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Abstract—The growing penetration of distributed energy re-

sources (DERs) is leading to continually changing operating

conditions, which need to be managed efficiently by distribution

grid operators. The intermittent nature of DERs such as solar

photovoltaic (PV) systems as well as load forecasting errors not

only increase uncertainty in the grid, but also pose significant

power quality challenges such as voltage unbalance and voltage

magnitude violations. This paper leverages a chance-constrained

optimization approach to reduce the impact of uncertainty on dis-

tribution grid operation. We first present the chance-constrained

optimal power flow (CC-OPF) problem for distribution grids and

discuss a reformulation based on constraint tightening that does

not require any approximations or relaxations of the three-phase

AC power flow equations. We then propose two iterative solution

algorithms capable of efficiently solving the reformulation. In the

case studies, the performance of both algorithms is analyzed by

running simulations on the IEEE 13-bus test feeder using real

PV and load measurement data. The simulation results indicate

that both methods are able to enforce the chance constraints in

in- and out-of-sample evaluations.

Index Terms—AC optimal power flow, chance constraints,

distribution grids, uncertainty, voltage unbalance

NOMENCLATURE

Sets and Indices
N Set of nodes excluding slack bus, |N | = n
0 Substation node (slack bus) index
i, k, l 2 N Node index
� Set of phases, {a, b, c}
� 2 � Phase index
⌦ Uncertainty set, |⌦| = M
! 2 ⌦ Uncertainty realization
 Tuning iteration count

Random Variables
p�L,i,!, PL,i,! Uncertain active power load demand
q�L,i,!, QL,i,! Uncertain reactive power load demand
�p�L,i,!, �PL,i,! Deviation of uncertain active power load

demand from average value
p�G,i,!, PG,i,! Uncertain active power generation of solar

PV
�p�G,i,!, �PG,i,! Deviation of uncertain active power gener-

ation of solar PV from average value
p�i,!, Pi,! Uncertain active power injection
q�i,!, Qi,! Uncertain reactive power injection
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Y �
v,i Constraint violation indicator random vari-

able
Ê�

v,i Constraint empirical violation probability
Êmax

v Worst case empirical violation probability
for upper voltage constraint

Parameters

��
L,i,�L,i Power ratio of load demand

p�L,i, P L,i Average active power load demand
q�L,i, QL,i Average reactive power load demand
p�G,i, PG,i Average active power generation of solar PV
|s�G,i|, |SG,i| Apparent power rating of solar PV
p�i,!, P i,! Average active power injection
q�i,!, Qi,! Average reactive power injection
✏q Violation probability of solar PV inverter

reactive power limits, ✏q 2 [0, 1]
G,B Nodal conductance and susceptance matrices

of nodal admittance matrix Y
v, v Voltage magnitude limits
✏v Violation probability of voltage magnitude

limits, ✏v 2 [0, 1]
q�G,i, q

�
G,i

Upper and lower PV inverter limits w.r.t.
average generation

�
�
q,i,⇤q Upper reactive power constraint tightening

��
q,i,⇤q Lower reactive power constraint tightening

�
�
v,i,⇤v Upper voltage constraint tightening

��
v,i,⇤v Lower voltage constraint tightening

⌘ Tuning convergence tolerance
s 2 R+ Tuning parameters
smin, smax Upper and lower tuning parameter limits
��
v,i Estimated standard deviation of voltage mag-

nitude

Optimization Variables

q�
G,i,QG,i Reactive power generation of solar PV

p�
G,0,!,PG,0,! Active power injection at substation cor-

responding to uncertain power injections
q�
G,0,!,QG,0,! Reactive power injection at substation

corresponding to uncertain power injec-
tions

p�
G,0,PG,0 Active power injection at substation cor-

responding to average power injections
q�
G,0,QG,0 Reactive power injection at substation

corresponding to average power injections
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|v�
i,!|, |Vi,!| Voltage magnitude corresponding to un-

certain power injections
✓�
i,!,⇥i,! Voltage angle corresponding to uncertain

power injections
|v�

i |, |Vi| Voltage magnitude corresponding to aver-
age power injections

✓�
i ,⇥i Voltage angle corresponding to average

power injections
v�
dl,!,v

�
ql,! Real and imaginary components of neg-

ative sequence voltage phasor v�
l,! corre-

sponding to uncertain power injections
v+
dl,!,v

+
ql,! Real and imaginary components of posi-

tive sequence voltage phasor v+
l,! corre-

sponding to uncertain power injections
v�
dl,v

�
ql Real and imaginary components of neg-

ative sequence voltage phasor v�
l,! corre-

sponding to average power injections
v+
dl,v

+
ql Real and imaginary components of posi-

tive sequence voltage phasor v+
l,! corre-

sponding to average power injections

Functions
P!(·) Chance constraint probability
C(·), S(·) Cosine and sine components of branch an-

gle matrix
f(·) Power flow equations (short-hand)
f�
q,i(·) Empirical distribution of reactive power

limit
f�
v,i(·) Empirical distribution of voltage limit

I. INTRODUCTION

The increasing integration of distributed energy resources
(DERs), such as rooftop solar photovoltaic (PV) systems
and electric vehicles, poses both operational challenges and
opportunities for distribution grid operations. Large scale
penetration of DERs can lead to increases in power injection
uncertainty and load variability. This is particularly chal-
lenging at the distribution level, where DERs are typically
not equally distributed throughout the feeder. At the same
time, the presence of DERs provide new opportunities for
control, including using offline design of individual voltage
droop control curves [1], [2], limited communication of real-
time measurements [3], [4], or direct dispatching of inverters
based on frequent resolving of centralized optimal power
flow (OPF) problems [5]–[8]. While centralized OPF provides
optimal set-points, limited real-time system measurements and
communication delays can impact the frequency at which the
set-points are updated. For example, smart meters can typically
take measurements every 15 minutes, but this data is often only
available to system operators with several hours delay [9]. As a
result, it may be important to identify control set-points ensure
system security for extended periods of time, with intervals
ranging from 15 minutes (if good communication systems
exist) to an entire season (if low complexity is desired). Sig-
nificant variability and uncertainty in the load and DER power

injections is present across these time horizons, which, if not
appropriately accounted for, can lead to constraint violations
and high voltage unbalance between control set-point updates.
To mitigate this problem, we propose treating the variable
load and DER injections as uncertain and formulating the
centralized OPF problem as a stochastic optimization problem.

Approaches for stochastic OPF with uncertain renewable
energy generation and load have been well studied in the
context of transmission systems [10]–[14]. However, methods
developed for transmission systems often leverage DC power
flow representations and single-phase equivalents to represent
the system, which are not applicable to distributions grids,
who are inherently unbalanced and exhibit high R/X ratios.
Furthermore, while transmission operations focus primarily
on congestion management and system balancing, distribution
utilities focus on managing voltage magnitudes, voltage un-
balance, and other power quality issues for end customers.
As a result, there is a range of stochastic OPF models
that have been developed specifically for distribution grids.
This includes robust and distributionally robust methods [15]–
[17], stochastic approximation techniques [18], and chance-
constrained formulations [19]. These models focus primarily
on managing or reducing voltage magnitude violations [15],
[17] while minimizing objectives such as cost of energy [16],
[17], [19], deviation from a desired power withdrawal at
the substation [17], or losses [15], [18], [19]. They often
leverage power flow formulations that rely on a radial network
topology [20]–[24], include approximate representations of
unbalance [25]–[28], and sometimes take advantage of itera-
tive solution algorithms such as forward-backward sweep [6],
[29], [30]. Many of these formulations are linear approxima-
tions [?], [20], [25] or convex relaxations [22], [23], [26]–
[28], which may converge to solutions that are not actually
AC feasible. Methods that do consider the full, non-linear,
non-convex AC power flow formulation [16] or guarantee
convergence to a solution that satisfies those equations [19]
typically only consider balanced, single-phase systems.

In this paper, we take a more comprehensive view on voltage
management than previous work and focus specifically on
minimizing voltage unbalance, which causes damage to three-
phase motors [31]. Existing approximate models [25]–[28]
are inadequate for a detailed analysis of voltage unbalance,
as they assume that the system is nearly balanced to start
with. Instead, we build our optimization problem around a
full, detailed representation of the three-phase power flow,
including single-phase, two-phase, and untransposed three-
phase lines that serve unbalanced loads [24].

To minimize voltage unbalance while ensuring that voltage
magnitude constraints and DER capacity limits are satisfied,
we adopt a chance-constrained formulation. In this model,
we ensure that the voltage magnitude and inverter limits are
enforced with high probability using single chance constraints.
Chance constraints have the benefit of offering an intuitive
trade-off between optimality (i.e., lowering voltage unbalance)
and system robustness or reliability (i.e., limiting constraint
violations) by adjusting the desired violation probability pa-
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rameter. We note an important distinction between voltage
and inverter limits: voltage limits are soft constraints, i.e.,
small and infrequent voltage violations may be acceptable
and there is no inherent mechanism in place to enforce that
they are always within bounds, while inverter constraints
are hard limits, i.e., inverters have control systems in place
to ensure that the apparent power from the inverter always
stays at or below the maximum threshold as specified by the
IEEE Standard 1547-2018 [32]. Therefore, voltage constraint
violations reflect actual over- or under-voltages in the system,
while inverter constraint violations reflect a situation in which
the inverters will provide less apparent power than our system
model assumes. A better system model therefore incorporates
the capping of inverter power, i.e., curtailing the inverter
reactive power to stay with the limit. However, modeling this
type of capping behavior within the optimization problem can
be challenging.

In general, chance-constrained optimization problems are
hard to solve [33], as the probabilistic constraints must be
reformulated to obtain a tractable representation. Methods
to reformulate constraints in distribution grid applications
include moment-based reformulations assuming Gaussian un-
certainty [34] as well as distributionally agnostic methods
via the use of, e.g., conservative convex approximations [35],
[36], scenario approaches [37], or data-driven robust meth-
ods [17]. In this work, we leverage two data-driven, iterative
approaches to solving AC chance-constrained optimal power
flow (CC-OPF), inspired by existing methods for transmission
networks [38]–[41] and balanced distribution networks [19].
The key idea is to represent each chance constraint using the
nominal constraint with the addition of a tightening term (also
known as an uncertainty margin) that secures the constraint
against uncertainties. An optimally chosen tightening term will
yield solutions that satisfy the chance constraints with the
exact desired probability level. The methods iterate between
solving an approximate, deterministic OPF with fixed tight-
ening terms and using available uncertainty data to evaluate
the resulting solution and update the tightening terms. A more
principled approach to updating or tuning the tightening terms
was developed in [42] and applied to transmission networks
formulated with a DC linearized power flow approximation.
This tuning-based approach solves a sequence of simpler
optimization problems, resulting in better computationally
tractability, while leveraging detailed system models in the
evaluation process, where we simulate system behavior, to
allow for the integration of more complex behavior such as
inverter capping.

