go back 
         to my aunt's house
[Bot]    okay
[Human]  my aunt's house is at the Baits and 
         Beal’s intersection
[Human]  so let's take a right turn at Baits
[Bot]    okay I'll do that
[Human]  we went to my aunt's house before 
[Human]  do you remember where it is
[Bot]    yes I do
[Human]  what's the location of my aunt's house
[Bot]    you're aunt's house is at the 
         intersection of Baits Avenue and Beal 
         Street on the right side of the Beal 
         Street once I turn right onto the Beal
[Human]  that's correct that's where we're going 
         right now
[Bot]    okay I'll take you there
[Human]  and once we get there we're just going 
         to park on the side of the road
[Bot]    okay

C Experiment Details

C.1 Computational Resources

The recording of all sessions is done on a machine
with an NVIDIA A4000 GPU. The TOTO and base-
line models are trained on one NVIDIA A40 GPU.
For each experiment we train at least 10 epochs

with early stop of 5 epochs, which take two hours
in average.

C.2 Baseline Details
The complete model is illustrated in Figure 11.

Decision Transformer The encoding trans-
former has two layers each with 11 heads and
dropout rate with 0.1. The length of input feature
dimension is 770 and we use the sin-cos function
along the whole game as temporal embedding of
history. We used frozen BERT and HuBERT as
our encoders for text and speech. To process the
image and extract features, we train a model using
Segformer and Deformable-DETR. We first trained
a Segformer model to predict depth and semantic
segmentation using the RGB images generated by
the simulator. Adding these two new channels into
the RGB image, we augment the incoming image
into 5 channels. We then develop a Deformable-
DETR model with 300 object queries using the
5-channel images as input, and obtain a embedding
with a size of 300× 256 for each image.

C.3 Hyper-Parameter Decisions
We include major hyper-parameter decisions for
reproducibility purposes. Please refer to supple-
mentary code for more details.

Depth and Semantic Prediction (Segformer)
With the same backbone as Segformer, another
head is added to predict the depth along with the
semantic segmentation.

• learning rate: 6× 10−5

• weight decay: 0.01

• semantic class number: 23
• depth class number: 256
• optimizer: AdamW

Object Detection (Deformable-DETR) The
original Deformable-DETR receives an RGB im-
age input, while we have 5-channel (RGB, Depth,
Semantics) augmented images. We first use a fully
connected layer to encode the input and then use
the original Deformable-DETR model. Two heads
are used to predict the 2D and 3D bounding box
for each query during training.

• learning rate: 2× 10−4

• backbone learning rate: 2× 10−5

• weight decay: 1× 10−4

• optimizer: AdamW
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Figure 11: Temporally-Ordered Task-Oriented (TOTO) Transformer.

Learning Parameters

• learning rate: 1× 10−5

• weight decay: 1× 10−4

• optimizer: AdamW

Loss coefficients

• location belief MSE loss: 1× 10−3

• UfN dialogue move type cross entropy loss: 1

• UfN dialogue slot type BCE loss: 1× 10−2

• UfN dialogue slot value BCE loss: 2× 10−3

• RfN dialogue move type cross entropy loss: 1

• RfN dialogue slot type BCE loss: 1× 10−2

• RfN dialogue slot value BCE loss: 2× 10−3

• NfD Physical action type cross entropy loss: 1

• NfD Physical action arg MSE loss: 1× 10−2

C.4 Addendum to Results

Vision Model Performance The performance of
the vision models on semantic segmentation and
object detection are provided in Table 4. While
the performance itself is competent, the decision
transformer fails to benefit from the vision represen-
tations. This observation indicates that reasoning
over cross-modal information may be a bottleneck
for current end-to-end baselines.

Semantic Segmentation Object Detection

mIoU mAcc aAcc AP(IoU=0.50) AP(IoU=0.50:0.95)
65.60% 71.60% 97.10% 71.40% 41.30%

Table 4: The performance of the vision models on se-
mantic segmentation and object detection.

Additional Ablations We provide complete ab-
lation results in Table 5.

