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Abstract. Rotational inertial mechanisms can produce mass amplification effects
with only a small physical mass by converting translation to the rotation of a
flywheel, which makes them attractive for structural control applications. A var-
iable inertia rotational mechanism (VIRM) is a nonlinear mechanism in which
masses in the flywheel can move radially, causing variable inertia. The perfor-
mance of the VIRM depends on its parameters and the objectives considered.
This paper presents the optimum parameters of the VIRM in a single-degree-of-
freedom (SDOF) system using an artificial neural network (ANN) model. Opti-
mum VIRM values of several sets of SDOF systems are used to train the ANN
model. These values are determined using numerical simulations, and the RMS
amplitude of total energy in the system is considered the optimization objective.
Numerical simulations of VIRM systems are presented to demonstrate the effec-
tiveness and examine the ANN-based machine learning optimization process's
performance.
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1 Introduction

With the development in passive control systems, rotational inertia mechanisms have
become popular in civil structures to improve the dynamic response of structures. The
linear rotational inertia element, most commonly known as ‘inerter’, can produce a
great deal of effective mass with a relatively small physical mass by transforming trans-
lational motion to the rotational motion of a flywheel. The inerter is a two-terminal
mechanical element which produces equal and opposite forces proportional to the rela-
tive acceleration between the two terminals [1]. Ball-screw, lead-screw, rack and pin-
ion, and hydraulic mechanisms connected to a flywheel have been utilized to realize
the inerter [1]-[4].

Inerters have been investigated in combination with tuned-mass-dampers to control
structural vibration [5]-{7]. In addition, researchers have utilized inerters together with
toggle braces, electromagnetic damper, friction pendulum, and a structure’s external
rocking wall, to mitigate the dynamic response of structures [8]-[11]. Investigations re-
lated to passive control with these devices have mostly considered linear rotational in-
ertia mechanisms (inerters) that generate constant effective mass. Recently, research



has been conducted to understand the dynamics of nonlinear rotational inertia mecha-
nisms that produce variable rotational inertia and thus variable mass effects.

There exist various types of variable rotational inertia mechanisms (VIRM) but the
work presented in this paper will consider a varied inertance mechanism resulting from
changes in mass distribution of a flywheel related to the flywheel’s rotational velocity.
The VIRM components include multiple symmetrically spaced mass-spring-dampers
placed in a flywheel. The flywheel is connected to the structure using a ball-screw.
When the structure is excited, it drives the ball-screw, which results in the rotation of
the flywheel. Hence, with the response of the structure, the masses in the flywheel are
pushed outward towards the boundary of the flywheel, which causes the variable mo-
ment of inertia of the flywheel.

Note that the flywheel angular velocity (6 ) is proportional to the relative velocity (
u ) of the structure between the attachment points of the VIRM and can be expressed
as,

0 =ai (1)

where a is 27:/ o given a VIRM utilizing a ball-screw and p is the lead of the ball-

SCrew.

The performance of VIRMs relies on the selection of optimized parameters, such as
the normalized damping factor associated with the masses in the flywheel. Several nu-
merical optimization criteria have been developed to obtain the optimum design param-
eters. Due to the nonlinear nature of the VIRM, these optimization processes may be-
come time-consuming; therefore, there is interest in utilizing machine learning tech-
niques to aid in optimization efforts

This work studies the used of an artificial neural network (ANN) to produce opti-
mum VIRM parameters. Numerical simulations are performed on a single-degree-of-
freedom (SDOF) primary structure with VIRM subjected to different amplitudes of
random excitation. An exhaustive search is done on various normalized slider damping
factors to determine the structure's total energy. Finally, the ANN model is trained using
the dataset from the numerical simulations to aid in determining optimal slider damp-
ing.

2 Equation of motion of structure with VIRM

The VIRM flywheel consists of symmetrically placed spring-mass-dampers where the
masses can only move in the radial direction. The springs of the VIRM have a trilinear
elastic force-displacement relationship with soft stiffness (k) in the middle and two
stiffer penalty spring (k,) segments near the center and the edge of the flywheel. The
stiff penalty springs restrain the movement of the masses inside the flywheel. The static
moment of inertia of the VIRM flywheel assembly is
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where n, msa, Vsa, hsa, me, ¥ and x are the number of sliders, slider mass, slider diam-
eter, slider height, mass of the flywheel without the sliders, radius of the flywheel and
displacement of the slider, respectively. The total moment of inertia of the flywheel
includes the static moment of inertia and the inertia generated by the movement of the
slider masses in the flywheel.

Fig. 1 depicts the damped SDOF system with mass m;, stiffness & viscous damping
¢s and passive control provided with the VIRM subjected to external force F(z). The
non-dimensional equation of motion of the system can be expressed as
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where, Fp represents the restoring force of the trilinear springs, which depends on the
radial position of the slider masses and can be defined as
F,=R, -x,+x(X-R,), X<R

‘min ‘min
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Fig. 1. Schematic representation of a SDOF structure with a VIRM (left), diagram of the VIRM
flywheel with two slider masses located at their initial position (right)

The parameters of the system and their associated values used for this study are as
follows,



o= M — 0.0005: slider massratio; f, = ﬂ:0.0017: flywheel mass ratio without slider masses;
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: normalized damping factor of the slider mass; F ( t) = T: normalized force amplitude;

s

2my0,

U =u : displacement of the main structure; U ' = —: normalized velocity of the main structure;