A particular challenge for stochastic and data-driven meth-
ods in distribution grids is the characterization of the uncer-
tainty. Assumptions that may be true when considering large
numbers of customers (e.g., the law of large numbers) no
longer apply to the small number of consumers in distribution
feeders, where both load and DER power injections are hard
to accurately forecast and exhibit large variability over time.
The most flexible way of modeling these distributions is
using scenarios. However, the quality of the solution may be

sensitive to the choice of scenarios, and therefore choosing an
appropriate set of samples (e.g., based on historical data) is
a challenging yet important aspect that often is overlooked.
To remedy this, we investigate how the number of data points
and choice of scenario sets impact the solution quality. Using
realistic load and solar PV data from Pecan Street [43], we
assess how the solution changes as we use either entire days
of data or randomly sampled data points across multiple days.

In summary, the contributions of the paper are as follows:
1) We present a chance-constrained formulation of the three-

phase AC OPF problem which minimizes voltage unbal-
ance by controlling inverter set-points. Our formulation
extends existing work in the literature by considering the
full three-phase, unbalanced AC power flow physics and
incorporating the effect of inverter capping.

2) We propose a computationally tractable reformulation
of our chance-constrained problem, extending the idea
of uncertainty margins from [38], [39] to a distribution
grid setting. We then compare two data-driven algorithms
for identifying appropriate constraint tightening values:
directly using the results of a Monte Carlo simulation
(inspired by transmission grid AC CC-OPF in [39]) or
tuning a safety factor (inspired by a transmission grid DC
CC-OPF in [41]). Relative to prior work, these updated
algorithms include a number of adaptations to make them
applicable to the unbalanced distribution grid setting.

3) We perform a detailed case study using real load and
PV data, where we investigate three important aspects of
data-driven chance-constrained optimization in distribu-
tion grids:

a) We investigate how properties of the uncertainty data
(i.e., sampling method and correlation between sam-
ples) can influence the resulting solutions.

b) We compare our two methods with respect to their
ability to enforce chance constraint satisfaction.

c) We assess whether the proposed methods are able
to effectively integrate the effect of hard PV inverter
limits via the use of inverter capping.

The remainder of the paper is organized as follows: Section
II presents the uncertainty modeling and formulation of the AC
CC-OPF problem. Section III details the analytical reformula-
tion and also provides a description of the iterative quantile-
based and tuning-based solution algorithms. We introduce the
test case and data sets used in the case study in Section IV and
present the numerical results and analysis in Sections V, VI
and VII. Section VIII concludes.

II. PROBLEM FORMULATION

In this section, we describe our model of the PV inverters
and load in the distribution grid. We then present a formulation
of the three-phase chance-constrained AC OPF problem.

A. Notation

We use the following phasor notation: X = |X|\✓ = Xd +
jXq, where X is a complex phasor, |X| and ✓ represent the
magnitude and angle components, Xd and Xq denote the real
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and imaginary components, and j =
p
�1. All optimization

variables are denoted using bold symbols. We use a subscript
! to represent dependency on a given uncertainty realization
! (discussed in detail in Section II-B). All scalar values are
denoted using small letters, while all vector counterparts and
matrices are denoted using capital letters. We represent the
element-wise product of two vectors using �.

B. Uncertainty Modeling

Due to the small number of households served by different
parts of a distribution feeder, we do not observe the same
smoothing effect as in transmission grids [24]. The electricity
consumption and PV production of individual households is
highly variable, as illustrated by the data in Fig. 1 with mea-
surements obtained from Pecan Street for a set of households
in New York [43]. Not only is the load very challenging
to forecast, but the data is not necessarily well described
by standard probability distributions. To capture the realistic
probability distributions and dependence structure of the solar
PV and loads, we propose to directly leverage historical data
(which may, in many cases, be obtained by utilities from smart
meters after a delay [9]). We denote the full data set as ⌦,
with individual realizations represented as ! 2 ⌦. This sample
set may include generation and load across certain days (i.e.,
representative days) or randomly drawn samples from a larger
set of historical data (where the resulting sample set has no
temporal structure).

We next describe our load and PV modeling assuming
a network where N denotes the set of three-phase nodes
and � = {a, b, c} represents the set of phases.

1) Modeling of loads: For each node i 2 N , we denote
the three-phase active and reactive power consumption for a
given realization ! as PL,i,! = [paL,i,! pbL,i,! pcL,i,!]

> and

(a) PV active power generation

(b) Load active power demand

Fig. 1. One-minute resolution Pecan Street data for 15 houses from a single
day. (a) PV active power generation. (b) Load active power demand.

QL,i,! = [qaL,i,! qbL,i,! qcL,i,!]
>, respectively. If reactive power

measurements are not available (as will be the case in our
case study), we assume that the loads operate with a constant
power factor pf�

i , giving rise to the following reactive power
consumption:

QL,i,! = �L,i � PL,i,!, 8i 2 N ,! 2 ⌦, (1)

where the constant factor �L,i = [�a
L,i �

b
L,i �

c
L,i]

> is computed
based on the power factor pf�

i with

��
L,i =

q
(1� pf�

i

2
)/(pf�

i

2
), 8� 2 �, i 2 N .

We define the average active load P̄L,i = [p̄aL,i p̄
b
L,i p̄

c
L,i]

> and
average reactive load Q̄L,i = [q̄aL,i q̄bL,i q̄cL,i]

> as the sample
average across all realizations in our sample set ⌦ with

p̄�L,i =
1

|⌦|
X

!2⌦

p�L,i,!, 8� 2 �, i 2 N , (2a)

q̄�L,i =
1

|⌦|
X

!2⌦

q�L,i,!, 8� 2 �, i 2 N , (2b)

and express the uncertainty of the load consumption as devi-
ations from this average,

�PL,i,! = PL,i,! � P̄L,i, 8i 2 N ,! 2 ⌦, (3a)
�QL,i,! = QL,i,! � Q̄L,i 8i 2 N ,! 2 ⌦. (3b)

2) Modeling of active power generation from solar PV:
The active power generation of the solar PV inverters under
realization ! is defined as PG,i,w = [paG,i,! pbG,i,! pcG,i,!]

> and
we define the average generation P̄G,i = [p̄aG,i p̄

b
G,i p̄

c
G,i]

> and
uncertain deviation �PG,i,! in a similar way as for the loads,
i.e.,

p̄�G,i=
1

|⌦|
X

!2⌦

p�G,i,!, 8� 2 �, i2N , (4a)

�PG,i,!=PG,i,!�P̄G,i, 8i2N ,! 2 ⌦. (4b)

We assume that the utility does not wish to curtail active power
and therefore consider the active power of the PV inverters as
uncontrollable random variables.

C. Reactive Power Control from Solar PV Inverters

We assume that all solar PV inverters are equipped with
smart inverters and provide opportunities for reactive power
control as outlined in the IEEE Standard 1547-2018 [32].
For the purposes of this paper, we assume that the inverter
is operating in the constant reactive power mode, where it
provides reactive power according to a given set-point,

QG,i = [qa
G,i q

b
G,i q

c
G,i]

>, 8i 2 N .

This setpoint is provided by the utility (without accounting
for, e.g., local voltage measurements) and serves as a decision
variable in our problem. Our goal is to identify a suitable
set-point QG,i that will remain the same for all uncertainty
realizations ! and contributes to minimizing voltage unbalance
while keeping voltage magnitudes within bounds. Note that
other types of reactive power control, such as the voltage
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Fig. 2. Inverter reactive power control with and without capping.

droop-control outlined in [32], could also be considered but is
deferred to future work.

We further assume that the active and reactive power of the
PV inverter must adhere to limits on apparent power. For a
single-phase PV inverter connected to phase � at node i with
apparent power rating |s�G,i|, the inverter reactive power q�

G,i
is constrained by

P!

�
(q�

G,i)
2+(p�G,i,!)

2 |s�G,i|
�
�1�✏q, 8�2�,i2N ,!2⌦. (5)

Because the active power generation p�G,i,! varies according
to uncertainty realizations !, this constraint is enforced as a
chance constraint with acceptable violation probability ✏q 2
[0, 1]. The chosen reactive power set-point q�

G,i is guaranteed
to be feasible with probability 1� ✏q .

Fig. 2 illustrates the PV inverter limit (blue dashed line),
which is assumed to be a hard constraint, and the reactive
power is constant (orange line) with respect to the active
power. If the reactive power remains fixed beyond a certain
level of active power generation, the PV inverter is overloaded
and operates in the region where the inverter limits are
violated, indicated by the red line. Operating under overloaded
conditions for long duration of time can lead to premature fail-
ure of the inverter, potentially requiring manual intervention.
To avoid this, we consider capping the inverter to be within the
specified limits by reducing the reactive power, as shown by
the green curve. This also complies with the IEEE Std 1547-
2018 [32], which states that DERs are required to respect their
apparent power limits. For such cases, the violation probability
✏q should be interpreted as the probability that an inverter is
not able to provide the desired reactive power to the grid.

D. Grid Model

We consider a three-phase distribution grid with one slack
node and a set of remaining nodes N , with n = |N |.
While we limit our case study to radial distribution grids,
our model makes no assumptions of radiality and could thus
also be applied to distribution grids that are operated in non-
radial configurations. Distribution grids typically have several
single and two-phase nodes. However, to simplify notation,
we consider all nodes to have three phases. For the single and
two-phase nodes, the corresponding entries for the missing

phases are set to zero. The resulting total number of single-
phase connections in the distribution grid is 3(n+ 1).

The distribution substation is chosen as the slack node with
index i = 0. We assume that there is one solar PV inverter and
one load at each single-phase connection of every node i 2 N .
If any node connected to a phase has no source or load, we
set the corresponding entries to zero.