D Ethical Considerations

D.1 Consent Statement
You are invited to participate in a research study
that intends to develop approaches to support lan-
guage communication between humans and au-
tonomous vehicles (AV). If you agree to be part
of the research study, you will be asked to interact
with a simulated AV in a virtual world to accom-
plish a set of tasks. Imagine you need to send your
car out to do some errands. While the car is out,
there may be some unexpected situations happen-
ing (e.g., a fallen tree blocks the road, you need
to add a stop, etc.) You will need to communicate
with your car in natural language to help the car
deal with these exceptions and achieve the tasks.
The study will last approximately an hour. The in-
teraction between you and the car (i.e., speech/chat)
and screen activities (i.e., the movement of the car
in the virtual environment and its surroundings)
will be recorded in a datafile. The data collected in
this study will be analyzed and used for research
purposes. No personally identifiable information
besides the audio recording will be stored in the
datafile.

D.2 Debriefing Statement
Earlier in the consent form, we informed you that
you will be asked to interact with a simulated AV
in a virtual world to accomplish a set of tasks. In
actuality, the vehicle is not controlled by an algo-
rithm, but by our research staff. The exceptions
you encountered during the study were generated
by our research staff on the fly. Unfortunately, due
to the nature of this Wizard-of-Oz study, we could
not provide you with all of these details prior to
your participation. This ensures that your reactions
in this study were spontaneous and not influenced
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Model UfN (Seen) RfN (Seen) NfD (Seen)
Move Acc. Slot F1 Move Acc. Slot F1 Action Acc. Act-Arg Joint Acc.

TOTO 40.9(±3.9) 36.9(±0.0) 29.2(±0.7) 55.7(±0.2) 41.2(±2.5) 36.0(±3.4)

TOTO (+ Belief Tracking) 39.5(±2.2) 37.0(±0.1) 28.8(±0.9) 55.7(±0.2) 40.7(±3.6) 34.0(±4.7)
TOTO (+ Fine-tuned BERT) 38.4(±2.7) 36.9(±0.0) 27.8(±0.7) 55.7(±0.0) 43.6(±1.6) 30.0(±4.1)

TOTO (- Action History) 30.5(±1.5) 36.9(±0.0) 23.5(±1.7) 55.7(±0.0) 27.6(±2.8) 24.6(±4.0)
TOTO (- GT Transcript) 39.8(±1.9) 36.9(±0.1) 29.2(±0.8) 55.6(±0.1) 40.4(±3.4) 31.6(±4.3)
TOTO (- Object Detection) 42.5(±2.8) 37.0(±0.2) 30.4(±0.7) 55.8(±0.1) 39.2(±3.5) 34.4(±5.8)
TOTO (- Vision History) 41.9(±1.3) 37.0(±0.2) 29.1(±0.5) 55.8(±0.2) 42.0(±3.1) 36.1(±4.0)
TOTO (- Current Speech) 35.1(±2.7) 36.7(±0.5) 29.9(±0.9) 55.9(±0.2) 39.7(±1.9) 33.7(±3.0)
TOTO (- Map Knowledge) 42.6(±1.2) 36.9(±0.0) 29.3(±0.9) 55.8(±0.2) 44.6(±3.3) 39.1(±3.3)

Fine-tuned BERT Only 66.8(±2.0) 24.9(±5.5) 52.7(±1.0) 46.0(±2.5) 32.4(±1.2) 16.2(±2.7)
BERT Only 52.1(±3.2) 39.9(±1.3) 52.3(±1.0) 56.1(±0.3) 30.4(±1.8) 25.6(±2.8)
HuBERT Only 35.7(±3.4) 36.9(±0.0) 24.5(±0.1) 55.6(±0.1) 31.2(±0.9) 31.1(±0.9)
Deformable-DETR Only 31.5(±0.0) 36.9(±0.0) 24.4(±0.0) 55.7(±0.0) 31.5(±0.6) 31.5(±0.6)
Map Encoder Only 25.3(±2.5) 36.9(±0.0) 22.5(±1.6) 55.7(±0.0) 29.7(±0.6) 28.4(±1.8)

E.T. 36.6(±3.6) 37.0(±0.2) 29.4(±1.2) 55.9(±0.2) 40.0(±2.8) 32.2(±4.0)
E.T. (+ Fine-tuned BERT) 33.6(±1.1) 36.8(±0.1) 26.5(±0.9) 55.7(±0.0) 38.0(±1.1) 27.6(±6.2)

Model UfN (Unseen) RfN (Unseen) NfD (Unseen)
Move Acc. Slot F1 Move Acc. Slot F1 Action Acc. Act-Arg Joint Acc.