So

U"=—: normalized acceleration of the main structure; X = x : displacement of the slider;
o,
X'=——: normalized velocity of the slider; X"=——: normalized acceleration of the slider;
Wy Wy

v, =0.02 m : slider diameter; 4, = 0.02 m: slider height; 7= 0.1m: radius of the flywheel;
X, = 0.01m : initial position of the slider; R, =0.095m : radial position of the upper penalty spring;
R, =0.005m: radial position of the lower penalty spring;

3 VIRM optimization

The optimum D, of the VIRM, the normalized damping factor of the slider, is deter-
mined using the exhaustive search technique. In this study, the response of the SDOF
structure with the VIRM (four slider masses) with different D, is simulated under dif-
ferent RMS white noise levels using the MATLAB implicit solver. The RMS of the
total energy in the response is measured. The VIRM D,, that produces the minimum
RMS total energy is considered the optimum D,,. The optimum Dy, for each noise level
is determined from the minimum of the curve fitted from the RMS energy versus Dy
data.

Fig. 2 presents the RMS energy of the SDOF structure for different slider damping
levels under two white noise amplitudes. This figure shows the numerical simulation
results and the fitted curve of the results. It can be observed that the RMS energy de-
creases as the Dy, increases and the RMS total energy reaches a minimum when Dyq is
1283 for the normalized RMS noise amplitude of 0.21. This D,y is considered the opti-
mum normalized slider damping factor. Afterward, the RMS energy increases as higher
slider damping is added. A similar trend is noticed for a higher RMS noise; the RMS
energy decreases until it reaches a Dy; 0of 3778. Note that D, is not similar to the general
linear damping ratio as the VIRM is nonlinear. The impact of the slider damping level



will change depending on the system response because of dependencies in the system
EOM related to the radial position of the slider masses and the relative velocity of the

primary structure.
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Fig. 2. RMS energy for different Dss for different white noise: (a) Normalized RMS noise =0.21,
(b) Normalized RMS noise=2.66

4 Artificial neural network

An artificial neural network is a parallel computational model based on simulated hu-
man brain functionality. In this study, a feed-forward neural network is applied. A feed
—forward neural network consists of an input layer, where the inputs of the problem are
received, hidden layer, which adjusts the weights to determine the relationship between
inputs and outputs, and an output layer which produces outputs (Fig. 3). The inputs to
the model are the RMS amplitude of white noise and D, and the output is the RMS
value of the total energy. The network used in the study is trained using 30 neurons in
the hidden layer. The MATLAB neural network fitting wizard app is utilized, and the
‘Lavenberg-Marquardt’ training algorithm is selected to develop a nonlinear relation-
ship between inputs and targets using the available dataset. The data is randomly se-
lected for three subsets: 70% for training, 15% for validation, and 15% for testing. The
validation dataset is used to halt the learning algorithm when the generalization starts
improving. The testing dataset shows an independent measure of how the network per-
forms after training.
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Fig. 3. Schematic diagram of ANN model

5 Estimation and prediction of VIRM damping ratio

To investigate the dynamic effect of the VIRM, the structure is excited with 20 different
white noise levels for a range of Dy4. The normalized RMS amplitude of the white noise
ranges from 0.24 to 5.32, with an incremental difference of 0.26. The training is done
for the VIRM Dy, ranging from 0 to 6000 with an increment of 4 for each RMS noise.
All structures analyzed have 2% inherent damping in the primary structure. The gener-
ated ANN model is utilized to find the RMS total energy results for Dy,. Fig. 4 compares
the RMS total energy from the ANN model and numerical simulation. The figure shows
similar RMS energy characteristics in response to the VIRM D,, for both the simulation
results and as predicted by the ANN.
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Fig. 4. Comparison of predicted and simulated RMS total energy for Dy at normalized RMS
noise amplitude: (a) 0.24 (b) 1.8

Higher-order polynomial curve fitting technique is applied to the output results. The
Dy, that produces the minimum RMS energy in the curve fitted data is considered the



sliders' optimum D,,. Fig. 5 presents the Dy, resulting from the ANN predicted model
and the exhaustive search. It can be observed that the predicted results from the ANN
model are close to the optimum obtained from the exhaustive search method. The max-
imum difference between the normalized damping factor is 10.88% when the normal-
ized RMS noise amplitude is 0.59. Additionally, the average difference between the
predicted and simulated results is 2.06%.

15000
-]
<
2 10000 |
@)
g n
g a O  ANN predicted
a L ¢ Exhaustive search
& 5000 1
napn® o
‘u"‘ v
0 I L L 1 I
0 1 2 3 4 5 6

Normalized RMS noise %«10°

Fig. 5. Comparison of the exhaustive search and the ANN predicted optimum D;s for a range of
normalized RMS noise amplitude

6 Conclusion and future study

This paper aims to generate an ANN model to estimate the optimum normalized damp-
ing factor of the VIRM in a SDOF system. Through numerical analysis of the SDOF
system, a dataset was generated for a range of normalized damping factors of the VIRM
and this dataset was utilized to train the model. This proposed model can effectively
reduce the computational costs associated with the long iterations in the exhaustive
search method and help predict the structure’s dynamic response. Although the pre-
dicted results are not precise in some cases, the results can be improved by modifying
the hidden layer configuration or utilizing a more precise optimization technique to get
the training dataset. The results of this work show that once the ANN model is built, it
can be an effective tool for finding the optimum VIRM D, without doing an iterative
optimization technique.
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