1) Grid parameters: Following [44], the critical distribu-
tion grid components (including distribution lines, cables, and
transformers) are modeled using an overall nodal admittance
matrix

Y = G+ jB 2 C3(n+1)⇥3(n+1), (6)

where G, B 2 R3(n+1)⇥3(n+1) denote the nodal conductance
and susceptance matrices, respectively.

2) Nodal power injections: The active power injec-
tion Pi,! 2 R3 at node i 2 N varies with the uncertainty
realization !. It is modeled as the sum of the average active
generation P̄G,i 2 R3 and average load P̄L,i 2 R3 with
corresponding deviations �PG,i,! 2 R3 and �PL,i,! 2 R3,

Pi,!=
�
P̄G,i + �PG,i,!

�
| {z }

PG,i,!

�
�
P̄L,i + �P L,i,!

�
| {z }

PL,i,!

, 8i2N ,!2⌦. (7)

The reactive power injection Qi,! 2 R3 at node i 2 N is
modeled as the difference between the controllable reactive
power generation of solar PV inverters QG,i and the reactive
power load QL,i,! , i.e., Qi,! = QG,i � QL,i,! . The average
active and reactive power injections at each node are defined
as P̄i = P̄G,i � P̄L,i and Q̄i = QG,i � Q̄L,i, respectively.

The active power balance is maintained by the substation,
which supplies the difference between the active power gen-
eration and load for each scenario as well as any additional
power needed to cover the power losses. We treat the active
power injection at the substation as a decision variable PG,0,! .
Similarly, the substation node also guarantees reactive power
balance. We define the reactive power injection at the substa-
tion as a decision variable QG,0,! , which covers the difference
between production, consumption, and losses.

3) Voltage representation: The three-phase OPF is im-
plemented in the polar coordinate frame using the phase-
to-neutral voltage magnitude and angle variables at every
node i 2 N . We denote the voltage magnitudes and an-
gles corresponding to the average power injections P̄i, Q̄i

using |Vi| = [|va
i | |vb

i | |vc
i |]> and ⇥i = [✓a

i ✓b
i ✓c

i ]
>,

respectively. As the active and reactive power injections
change, the voltages change as well. The voltage magnitude
and angle for a given realization ! is denoted by |Vi,!| =
[|va

i,!| |vb
i,!| |vc

i,!|]> and ⇥i,! = [✓a
i,! ✓b

i,! ✓c
i,!]

>. The dis-
tribution substation is considered as the reference for voltage
angle measurements. We assume the voltage is independent
of ! and fixed at the substation, i.e.,

|V0|\⇥0 =
⇥
1\0� 1\� 120� 1\120�

⇤>
. (8)
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All other voltage magnitudes are constrained by

P!

�
|v�

i,!|  v
�
� 1� ✏v, 8� 2 �, i 2 N ,! 2 ⌦, (9)

P!

�
|v�

i,!| � v
�
� 1� ✏v, 8� 2 �, i 2 N ,! 2 ⌦, (10)

where v and v 2 R are the respective lower and upper voltage
magnitude bounds. Because the voltage magnitude |v�

i,!| are
dependent on the uncertainty realization !, these constraints
are enforced as with acceptable violation probability ✏v 2
[0, 1]. The voltage magnitude constraints can be considered
as soft constraints, where a constraint violation indicates an
under- or over-voltage. The violations of soft constraints is
acceptable if the duration and magnitude are small.

4) Power flow: Following [44], we express the power
balance equation at node i 2 {0,N} using

Pi,! =|Vi,!|�
X

k2{0,N}

h
Gik � C

�
⇥ik,!

�i
|Vk,!|

+|Vi,!|�
X

k2{0,N}

h
Bik � S

�
⇥ik,!

�i
|Vk,!|, (11a)

Qi,! =|Vi,!|�
X

k2{0,N}

h
Gik � S

�
⇥ik,!

�i
|Vk,!|

�|Vi,!|�
X

k2{0,N}

h
Bik � C

�
⇥ik,!

�i
|Vk,!|, (11b)

where Gik, Bik 2 R3⇥3 represent the real and imaginary
sub-matrices of the nodal admittance matrix Y for a three-
phase branch ik. We represent the cosine and sine components
of the branch angle matrix ⇥ik,! 2 R3⇥3 using C(⇥ik,!)
and S(⇥ik,!), respectively. Note that the equations (11) rep-
resents the AC power flow equations for all ! 2 ⌦. For the
remainder of the paper, we will use

f(|Vi,!|,⇥i,!, Pi,!, Qi,!) = 0, 8i 2 {0,N}, ! 2 ⌦,

as a shorthand representation of the power balance constraints
defined in (11).

E. Objective Function
Our objective for the OPF problem is to minimize volt-

age unbalance. We utilize the IEC standard 61000-2-2 [45]
commonly referred to as Voltage Unbalance Factor (VUF) to
define voltage unbalance. For a three-phase node l, the square
of VUF for the uncertainty realization ! is expressed as

VUF2
l,! =

|v�l,!|
2

|v+l,!|
2 =

(v�
dl,!)

2
+ (v�

ql,!)
2

(v+
dl,!)

2
+ (v+

ql,!)
2 , (12)

where v�
dl,!,v

�
ql,! and v+

dl,!,v
+
ql,! are the rectangular form

representation of negative sequence voltage v�l,! and positive
sequence voltage v+l,! , respectively, and expressed as non-
linear functions of our voltage variables Vl,!,⇥l,! using

v�
dl,! = Re{v�l,!},v

�
ql,! = Im{v�l,!}, where (13a)

v�l,!= |va
l,!|\✓a

l,!+|vb
l,!|\(✓b

l,!�120�)+|vc
l,!|\(✓c

l,!+120�),

v+
dl,! = Re(v+l,!),v

+
ql,! = Im(v+l,!), where (13b)

v+l,!= |va
l,!|\✓a

l,!+|vb
l,!|\(✓b

l,!+120�)+|vc
l,!|\(✓c

l,!�120�).

F. Chance-Constrained Optimal Power Flow

The three-phase AC CC-OPF problem is formulated as
follows:

min
PG,0,QG,

|V |,⇥

X

!2⌦

X

l2N
VUF2

l,! (CC-OPF)

s.t. f
�
|Vi,!|,⇥i,!, Pi,!, Qi,!

�
= 0, 8i2{0,N},!2⌦,

P!

�
|v�

i,!|  v
�
� 1� ✏v, 8�2�,i2N ,

P!

�
|v�

i,!| � v
�
� 1� ✏v, 8�2�,i2N ,

P!

�
(q�

G,i)
2+(p�G,i,!)

2 |s�G,i|
�
�1� ✏q, 8�2�,i2N ,

|V0|\⇥0 =
⇥
1\0� 1\� 120� 1\120�

⇤>
,

where the optimization decision variables for each uncer-
tainty realization ! 2 ⌦ are the voltage magnitudes at all
nodes |V | 2 R3(n+1), voltage angles at all nodes ⇥ 2
R3(n+1), active power generation at the substation PG,0 2 R3,
and reactive power generation at all nodes QG 2 R3(n+1).

In general, we interpret the chance constraints (5) and (10)
as the likelihood that the distribution grid operator will need
to take extra control actions in real time to protect the system.
By choosing high acceptable violation probabilities ✏q and ✏v ,
the system is at a higher risk of insecure operation as it
may necessitate frequent deployment of real-time controls,
which are not always available. Alternatively, choosing a low
violation probability is expensive, but makes system operation
safer and less stressful for the operator [39].

III. ANALYTICAL REFORMULATION AND SOLUTION
METHODS

As formulated, CC-OPF is intractable due to the chance
constraints (5) and (10). Not only is the feasible region
defined by the chance constraints non-convex, evaluating the
feasibility of a solution is generally difficult as it requires
multi-dimensional integration. Furthermore, it can also be
computationally expensive to enforce the power balance con-
straints (11) for all ! 2 ⌦, particularly if the uncertainty
set ⌦ is large. As a result, it is necessary to reformulate
these constraints into deterministic counterparts in order to
obtain a tractable formulation that can be efficiently solved.
Our problem setting yields two additional complications. First,
we do not assume any distributional assumptions on the
uncertainty in the problem. Second, we must account for the
uncertainty in the full, non-linear, non-convex AC power flow
constraints. Consequently, CC-OPF falls under a challeng-
ing class of problems, where typical analytical reformulation
methods cannot be applied.

To solve this problem, we take an iterative, data-driven
approach that combines an approximate problem formulation
with sample-based evaluations to successively adapt the for-
mulation, as illustrated in Fig. 3. Inspired by [39], [41], we re-
place (11) by a single set of deterministic power flow equations
and represent the chance constraints (5) and (10) using their
nominal counterpart plus a fixed tightening term that secures
the system against uncertainty by functioning as an uncertainty



ACCEPTED FOR PRESENTATION IN 11TH BULK POWER SYSTEMS DYNAMICS AND CONTROL SYMPOSIUM, JULY 25-30, 2022, BANFF, CANADA 7

Approximate 
problem

System 
data

Uncertainty data

Evaluation

Candidate 
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Update

Solution

Fig. 3. The general iterative process, consisting of solving an approximate
problem formulation and using the results of a sample-based evaluation to
update the formulation.

margin. The tightening terms are successively updated using
evaluated feedback from the available uncertainty data.

The primary advantage of the iterative approach is that the
solving of the three-phase AC OPF problem is decoupled from
the consideration of the uncertainty, which is wholly captured
via the tightenings. This allows us to leverage the available
uncertainty data without increasing the computational burden
of solving the optimization problem. Thus, in contrast to
other sample-based methods such as the scenario approach,
the size of the optimization does not grow with the number
of samples [42]. Furthermore, we are able to use the full
non-linear, non-convex AC power flow equations, without
needing to perform any explicit linearizations or approxima-
tions. Because we deliberately choose to use an approximate
reformulation that is simple to solve, the resulting algorithm
can also take advantage of the computational efficiency of
commercial solvers.

A challenge of using this style of deterministic reformula-
tion is accurately determining and updating the values of the
uncertainty margins. We need to ensure that the uncertainty
margins are large enough that the solution to the reformulated
problem is ensured to be feasible to the original chance
constrained problem, yet small enough so that we do not
obtain an overly conservative solution. We thus explore two
methods for iteratively updating constraint tightenings: a direct
quantile-based method (inspired by [39]) and a tuning-based
method (based on [41]). The remainder of this section details
the main components of the iterative approach, including the
two tuning variations.