TOTO 49.2(±3.0) 26.2(±0.0) 31.0(±1.7) 54.0(±0.7) 45.8(±3.8) 41.1(±2.8)

TOTO (+ Belief Tracking) 47.1(±3.5) 26.2(±0.0) 29.0(±2.0) 53.7(±0.7) 47.6(±4.5) 38.8(±3.1)
TOTO (+ Fine-tuned BERT) 49.6(±0.9) 26.2(±0.1) 34.0(±2.1) 54.8(±0.0) 48.5(±4.6) 36.2(±5.5)

TOTO (- Action History) 35.5(±3.2) 26.1(±0.1) 28.2(±3.9) 54.8(±0.0) 36.8(±0.8) 36.0(±1.7)
TOTO (- GT Transcript) 46.7(±2.4) 26.2(±0.0) 31.6(±2.6) 54.2(±0.8) 46.2(±5.9) 37.6(±6.9)
TOTO (- Object Detection) 50.0(±1.8) 26.2(±0.1) 32.7(±2.2) 53.8(±1.2) 45.7(±5.2) 40.3(±5.4)
TOTO (- Vision History) 48.7(±2.3) 26.2(±0.1) 31.5(±2.9) 54.3(±0.7) 45.9(±4.2) 42.3(±3.5)
TOTO (- Current Speech) 42.8(±2.5) 25.8(±0.3) 33.8(±1.4) 55.1(±0.4) 46.5(±4.9) 39.4(±5.2)
TOTO (- Map Knowledge) 48.2(±1.0) 26.2(±0.1) 31.9(±1.2) 54.9(±0.8) 51.7(±3.4) 46.0(±4.0)

Fine-tuned BERT Only 67.2(±1.5) 16.2(±3.5) 57.0(±0.9) 46.9(±2.2) 37.1(±1.5) 19.6(±3.6)
BERT Only 57.3(±2.1) 31.7(±2.1) 57.4(±1.3) 55.9(±0.6) 35.3(±3.6) 30.1(±4.2)
HuBERT Only 40.9(±2.3) 26.2(±0.0) 30.2(±0.2) 54.7(±0.1) 36.7(±0.1) 36.7(±0.2)
Deformable-DETR Only 37.6(±0.0) 26.2(±0.0) 30.7(±0.0) 54.8(±0.0) 36.9(±0.1) 36.9(±0.1)
Map Encoder Only 30.1(±9.9) 26.2(±0.0) 23.1(±10.6) 54.8(±0.0) 37.0(±0.1) 37.0(±0.1)

E.T. 45.1(±3.8) 26.1(±0.1) 33.4(±2.2) 54.7(±0.8) 46.6(±3.3) 37.0(±5.9)
E.T. (+ Fine-tuned BERT) 41.8(±0.6) 26.2(±0.0) 34.1(±1.1) 54.8(±0.0) 44.5(±3.1) 32.9(±7.3)

Table 5: Complete experiment results of TOTO and the baselines.
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by prior knowledge that you are interacting with
another human player. We regret the deception in
the study, but we hope you understand the reason
for it. Knowing all of the study information, you
may withdraw your data without penalty or loss of
benefits to which you are otherwise entitled.

D.3 Complete Ethical Statement
The SDN benchmark contains human generated data
(speech and demonstrations). The institution’s In-
stitutional Review Board (IRB) considered this
project exempt from ongoing review. Preceding
each study, a staff will describe the capability of
the vehicle to the participant. The participant would
sign a consent form in which they were asked to
communicate with a fully-functional autonomous
vehicle in a simulated environment and navigate
to specified landmarks. After the last session, the
staff representative would debrief the participant by
introducing the Wizard-of-Oz nature of the study.
Participants would sign another debriefing form
to indicate their voluntary agreement to partici-
pate in this study. Since some acquaintance with
the DOROTHIE interface is required to play the wiz-
ard role, we trained five research staff on both the
Co-Wizard and Ad-Wizard interface and they al-
ternated in the human studies. The data collection
among research staff and volunteers are in line with
standard ethical practice.

D.4 Broader Impact
For broader social impact, DOROTHIE aims at em-
powering autonomous vehicles with the ability to
harness human knowledge and expertise through
dialogue, and enabling natural language commu-
nication and collaboration in tackling unexpected
situations. Since the dataset was developed from
the simulator, the safety concerns are minimal.
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