A. Approximate Problem Formulation
As the approximate problem formulation, we choose to use

a generalized reformulation based on [39]. In the following,
we detail the reformulated constraints and objective function.

1) Power flow: Rather than enforcing the power flow
equations in (11) for all uncertainty realizations, we enforce
a single set of power flow equations at node i 2 {0,N}
which are functions of the average power injections, P̄i, Q̄i

and corresponding voltage variables |Vi|,⇥i. The shorthand
representation of the power balance constraint becomes

f(|Vi|,⇥i, P i, Qi) = 0, 8i 2 {0,N}.

2) Inverter limits: We replace the inverter limits defined
by quadratic chance constraints in (5) with deterministic box
constraints, consisting of a nominal limit with a tightening
term. The upper and lower limits for a PV inverter connected

Fig. 4. The histogram represents the probability distribution function of an
example inverter reactive power upper limit, f�

q,i(·). The constraint tightening

�
�
q,i, illustrated with the orange line, is given by the distance between

the nominal limit q�G,i (brown line) and the ✏q quantile of the empirical
distribution of the upper reactive power limit f�

q,i(✏q) (yellow line).

to phase � 2 � at node i 2 N are calculated using the average
generation p�G,i as follows:

q�G,i =
q

|s�G,i|2 � (p�G,i)
2, 8� 2 �, i 2 N , (15a)

q�
G,i

= �
q
|s�G,i|2 � (p�G,i)

2, 8� 2 �, i 2 N . (15b)

The tightenings for the upper and lower limits are denoted by
�
�
q,i,�

�
q,i 2 R+, respectively. For notational convenience, we

also denote the tightenings using vectors

⇤q =
h⇥
��
q,i

⇤>
�2�

i>
i2N

, ⇤q =
h⇥
�
�
q,i

⇤>
�2�

i>
i2N

.

Note that these tightenings can be pre-calculated since the
inverter reactive power limits depend only on the uncertainty
samples which are known a priori. E.g., for the upper inverter
limit, we evaluate the limit q�G,i,! for each uncertainty sample
! 2 ⌦ using Eq. (15a) with the sampled value pG,i,! rather
than the averaged value p�G,i. By calculating this limit under
all uncertainty realizations, we obtain an empirical distribution
for the upper reactive power generation limit, which we denote
as f�

q,i(·). The empirical distribution for the lower reactive
power generation limit would simply be the negative, i.e.,
�f�

q,i(·). We then find the desired quantiles of the empirical
distribution and use them to directly calculate the constraint
tightenings. For the chance constraint on the upper reactive
power limit to hold, we require the upper limit to be set to
f�
q,i(✏q), which is the ✏q quantile of the empirical distribution

of the upper reactive power limit. We can observe that the
appropriate uncertainty margin to ensure the chance constraint
holds corresponds to the difference between the nominal
inverter lower limit q�

G,i
and f�

q,i(✏q). Thus, the constraint
tightenings for reactive power limits are calculated as follows:

�
�
q,i = q�G,i � f�

q,i(✏q), 8� 2 �, i 2 N ,

��
q,i = �f�

q,i(1� ✏q)� q�
G,i

, 8� 2 �, i 2 N .

This process is also illustrated in Fig. 4. We note that
once these tightening values are calculated, they remain fixed
throughout the entirety of the iterative algorithm.

3) Voltage limits: We similarly replace the chance con-
straints on the upper and lower voltage magnitude constraints
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(10) with the corresponding nominal limits and tightenings,
defined by �

�
v,i,�

�
v,i 2 R+, respcetively. The vector represen-

tations are

�V =

h
��2�
V,i

i

i2N

�>
, �V =

h
�
�2�
V,i

i

i2N

�>
.

In contrast to the inverter limits, the voltage constraint tight-
enings need to be calculated and updated within the iterative
algorithm since they require obtaining a solution from the
approximate OPF problem in order to be determined.

4) Objective function: We calculate the deterministic VUF
by replacing the voltage variables Vl,!,⇥l,! with their nom-
inal counterparts |Vl|,⇥l (corresponding to average power
injections) in (12) and (13).

5) Reformulated problem: The resulting approximate op-
timization problem obtained from using the reformulation
described above is deterministic and takes the following form:

min
PG,0,QG,

|V |,⇥

X

l2N
VUF2

l (CCR-OPF)

s.t. f(|Vi|,⇥i, P̄i, Q̄i) = 0, 8i 2 {0,N},

|v�
i |  v � �

�
v,i, 8� 2 �, i 2 N ,

|v�
i | � v + ��

v,i, 8� 2 �, i 2 N ,

q�
G,i  q�G,i � �

�
q,i, 8� 2 �, i 2 N ,

q�
G,i � q�

G,i
+ ��

q,i, 8� 2 �, i 2 N ,

V0\⇥0 =
⇥
1\0� 1\� 120� 1\120�

⇤>
.

We denote a solution of CCR-OPF using X =
(PG,0,QG, |V|,⇥).

B. Solution Evaluation

After we solve the approximate problem (CCR-OPF) and
obtain a candidate solution X, we use the available uncertainty
samples to evaluate the conservativeness of the voltage con-
straint tightenings. We can either evaluate the solution X by
creating an empirical distribution and performing a quantile
evaluation (as done to obtain the inverter limit tightenings
in Section III-A2) or by estimating the empirical violation
probability of the solution. Both methods are detailed below.

1) Quantile evaluation: We calculate power flows for each
sample in our uncertainty set using the candidate solution
X. By doing so, we obtain empirical distributions for the
voltage magnitude around the candidate voltage solution |v�

i |
at node i 2 N connected to phase � 2 �, which we
denote with f�

v,i(·). Similarly to the evaluation of the inverter
limit tightenings, we use the empirical distribution to directly
evaluate the voltage magnitude value at our desired quantiles.
As a result, we obtain f�

v,i(1 � ✏v) and f�
v,i(✏v) as the

respective upper 1�✏v and lower ✏v quantiles of the empirical
distribution f�

v,i(·).
2) Empirical violation probability evaluation: Alterna-

tively, we can use the uncertainty samples to estimate the

empirical violation probability of the candidate solution X
to ascertain whether it satisfies the chance constraint. As an
example, let us take the upper voltage magnitude constraint
for node i 2 N connected to phase � 2 � and samples
p�G,i,! and p�L,i,! . We define an indicator random variable
Y �
v,i(X, p�G,i,!, p

�
L,i,!) 2 {0, 1}, which evaluates to 0 if the

upper voltage constraint holds and 1 otherwise, i.e.,

Y �
v,i(X, p�G,i,!, p

�
L,i,!) =

(
0 if |v�

i,!|  v,

1 otherwise.
(17)

We obtain the empirical violation probability for this con-
straint, denoted Ê�

v,i(X) 2 [0, 1], by taking the average
evaluated on all samples, i.e.,

Ê�
v,i(X) =

1

|⌦|
X

!2⌦

Y �
v,i(X, p�G,i,!, p

�
L,i,!). (18)

We perform similar evaluations to obtain the empirical viola-
tion probabilities of the voltage lower limits Ê�

v,i(X), inverter
upper limits Ê�

q,i(X), and inverter lower limits Ê�
q,i(X). For

a solution X, we define the worst case empirical violation
probability for a single constraint type as the maximum
empirical violation probability observed across all constraints
of that type. For, e.g., the worst case empirical violation
probability for the voltage upper limit is

Êmax
v (X) = max

i2N ,�2�
{Ê�

v,i}. (19)

We further define the worst case empirical across all voltage
constraints as

Êmax
v (X) = max{Êmax

v (X), Êmax
v (X)}. (20)

3) Handling of Inverter Limits: As noted in Section II-C,
we assume PV inverter limits are hard constraints. Conse-
quently, as we evaluate the solution X in this step, we propose
two methods to deal with the situation where the inverter limit
specified in (5) is violated:

(i) We allow inverters to be overloaded and observe viola-
tion of the inverter limits.

(ii) We cap the inverter reactive power to be within the
apparent power limit.

We note that the latter approach (i.e., with capping) is a more
realistic scenario. While the capping of the inverter output is
difficult to represent as a constraint within the optimization
problem itself, we can easily perform this a posteriori during
the solution evaluation step.

C. Iterative Schemes
We next describe the two iterative algorithms used to solve

the deterministic CCR-OPF.
1) Quantile-based method: Based on [19], [38], [39], this

method uses available samples to generate empirical distribu-
tion functions for the voltage variables. We then follow Section
III-B1 to find the desired quantiles of the empirical distribu-
tion, which are used to calculate the tightenings for the voltage
magnitude limits. The quantile-based method comprises of the
following steps:
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(1) Initialize: Set the iteration count to  = 0 and voltage
magnitude tightenings ⇤

(0)
v ,⇤(0)

v to zero. The reactive
power generation tightenings ⇤q,⇤q are calculated accord-
ing to the procedure described in Section III-A2.

(2) Solve approximate problem: Solve CCR-OPF using fixed
tightenings ⇤

()
v ,⇤()

v ,⇤q,⇤q to obtain a candidate oper-
ating point X(+1).

(3) Solution evaluation: Perform the quantile evaluation de-
scribed in Section III-B1 to obtain the upper 1 � ✏v and
lower ✏v quantiles of the empirical distribution of the
voltage magnitude, f�,(+1)

v,i (1� ✏v) and f�,(+1)
v,i (✏v).

(4) Update tightenings: Use the evaluated quantiles to directly
update the voltage magnitude constraint tightenings,

�
�
v,i = f�,(+1)

v,i (1� ✏v)� |v�,(+1)
i |, 8� 2 �, 8i 2 N ,

��
v,i = |v�,(+1)

i |� f�,(+1)
v,i (✏v), 8� 2 �, 8i 2 N .

(5) Check convergence: Terminate when the upper and lower
voltage constraint tightenings converge below their respec-
tive pre-specified tolerance levels ⌘v, ⌘v 2 R+, i.e., both

max{|⇤(+1)
v �⇤

()
v |}  ⌘v, max{|⇤(+1)

v �⇤()
v |}  ⌘

v

are satisfied. Return final solution X(+1). Otherwise,
increase the iteration count to  =  + 1 and return to
step (2).

2) Tuning-based method: This solution algorithm employs
a tuning-based approached adapted from [41]. Rather than
directly using the quantile evaluation to calculate the uncer-
tainty margins, we define the tightenings as parameterized by
a single-dimensional tuning parameter, denoted s 2 R+. This
parameter is then iteratively adjusted based on the empirical
violation probability evaluation of the current candidate so-
lution. We follow [41] and use a simple bisection search to
adjust s (although we note that various other tuning procedures
can also be used).

Before detailing the algorithm steps, we first define the
tightening as a product between the tuning parameter s and
an approximation or estimation of the standard deviation of
the nominal constraint. The tightenings are symmetric for the
upper and lower voltage magnitude constraints and take the
following form:

�
�
v,i = ��

v,i = s · ��
v,i, 8� 2 �, i 2 N , (21)

where ��
v,i 2 R+ represents the estimated standard deviation

of the voltage magnitude at node i 2 N connected to phase
� 2 �. To obtain this estimate, we solve CCR-OPF using
voltage limit tightenings ⇤v = ⇤v = 0 and inverter limit
tightenings ⇤q,⇤q initialized according to Section III-A2. We
obtain an operating point X(0) and evaluate the empirical
distributions f�,(0)

v,i (·) according to Section III-B2. We set ��
v,i

as the standard deviation of f�,(0)
v,i (·).

The operating point X(0) is also used to initialize upper
bound s(0)max and lower bound s(0)min of the tuning parameter. We
aim to initialize these bounds such that the mid-point of the
bounds (which will be the initial tuning parameter value s(0)

since we are performing a bisection search) will approximate
the initial tightenings of the quantile-based method. The initial
bounds are as follows:

s(0)min = 0, (22a)

s(0)max =
⇣

max
i2N ,�2�

�
|v�,(0)

i |� f�,(0)
v,i (✏v)

 ⌘ 2

��
v,i

. (22b)

The lower bound corresponds to the case where all tightenings
are zero. The upper bound calculates the maximum difference
between the voltage magnitude operating point and ✏v quantile
across all single phase connections. The resulting value is
divided by the standard deviation estimate and doubled.
(1) Initialize: Set the iteration count to  = 0 and calculate the

inverter limit tightenings ⇤q,⇤q as described in Section
III-A2. Initialize the tuning parameter bounds s(0)min, s

(0)
max

according to (22) and calculate the initial value of the
tuning parameter by taking the mid-point of the bounds
s(0) = (s(0)max � s(0)min)/2 + s(0)min. Calculate ⇤

(0)
v ,⇤(0)

v

according to (21).
(2) Solve approximate problem: Solve CCR-OPF using fixed

tightenings ⇤
()
v ,⇤()

v ,⇤q,⇤q to obtain candidate operat-
ing point X(+1).

(3) Solution evaluation: Perform the empirical violation prob-
ability evaluation described in Section III-B2 to calculate
the worst case empirical violation probability Êmax

v (X)
as defined in (20).

(4) Update tightenings:
If Êmax

v (X(+1))  ✏v , decrease s by setting s(+1)
max =

s() to obtain a less conservative solution.
If Êmax

v (X(+1)) > ✏v , increase s by setting s(+1)
min =

s() to obtain a more conservative solution.
Obtain a new tuning parameter s(+1) = (s(+1)

max �
s(+1)
min )/2 + s(+1)

min and update the tightenings according
to (21).

(5) Check convergence: Terminate if the worst case violation
probability is within a tolerance level ⌘ 2 R+ of the
desired ✏v , i.e, |Êmax

v (X(+1))� ✏v|  ⌘, or if the upper
and lower bounds have converged within tolerance ⌘s 2
R+, i.e. |s()max � s()min|  ⌘s. Return the solution with the
lowest objective that satisfies |Êmax

v (X(+1)) � ✏v|  0.
Otherwise, increase iteration count  = +1, and go back
to step (2).

3) Comparison of iterative schemes: It is evident that
both quantile-based and tuning-based methods share large
similarities, mainly differing in how the uncertainty margins
are updated in each iterations. The most significant difference
between the two methods is that the quantile-based method
has more flexibility in its tightening updates due to the
ability to calculate different tightenings for each of the voltage
constraints separately. In contrast, the tuning method relies on
adjusting a single tuning parameter s, which is used across all
voltage constraints. However, the drawback of the flexibility
of the quantile-based method is that there is a higher potential
for overfitting to the sampled uncertainty data.

The updating of the tightenings of the two methods are
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loosely related. For the tuning-based method, the tightenings
are defined as the product of s and an estimate of the standard
deviation. We can interpret tuning s as choosing the number
of standard deviations away from the average value to set the
voltage limits. If the distributions f�

v,i were known, then we
could choose the number of standard deviations to directly
correspond to the ✏v or 1�✏v quantiles of f�

v,i. In other words,
tuning essentially functions as an indirect method for choosing
a quantile.

IV. CASE STUDY SET-UP

In the case studies, we perform extensive numerical simula-
tions on the IEEE 13-node radial distribution feeder [46] using
realistic uncertainty data for solar PV generation and load
demand to assess the performance of the iterative algorithms
detailed in Section III. Our goal is to find reactive power set-
points for the inverters that are valid for the whole day, i.e.,
we assume that the distribution of possible load and solar PV
values is representative for power injection profiles across the
whole day.

We investigate how properties of the uncertainty data set
(i.e., sampling procedure, number of samples, correlation
between data points) can impact the resulting solutions. We
further compare the performance of the two algorithms in
terms of chance constraint feasibility and objective optimality
using both in- and out-of-sample evaluations. In this section,
we describe the test case and data sets used to obtain the
results in the subsequent sections.

The optimization problem and algorithms are implemented
in Julia [47] using JuMP [48] with the solver Ipopt [49].

A. Feeder Description

As our test system, we use the modified IEEE 13-node
feeder [46], which consists of 15 houses represented as single-
phase connections at seven nodes as shown in Fig. 5. To ensure
that the generation and demand data is realistic, we use Pecan
Street [43] residential data with 1-minute resolution. This data
comprises of measurements from residential homes in New
York, which are available for 25 full days between May 2019
and August 2019. The measurements include rooftop solar
PV generation and load profiles modelling electric vehicle
charging behavior, HVAC, refrigerator, and other appliance
use. Recall that an example of the load and solar PV profiles
for a single day was shown in Fig. 1. The Pecan Street data
was scaled by a factor of 20 to match the existing loads in
IEEE 13-node feeder. We assume each house has a single-
phase rooftop solar PV system with a maximum inverter rating
of 100kVA.

B. Sampling Procedure

For our numerical simulations, we split the available data
for in-sample and out-of-sample evaluations.

1) Out-of-sample data: We first randomly choose five days
of data from the 25 day data set to be used for an out-of-sample
evaluation. These samples are the same across all experiments.

Fig. 5. Modified IEEE-13 node feeder.

2) In-sample data: We draw M samples from the remain-
ing 20 days to be used in the iterative algorithms and in-sample
evaluation. These M samples are drawn using two types of
sampling methods with three size variations:

(i) Full day samples: We randomly choose either 1, 2 or
4 days from the set of 20 days, corresponding to M =
1440, 2880, or 5760 data points, respectively. This data
set corresponds to the common practice of using data
from a set of “representative days”. In this case, there
may be strong correlations among subsequent time steps,
but all time steps will be represented in the data used in
the algorithms.

(ii) Random samples: All data points from the set of 20 days
are pooled together and M = 1440, 2880, or 5760
samples are randomly drawn from the data pool. This
data set assumes that the data from the 20 days represents
a probability distribution of the data and draws i.i.d.
samples from this set. This does not guarantee that all
time steps in the day are represented, but is likely to
represent a wider variety of operating conditions as it
includes data from more days.

C. Investigations
In the following two sections, we perform a variety of

analyses to examine the performance of our methods and
assess the different ways of modeling hard inverter limits:

• Section V investigates how different data sampling

procedures impact the performance of our methods.
Specifically, we analyze the performance of the two
iterative algorithms with the full day and random samples
across several different algorithm replications, and aim to
assess which sampling procedure is most suitable.

• After determining the most suitable sampling approach,
Section VI provides a detailed comparison between

the two iterative algorithms. We look at the resulting
constraint tightenings, inverter and voltage set points, and
constraint violations evaluated on in- and out-of-sample
data.

• Section VII investigates algorithm performance when the
effect of inverter capping is incorporated.
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(a) Quantile-based method with full day samples (b) Quantile-based method with random samples

(d) Tuning-based method with random samples(c) Tuning-based method with full day samples

Lower voltage limit                  Upper voltage limit                Lower reactive power limit                   Upper reactive power limit

Fig. 6. In-sample evaluation of violation probabilities for quantile-based and tuning-based methods with 1, 2, 4 full day samples and 1440, 2880, 5760 random
samples for 10 replications. The worst-case empirical violation probability for all constraint types are shown. The square represent the average values over
10 replications and the bars show the variability of violation probabilities (minimum and maximum values) across 10 replications.

V. CASE STUDY I: COMPARISON OF SAMPLING METHODS

We first run numerical experiments to assess the perfor-
mance of both the quantile and tuning-based methods under
each of the data set sampling variations detailed in Section
IV-B2. For each of the six sampling methods (full day or
random samples with M = 1440, 2880, or 5760), we perform
10 algorithm replications, each using a different, independent
sample draw. We set the desired chance constraint violation
probability to be ✏v = ✏q = 0.05.

In Figs. 6 and 7, we plot the worst-case empirical violation
probabilities for each constraint type (19) evaluated on in-
and out-of-sample data, respectively. The worst-case violation
probabilities for the lower voltage magnitude, upper voltage
magnitude, lower inverter reactive power, and upper inverter
reactive power constraints are illustrated in the figures using
the blue, red, yellow, and purple bars, respectively. The average
across the 10 replications is shown using the square, while the
bars represent the range of worst-case violation probabilities
obtained across replications. The figures illustrate the results
for solutions obtained by the quantile-based (top) and tuning-
based (bottom) methods, when using full day samples consist-
ing of 1, 2, and 4 days (left) and M = 1 ⇥ 1440, 2 ⇥ 1440,
and 4⇥ 1440 randomly sampled data points (right).

We assess solution optimality by calculating the total VUF
obtained the CCR-OPF solutions. Fig. 8 shows the average,
minimum, and maximum values across 10 replications of the
in-sample VUF for solutions obtained by each algorithm and
data set variation. We also evaluate the solution quality on the
out-of sample data by calculating the difference between the
out-of-sample VUF and in-sample VUF normalized by the in-
sample VUF. The out-of-sample VUF for each replication is
obtained by calculating the total unbalance averaged across the
five evaluation days. Fig. 9 illustrates the average, minimum,
and maximum values across 10 replications of the normalized

VUF for each algorithm and data set variation, evaluated on
out-of-sample data.

A. Comparison of In-Sample Results

We compare the in-sample results of both methods using
the various data sets.

1) Empirical violation probability: To assess the feasibil-
ity of solutions to the original chance-constrained problem,
we compare the in-sample violation probablities of solutions
obtained from the quantile-based method (top) and the tuning-
based method (bottom) in Fig 6. We observe that the quantile-
based method limits the worst-case violation probabilities of
all constraint types to the desired ✏v = ✏q = 0.05 for
all cases. The tuning-based method is unable to consistently
obtain a worst case violation probability of 0.05 using the
full day data, particularly for the upper voltage constraints,
but mostly achieves violation probabilities close to 0.05 when
using randomly sampled data. This may be a consequence
of the tuning-based method having less flexibility than the
quantile-based method in adapting the tightenings. While the
quantile-based methods adjusts all tightenings individually
based on the quantile evaluation, the tuning-based method uses
the same tuning parameter s across all constraints, including
both upper and lower voltage magnitude constraints. As a
result, the quantile-based method provides more “fine-tuned”
and less conservative tightenings.

2) Sampling procedure: In Fig. 6, we observe that, for
both algorithms, the range of worst-case probabilities is much
smaller when using random samples (right) than when using
full day samples (left). This likely occurs since drawing
random samples results in a data set that captures a wider
range of possible uncertainty realizations.

3) VUF: Due to the less conservative tightening approach
of the quantile-based method, we observe in Fig. 8 that the
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Quantile (full day samples)               Quantile (random samples)                  
Tuning (full day samples)                  Tuning (random samples)

Fig. 8. In-sample evaluation of total VUF for quantile-based and tuning-
based methods with 1, 2, 4 full day samples and 1440, 2880, 5760 random
samples for 10 replications. The square represent the average values over 10
replications and the bars show the variability of VUF (minimum and maximum
values) across 10 replications.

average VUF values for the quantile-based method (green and
maroon bars) are slightly lower than the VUF obtained by
the tuning-based method (light blue and magenta bars) which
solves a more constrained problem resulting in higher unbal-
ance levels. Furthermore, by comparing the results obtained
with the full day samples (green and light blue bars) and the
results obtained using random samples (maroon and magenta
bars), we see that the VUF tends to be slightly smaller on
average and fall in a narrower range. This is true across all
sample sizes (including the smallest sample size set). This
indicates that the total set of operating conditions is much
better represented by using randomly chosen samples rather
than using full days of data.

B. Comparison of Out-of-Sample Results

We next consider the out-of-sample performance of each
method.

1) Empirical violation probability: In Fig. 7, we first ob-
serve that the maximum violation probability across the 10
replications is significantly higher than the desired violation
probabilities ✏v = ✏q = 0.05, with empirical violation
probabilities up to 0.6. This indicates that solutions obtained
from either method are likely not feasible to the original
chance constrained problem. When comparing the quantile-
based results (top) and the tuning-based results (bottom), we
observe that both method generally provide comparable out-
of-sample violation probabilities.

2) Sampling procedure: The significant difference in the in-
and out-of-sample violation probabilities additionally suggests
that the data used within the optimization algorithm (i.e., to
produce the in-sample results) is not representative of the
out-of-sample data, contributing to the highly disappointing
results. We do, however, observe that the solutions obtained
using randomly selected samples (right) tend to have lower
worst-case violation probabilities, indicating that randomly
chosen samples may be an advantageous sampling procedure
for both iterative algorithms. We further observe that the use of
random samples results in solutions with smaller ranges (i.e.,
less variation across replications) of violation probabilities
compared to full-day samples.

3) VUF: From Fig. 9, we observe that there is negligible
difference between the results obtained by the quantile-based
method (green and maroon bars) and results for the tuning-
based method (light blue and magenta bars). Furthermore, the
deviation in out-of-sample VUF from the in-sample VUF is
higher when we use random samples (maroon and magenta
bars) compared to full day samples (green and light blue bars).
This is likely because the full day in-sample data is more
representative of the out-of-sample data, where we also use
full day samples.

Lower voltage limit                  Upper voltage limit                Lower reactive power limit      Upper reactive power limit

(a) Quantile-based method with full day samples (b) Quantile-based method with random samples

(d) Tuning-based method with random samples(c) Tuning-based method with full day samples

Fig. 7. Out-of-sample evaluation of violation probabilities for quantile-based and tuning-based methods with 1, 2, 4 full day samples and 1440, 2880, 5760
random samples for 10 replications. The worst-case empirical violation probability for all constraint types are shown. The square represent the average values
over 10 replications and the bars show the variability of violation probabilities (minimum and maximum values) across 10 replications.
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Quantile (full day samples)               Quantile (random samples)                  
Tuning (full day samples)                  Tuning (random samples)

Fig. 9. Out-of-sample evaluation of normalized VUF for quantile-based and
tuning-based methods with 1, 2, 4 full day samples and 1440, 2880, 5760
random samples for 10 replications. The square represent the average values
over 10 replications and the bars show the variability of VUF (minimum and
maximum values) across 10 replications.

Overall, we conclude that both methods perform in a similar
manner, with the quantile-based method obtaining slightly
better in-sample results.

VI. CASE STUDY II: COMPARISON OF ITERATIVE
ALGORITHMS

The subsequent sections discuss results of a single repli-
cation of each of the iterative algorithms. Based on the
conclusions of Section V-B, we choose to use a data set
comprising of M = 2880 randomly sampled data points.

1) Constraint tightenings: We first compare the constraint
tightenings obtained with the two different methods. Shown
in Fig. 10 are the voltage magnitude set-points and constraint
tightenings across all single-phase connections (left) and PV
inverter reactive power set-points and constraint tightenings
across all houses (right). The nominal constraints are plotted
in a dashed red line, while the tightened constraints are shown
as blue lines (quantile-based method) and orange lines (tuning-
based method). The tightening is the difference between the
red dashed and the respective solid lines. We first observe that
the inverter reactive power constraints for both methods shown
in Fig. 10(b) are identical. This is as expected because they are
calculated in a similar manner as described in Section III-A2.

We consider the voltage magnitude constraints shown in
Fig. 10(a). We first observe that the tightenings for the upper
and lower voltage constraints obtained with the tuning-based
method (orange lines) are symmetric. This is as expected,
because the voltage tightening of the tuning-based method is
given by the product between the standard deviation of the
voltage magnitude at each node (which is the same for the
upper and lower bound) and the tuning parameter s (which
is shared among all voltage constraints) and is thus the same
for both the upper and lower bound. We further notice that the
tuning-based method is able to find the tuning parameter s that
results in a tightening of the lower voltage bound (orange line)
that closely matches the tightening determined by the quantile-
based method (blue line). This empirically demonstrates that
tuning s to be the correct number of standard deviations
closely approximates the ✏v quantile for this constraints. On
the other hand, the tightening of the upper voltage limits do
not match as closely, i.e., there is a larger difference between

(b) Inverter reactive power limits

(a) Voltage magnitude limits

Nominal constraints        
Quantile constraints        
Tuning constraints

Quantile OPF soln
Tuning OPF soln

Fig. 10. Comparison of CCR-OPF solution and constraint tightenings result-
ing from the quantile-based and tuning-based methods for single replication
using M = 2880 random samples.

the tightenings obtained with the tuning-based method (orange
line) and the quantile-based method (blue line). This indicates
that the probability distribution of the voltage magnitudes is
not symmetric. This non-symmetry cannot be captured by the
tuning-based method as explained above.

2) OPF solutions: As a result of the variations in the
constraint tightenings, we obtain slightly different solutions
with the two methods. The VUF of the nominal solution
is 6.3% for the quantile-based method and 6.5% for the tuning-
based method. This is as expected, since the quantile-based
methods has lower constraint tightenings and thus a slightly
larger feasible space, allowing for better solutions.

The nominal voltage magnitude and reactive power obtained
with each method are shown in Fig. 10, with blue circles rep-
resenting the quantile-based solutions and the yellow crosses
representing the tuning-based solutions. When comparing the
reactive power set-points obtained with the two methods in
Fig. 10(b), we see that many of the set-points are either the
maximum or minimum allowable reactive power injections and
that the two methods mostly produce similar reactive power
set-points. However, there are also notable differences. For
example, the inverters at houses 7 and 11 have high reactive
power injection, but with opposite signs. These differences in
the reactive power set-points leads to differences in the voltage
magnitude values, shown in Fig. 10(a) with the quantile-based
method producing generally higher voltage magnitudes than
the tuning-based method. In particular, we observe that the
quantile-based method produces a nominal voltage magnitude
at node 43 that violates the tightened constraint of the tuning-
based method. This shows how smaller constraint tightenings
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can enable solutions with a lower nominal VUF value.
3) Constraint violations by node and inverter: We next

compare the performance of the methods in terms of constraint
violations for the same replication discussed above. To assess
the differences in performance, we compute the voltage mag-
nitude and inverter apparent power for each in-sample and out-
of-sample realization. Fig. 11 shows the box-whisker plots of
the results for the in-sample (top) and out-of-sample (bottom)
data using the quantile-based solution. We omit the results
obtained for the tuning-based method, as they are qualitatively
similar to the ones seen in Fig. 11.

We first compare the in-sample and out-of-sample results
for the voltage magnitudes (left). The voltage magnitude
violations in the in-sample evaluation (shown in Fig. 11(a))
are both larger in magnitude and occur at a greater number
of nodes compared to the out-of-sample evaluation (shown in
Fig. 11(c)). A similar trend is observed when we compare
the in-sample and out-of-sample constraint violations of the
inverters. While the largest constraint violations are of similar
magnitudes in both the in-sample and out-of-sample data, the
number of nodes experiencing violations is much larger in
the in-sample evaluation. Moreover, we see that the variability
in the data for both voltage magnitudes and apparent power
is larger in the in-sample compared to the out-of-sample
distributions. This further suggests that the in-sample data is
not representative of the out-of-sample distributions and may
be due to the difference in the sampling method for the in-
sample evaluation, where random samples are used, and the
out-of-sample evaluation, where 5 full days of data is used.
Furthermore, this indicates the necessity of ensuring the days
used for the out-of-sample evaluation are representative of

a) In-sample 
voltage magnitude distribution

(c) Out-of-sample
voltage magnitude distribution

(b) In-sample 
inverter apparent power distribution

(d) Out-of-sample
inverter apparent power distribution

Fig. 11. Box-whisker plots for voltage magnitude and inverter apparent power
distribution calculated using Monte Carlo simulations for the quantile-based
method for single replication using M = 2880 random samples. The green
dashed lines represent the lower and upper voltage magnitude limits and the
maximum inverter apparent power limits.

actual operating conditions.
4) Constraint violations by time of day: We observed above

that there are considerable voltage magnitude and inverter
limit violations in the out-of-sample results. Since the out-
of-sample evaluation is performed using full day data, we can
analyze how the violations vary across the day. Fig. 12 shows
violations over time for the quantile-based solution. The top
plots show the percentage of single-phase nodes experiencing
voltage violations (left) or inverters experiencing apparent
power violations (right) at each time step of the day, averaged
over all five of the out-of-sample evaluation days. The bottom
plots show the magnitude of the worst case violation across all
nodes or inverters and all evaluation days at each time step. In
Fig. 13, we plot the analogous results for the solution obtained
with the tuning-based method.

In Fig. 12(a) and 13(a), the upper voltage violations
(orange lines) typically occur around mid-day when the PV
generation variability is high, whereas the lower voltage limit
violations (blue lines) occur in the evening (between 6pm and
9pm) and at night (between midnight and 2am) when the load
variability is high. However, we can see in Figures 12(c) and
13(c) that the magnitude of either voltage magnitude violations
are relatively small, with a maximum of around 0.02 p.u.

With respect to the inverter limits shown in Fig. 12(b)
and 13(b), both methods have inverter upper limit violations
(purple lines) occurring across the entirety of the day-time
when the PV generation is non-zero. In contrast to the voltage
violation results, the percentage of nodes experiencing viola-
tions is relatively high, peaking at around 30% around 1pm
for the quantile-based method and 24% for the tuning-based
method. A noticeable difference between the two methods
is that tuning-based method yields a set point with inverter
lower limit violations throughout the day-time, whereas no
such violations occur with quantile-based method results. The
maximum magnitude of inverter upper limit violation is high
for both methods in Fig. 12(d) and 13(d), at 73.2 kVAR
throughout the almost entirety of the day-time period. The
maximum magnitude of inverter lower limit violation for the
tuning-based method is also high at 38.3 kVAR.

Fig. 12. Time-series plots for out-of-sample voltage magnitude and inverter
reactive power limits violations for quantile-based method for single replica-
tion using M = 2880 random samples. The top plots show average number
of violations throughout the entire day. The bottom plots illustrate the size of
maximum violation throughout the entire day.
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Fig. 13. Time-series plots for out-of-sample voltage magnitude and inverter
reactive power limits violations for tuning-based method for single replication
using M = 2880 random samples. The top plots show average number of
violations throughout the entire day. The bottom plots illustrate the size of
maximum violation throughout the entire day.

VII. CASE STUDY III: CONSIDERING THE IMPACT OF
INVERTER CAPPING

A strategy to mitigate inverter violations is capping the
inverter reactive power injections to comply with the IEEE
1547-2018 standard [32]. In this section, we cap the inverter
reactive power injections to their corresponding limits during
the solution evaluation step described in Section III-B. We use
the same set of M = 2880 randomly sampled data points as
in Section VI and investigate the impact of inverter capping
on the voltage violations and total VUF. For all results in this
section, we show results only for the quantile-based method
since the results of the tuning-based method are very similar.

1) Comparison of empirical distributions: We first examine
the impact of capping the inverter reactive power injections
on the voltage and inverter violations. Shown in Fig. 14
are the voltage magnitude (left) and inverter apparent power
(right) distributions for both in-sample (top) and out-of-sample
(bottom) data. As expected, we do not observe any inverter
limit violations in Figures 14(b) and 14(d) due to the capping.
By comparing the voltage distribution plots in Fig. 14(c) to
the results obtained in Figs. 11(c) without capping, we see
that there are less violations of the upper voltage magnitude
limit (at nodes 38 and 40) and smaller violation sizes for the
lower voltage magnitude limit (nodes 36 and 44) for the out-
of-sample data. The decrease in the number of overvoltages
and undervoltage violation size is likely due to to the reduced
availability of reactive power injections because of capping.

Recall that while the reactive power injections are capped
in the solution evaluation step, the reactive power limits in
CCR-OPF are tightened using the ✏q and 1�✏q quantiles of the
empirical distribution. So, we next investigate how changing ✏q
impacts the constraint tightenings, resulting VUF, and out-of-
sample voltage magnitude violations.

2) Impact of higher violation probability: We assess the
impact of using a higher desired violation for the reactive
power constraints. Here, we keep ✏v = 0.05 while using
✏q = 0.15 in the quantile-based algorithm with reactive
power capping. Fig. 15 compares the constraint tightenings
and operating points for ✏q = 0.05 (blue lines) and ✏q = 0.15

a) In-sample 
voltage magnitude distribution

(c) Out-of-sample
voltage magnitude distribution

(b) In-sample 
inverter apparent power distribution

(d) Out-of-sample
inverter apparent power distribution

Fig. 14. Box-whisker plots for voltage magnitude and inverter apparent
power distribution calculated using Monte Carlo simulations with capping for
the quantile-based method for single replication using M = 2880 random
samples with inverter capping. The green dashed lines represent the lower
and upper voltage magnitude limits and the maximum inverter apparent power
limits.

(orange lines). The voltage magnitude tightenings in Fig. 15(a)
remain almost identical since we use ✏v = 0.05 for both cases.
However, by choosing a higher violation probability ✏q = 0.15,
we obtain a wider range for the reactive power limits in
Fig. 15(b), which are very close to the nominal constraints
(red dashed lines).

Tables I and II summarize the in- and out-of-sample results
for a single replication of the quantile-based method using
✏q = 0.05 without capping (from Section VI), ✏q = 0.05 with

TABLE I
IN-SAMPLE RESULTS FOR QUANTILE-BASED METHOD WITH CAPPING FOR

SINGLE REPLICATION WITH 2880 RANDOM SAMPLES.

Case Êmax
v Êmax

v Êmax
q Êmax

q VUF (%)

No capping 0.05 0.005 0.05 0.05 6.32
Capping, ✏q= 0.05 0.05 0.007 0.0 0.0 6.61
Capping, ✏q= 0.15 0.05 0.05 0.0 0.0 5.85

TABLE II
OUT-OF-SAMPLE RESULTS FOR QUANTILE-BASED METHOD WITH CAPPING

FOR SINGLE REPLICATION WITH 2880 RANDOM SAMPLES.

Case Êmax
v Êmax

v Êmax
q Êmax

q VUF (%)

No capping 0.019 0.126 0.0 0.36 6.97
Capping, ✏q= 0.05 0.019 0.016 0.0 0.0 6.81
Capping, ✏q= 0.15 0.018 0.029 0.0 0.0 6.21
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(b) Inverter reactive power limits

(a) Voltage magnitude limits

Nominal constraints        
Constraints (𝜖𝑞 = 0.05)
Constraints (𝜖𝑞 = 0.15)

OPF soln (𝜖𝑞 = 0.05)
OPF soln (𝜖𝑞 = 0.15)

Fig. 15. Comparison of CCR-OPF solution and constraint tightenings
resulting from the quantile-based with capping for single replication us-
ing M = 2880 random samples with different ✏q .

capping, and ✏q = 0.15 with capping. All results use the same
sample set (M = 2880 randomly drawn samples). We compare
the worst-case violation probabilities for all constraint types
and the VUF. In Table I, we observe that none of the in-
sample violation probabilities in any of the three cases exceed
0.05. Furthermore, when inverter capping is used, the violation
probabilities for the inverter limits Êmax

q , Êmax
q are zero. By

capping with ✏q = 0.05, there is a slight increase in the VUF
compared to the VUF for case without capping. This increase
is likely due to the limited reactive power support resulting
from capping. By setting ✏q = 0.15, we increase the feasible
space for reactive power injections, leading to a better solution
with the lowest VUF value among all three cases.

A similar trend can be observed in the out-of-sample results
shown in Table II. For the case without capping, we see that
the out-of-sample violation probabilities for the inverter upper
limits Êmax

q and voltage upper limits Êmax
v are higher than our

desired violation probability of 0.05. By capping with ✏q =
0.05, we are able to achieve violation probabilities that are
considerably below 0.05. By setting ✏q = 0.15, we obtain the
lowest VUF value at the cost of increasing the voltage upper
limit violations.

VIII. CONCLUSION

In this paper, we develop iterative, data-driven algorithms
for solving the chance-constrained AC OPF for unbalanced
distribution grids. We reformulate the chance constraints into
deterministic constraints consisting of the nominal constraints
tightened with uncertainty margins. The optimal constraint
tightenings are calculated using an iterative approach that

alternates between solving a deterministic OPF with fixed
tightenings and using sample-based evaluations to update the
tightening terms. We propose two methods to perform the
iterative updates: directly using the results of a Monte Carlo
simulation (quantile-based method) or tuning using a safety
parameter (tuning-based method).

Both methods were tested by running numerical simulations
on the IEEE 13-bus test feeder using real residential load
and PV data. Our case studies demonstrate that both methods
perform in a similar manner and are able to enforce the
chance constraints in the in-sample evaluation. The out-of-
sample results were considerable improved by capping the
DER power outputs. Furthermore, simulation results indicate
that using randomly chosen samples across multiple days is
the advantageous sampling procedure for both methods, as
opposed to using representative full day sample sets.

For future work, we will focus on investigating the impact
of using linear approximations of the power flow equations in
order to solve the chance-constrained problem for large, real-
istic distribution feeders. We further plan to explore effective
ways to identify a multi-dimensional tuning parameter for the
tuning-based method so that we can separately tune the indi-
vidual chance constraints, and will apply results from [42] to
ensure that solutions obtained with the tuning-based methods
provide rigorous feasibility guarantees.
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[3] K. Turitsyn, P. Šulc, S. Backhaus, and M. Chertkov, “Distributed
control of reactive power flow in a radial distribution circuit with high
photovoltaic penetration,” in IEEE PES general meeting. IEEE, 2010,
pp. 1–6.

[4] M. Yao, I. A. Hiskens, and J. L. Mathieu, “Mitigating voltage unbalance
using distributed solar photovoltaic inverters,” IEEE Transactions on
Power Systems, vol. 36, no. 3, pp. 2642–2651, 2020.

[5] C. G. Bajo, S. Hashemi, S. B. Kjsær, G. Yang, and J. Østergaard, “Volt-
age unbalance mitigation in LV networks using three-phase PV systems,”
in 2015 IEEE International Conference on Industrial Technology (ICIT).
IEEE, 2015, pp. 2875–2879.

[6] S. Karagiannopoulos, P. Aristidou, and G. Hug, “A centralised control
method for tackling unbalances in active distribution grids,” in Power
Systems Computation Conference (PSCC), 2018.

[7] X. Su, M. A. Masoum, and P. J. Wolfs, “Optimal PV inverter reactive
power control and real power curtailment to improve performance of
unbalanced four-wire LV distribution networks,” IEEE Transactions on
Sustainable Energy, vol. 5, no. 3, pp. 967–977, 2014.

[8] K. Girigoudar and L. A. Roald, “Linearized three-phase optimal power
flow models for distribution grids with voltage unbalance,” in 2021 60th
IEEE Conference on Decision and Control (CDC). IEEE, 2021, pp.
4214–4221.

[9] A. Alimardani, F. Therrien, D. Atanackovic, J. Jatskevich, and E. Vaa-
hedi, “Distribution system state estimation based on nonsynchronized
smart meters,” IEEE Transactions on Smart Grid, vol. 6, no. 6, pp.
2919–2928, 2015.

[10] H. Zhang and P. Li, “Chance constrained programming for optimal
power flow under uncertainty,” IEEE Transactions on Power Systems,
vol. 26, no. 4, pp. 2417–2424, 2011.

[11] L. Roald, F. Oldewurtel, T. Krause, and G. Andersson, “Analytical refor-
mulation of security constrained optimal power flow with probabilistic
constraints,” in 2013 IEEE Grenoble Conference. IEEE, 2013, pp. 1–6.



ACCEPTED FOR PRESENTATION IN 11TH BULK POWER SYSTEMS DYNAMICS AND CONTROL SYMPOSIUM, JULY 25-30, 2022, BANFF, CANADA 17

[12] T. Summers, J. Warrington, M. Morari, and J. Lygeros, “Stochastic
optimal power flow based on conditional value at risk and distribu-
tional robustness,” International Journal of Electrical Power & Energy
Systems, vol. 72, pp. 116–125, 2015.

[13] ——, “Stochastic optimal power flow based on convex approximations
of chance constraints,” in 2014 Power Systems Computation Conference.
IEEE, 2014, pp. 1–7.

[14] J. Liang, D. D. Molina, G. K. Venayagamoorthy, and R. G. Harley,
“Two-level dynamic stochastic optimal power flow control for power
systems with intermittent renewable generation,” IEEE Transactions on
Power Systems, vol. 28, no. 3, pp. 2670–2678, 2013.

[15] X. Chen, W. Wu, and B. Zhang, “Robust capacity assessment of
distributed generation in unbalanced distribution networks incorporating
anm techniques,” IEEE Transactions on Sustainable Energy, vol. 9,
no. 2, pp. 651–663, 2018.

[16] T. Soares, R. J. Bessa, P. Pinson, and H. Morais, “Active distribution
grid management based on robust AC optimal power flow,” IEEE
Transactions on Smart Grid, vol. 9, no. 6, pp. 6229–6241, 2018.

[17] R. Mieth and Y. Dvorkin, “Data-driven distributionally robust optimal
power flow for distribution systems,” IEEE Control Systems Letters,
vol. 2, no. 3, pp. 363–368, 2018.

[18] V. Kekatos, G. Wang, A. J. Conejo, and G. B. Giannakis, “Stochastic
reactive power management in microgrids with renewables,” IEEE
Transactions on Power Systems, vol. 30, no. 6, pp. 3386–3395, 2015.

[19] S. Karagiannopoulos, L. Roald, P. Aristidou, and G. Hug, “Operational
planning of active distribution grids under uncertainty.”

[20] M. D. Sankur, R. Dobbe, E. Stewart, D. S. Callaway, and D. B.
Arnold, “A linearized power flow model for optimization in unbalanced
distribution systems,” arXiv preprint arXiv:1606.04492, 2016.

[21] A. Bernstein, C. Wang, E. Dall’Anese, J.-Y. Le Boudec, and C. Zhao,
“Load flow in multiphase distribution networks: Existence, uniqueness,
non-singularity and linear models,” IEEE Trans. Power Systems, vol. 33,
no. 6, pp. 5832–5843, 2018.

[22] R. A. Jabr, “Radial distribution load flow using conic programming,”
IEEE Trans. power systems, vol. 21, no. 3, pp. 1458–1459, 2006.

[23] L. Gan, N. Li, U. Topcu, and S. H. Low, “Exact convex relaxation of
optimal power flow in radial networks,” IEEE Trans. Automatic Control,
vol. 60, no. 1, pp. 72–87, 2014.

[24] W. H. Kersting, Distribution system modeling and analysis. CRC press,
2006.

[25] D. B. Arnold, M. Sankur, R. Dobbe, K. Brady, D. S. Callaway, and
A. Von Meier, “Optimal dispatch of reactive power for voltage regulation
and balancing in unbalanced distribution systems,” in IEEE PES General
Meeting. IEEE, 2016, pp. 1–5.

[26] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed optimal power
flow for smart microgrids,” IEEE Trans. Smart Grid, vol. 4, no. 3, pp.
1464–1475, 2013.

[27] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow
problem,” IEEE Trans. Power Sys., vol. 27, no. 1, pp. 92–107, 2011.

[28] C. Zhao, E. Dall’Anese, and S. H. Low, “Convex relaxation of OPF
in multiphase radial networks with delta connection,” in Proceedings of
the 10th IREP, 2017, pp. 0885–8950.

[29] P. Fortenbacher, M. Zellner, and G. Andersson, “Optimal sizing and
placement of distributed storage in low voltage networks,” in 2016 Power
Systems Computation Conference (PSCC). IEEE, 2016, pp. 1–7.

[30] S. Karagiannopoulos, P. Aristidou, and G. Hug, “Data-driven local
control design for active distribution grids using off-line optimal power
flow and machine learning techniques,” IEEE Transactions on Smart
Grid, vol. 10, no. 6, pp. 6461–6471, 2019.

[31] E. Muljadi, R. Schiferl, and T. A. Lipo, “Induction machine phase
balancing by unsymmetrical thyristor voltage control,” IEEE Trans.
Industry Applications, no. 3, pp. 669–678, 1985.

[32] D. G. Photovoltaics and E. Storage, “IEEE standard for interconnection
and interoperability of distributed energy resources with associated
electric power systems interfaces,” IEEE Std, pp. 1547–2018, 2018.

[33] X. Geng and L. Xie, “Data-driven decision making in power
systems with probabilistic guarantees: Theory and applications of
chance-constrained optimization,” Annual Reviews in Control, vol. 47,
pp. 341–363, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1367578819300306

[34] Y. Cao, Y. Tan, C. Li, and C. Rehtanz, “Chance-constrained
optimization-based unbalanced optimal power flow for radial distribution
networks,” IEEE Transactions on Power Delivery, vol. 28, no. 3, pp.
1855–1864, 2013.

[35] E. Dall’Anese, K. Baker, and T. Summers, “Optimal power flow for
distribution systems under uncertain forecasts,” in 2016 IEEE 55th
Conference on Decision and Control (CDC), 2016, pp. 7502–7507.

[36] K. Baker, I. E. Dall’Anese, and T. Summers, “Distribution-agnostic
stochastic optimal power flow for distribution grids,” in 2016 North
American Power Symposium (NAPS), 2016, pp. 1–6.

[37] A. Venzke, L. Halilbasic, U. Markovic, G. Hug, and S. Chatzivasileiadis,
“Convex relaxations of chance constrained AC optimal power flow,”
IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 2829–2841,
2018.

[38] J. Schmidli, L. Roald, S. Chatzivasileiadis, and G. Andersson, “Stochas-
tic AC optimal power flow with approximate chance-constraints,” in
2016 IEEE Power and Energy Society General Meeting (PESGM).
IEEE, 2016, pp. 1–5.

[39] L. Roald and G. Andersson, “Chance-constrained AC optimal power
flow: Reformulations and efficient algorithms,” IEEE Transactions on
Power Systems, vol. 33, no. 3, pp. 2906–2918, 2017.

[40] L. A. Roald, D. K. Molzahn, and A. F. Tobler, “Power system opti-
mization with uncertainty and AC power flow: Analysis of an iterative
algorithm,” in 10th IREP Symp. Bulk Power Syst. Dynamics Control,
2017.

[41] A. M. Hou and L. A. Roald, “Chance constraint tuning for optimal
power flow,” in 2020 International Conference on Probabilistic Methods
Applied to Power Systems (PMAPS). IEEE, 2020, pp. 1–6.

[42] ——, “Data-driven tuning for chance-constrained optimization: Two
steps towards probabilistic performance guarantees,” IEEE Control Sys-
tems Letters, vol. 6, pp. 1400–1405, 2022.

[43] Pecan Street Inc, Dataport: The world’s largest energy data resource.
[Online]. Available: https://dataport.pecanstreet.org/

[44] K. Girigoudar and L. A. Roald, “On the impact of different voltage
unbalance metrics in distribution system optimization,” Electric Power
Systems Research, vol. 189, p. 106656, 2020.

[45] IEC 61000-2-2, EMC – Part 2-2: Environment – Compatibility Levels
for Low Frequency Conducted Disturbances and Signalling in Public
Low-Voltage Power Supply Systems, 2002.

[46] K. Schneider, B. Mather, B. Pal, C.-W. Ten, G. Shirek, H. Zhu, J. Fuller,
J. Pereira, L. Ochoa, L. De Araujo et al., “Analytic considerations and
design basis for the IEEE distribution test feeders,” IEEE Transactions
on Power Systems, vol. 33, no. 3, pp. 3181–3188, 2017.

[47] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp.
65–98, 2017. [Online]. Available: https://doi.org/10.1137/141000671

[48] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A modeling language for
mathematical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320,
2017.
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