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Abstract. Rotational inertial mechanisms can produce mass amplification effects 
with only a small physical mass by converting translation to the rotation of a 
flywheel, which makes them attractive for structural control applications. A var-
iable inertia rotational mechanism (VIRM) is a nonlinear mechanism in which 
masses in the flywheel can move radially, causing variable inertia. The perfor-
mance of the VIRM depends on its parameters and the objectives considered. 
This paper presents the optimum parameters of the VIRM in a single-degree-of-
freedom (SDOF) system using an artificial neural network (ANN) model. Opti-
mum VIRM values of several sets of SDOF systems are used to train the ANN 
model. These values are determined using numerical simulations, and the RMS 
amplitude of total energy in the system is considered the optimization objective. 
Numerical simulations of VIRM systems are presented to demonstrate the effec-
tiveness and examine the ANN-based machine learning optimization process's 
performance. 
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1 Introduction 

With the development in passive control systems, rotational inertia mechanisms have 
become popular in civil structures to improve the dynamic response of structures. The 
linear rotational inertia element, most commonly known as ‘inerter’, can produce a 
great deal of effective mass with a relatively small physical mass by transforming trans-
lational motion to the rotational motion of a flywheel. The inerter is a two-terminal 
mechanical element which produces equal and opposite forces proportional to the rela-
tive acceleration between the two terminals [1]. Ball–screw, lead-screw, rack and pin-
ion, and hydraulic mechanisms connected to a flywheel have been utilized to realize 
the inerter [1]–[4]. 

Inerters have been investigated in combination with tuned-mass-dampers to control 
structural vibration [5]–[7]. In addition, researchers have utilized inerters together with 
toggle braces, electromagnetic damper, friction pendulum, and a structure’s external 
rocking wall, to mitigate the dynamic response of structures [8]–[11]. Investigations re-
lated to passive control with these devices have mostly considered linear rotational in-
ertia mechanisms (inerters) that generate constant effective mass. Recently, research 
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has been conducted to understand the dynamics of nonlinear rotational inertia mecha-
nisms that produce variable rotational inertia and thus variable mass effects.  

There exist various types of variable rotational inertia mechanisms (VIRM) but the 
work presented in this paper will consider a varied inertance mechanism resulting from 
changes in mass distribution of a flywheel related to the flywheel’s rotational velocity. 
The VIRM components include multiple symmetrically spaced mass-spring-dampers 
placed in a flywheel. The flywheel is connected to the structure using a ball-screw.  
When the structure is excited, it drives the ball-screw, which results in the rotation of 
the flywheel. Hence, with the response of the structure, the masses in the flywheel are 
pushed outward towards the boundary of the flywheel, which causes the variable mo-
ment of inertia of the flywheel.  

Note that the flywheel angular velocity ( ) is proportional to the relative velocity (
u ) of the structure between the attachment points of the VIRM and can be expressed 
as,  

 u     (1) 

where α is 2   given a VIRM utilizing a ball-screw and  is the lead of the ball-

screw. 

The performance of VIRMs relies on the selection of optimized parameters, such as 
the normalized damping factor associated with the masses in the flywheel. Several nu-
merical optimization criteria have been developed to obtain the optimum design param-
eters. Due to the nonlinear nature of the VIRM, these optimization processes may be-
come time-consuming; therefore, there is interest in utilizing machine learning tech-
niques to aid in optimization efforts 

This work studies the used of an artificial neural network (ANN) to produce opti-
mum VIRM parameters. Numerical simulations are performed on a single-degree-of-
freedom (SDOF) primary structure with VIRM subjected to different amplitudes of 
random excitation. An exhaustive search is done on various normalized slider damping 
factors to determine the structure's total energy. Finally, the ANN model is trained using 
the dataset from the numerical simulations to aid in determining optimal slider damp-
ing. 

2 Equation of motion of structure with VIRM 

The VIRM flywheel consists of symmetrically placed spring-mass-dampers where the 
masses can only move in the radial direction. The springs of the VIRM have a trilinear 
elastic force-displacement relationship with soft stiffness (ksd) in the middle and two 
stiffer penalty spring (kp) segments near the center and the edge of the flywheel. The 
stiff penalty springs restrain the movement of the masses inside the flywheel. The static 
moment of inertia of the VIRM flywheel assembly is  
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where n, msd, vsd, hsd, mc, r and x are the number of sliders, slider mass, slider diam-
eter, slider height, mass of the flywheel without the sliders, radius of the flywheel and 
displacement of the slider, respectively. The total moment of inertia of the flywheel 
includes the static moment of inertia and the inertia generated by the movement of the 
slider masses in the flywheel.  

Fig. 1 depicts the damped SDOF system with mass ms, stiffness ks, viscous damping 
cs and passive control provided with the VIRM subjected to external force F(t). The 
non-dimensional equation of motion of the system can be expressed as  
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where, FB represents the restoring force of the trilinear springs, which depends on the 
radial position of the slider masses and can be defined as  
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Fig. 1. Schematic representation of a SDOF structure with a VIRM (left), diagram of the VIRM 
flywheel with two slider masses located at their initial position (right) 

The parameters of the system and their associated values used for this study are as 
follows, 
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3 VIRM optimization 

The optimum Dsd of the VIRM, the normalized damping factor of the slider, is deter-
mined using the exhaustive search technique. In this study, the response of the SDOF 
structure with the VIRM (four slider masses) with different Dsd is simulated under dif-
ferent RMS white noise levels using the MATLAB implicit solver. The RMS of the 
total energy in the response is measured. The VIRM Dsd that produces the minimum 
RMS total energy is considered the optimum Dsd. The optimum Dsd for each noise level 
is determined from the minimum of the curve fitted from the RMS energy versus Dsd 
data. 

Fig. 2 presents the RMS energy of the SDOF structure for different slider damping 
levels under two white noise amplitudes. This figure shows the numerical simulation 
results and the fitted curve of the results. It can be observed that the RMS energy de-
creases as the Dsd increases and the RMS total energy reaches a minimum when Dsd is 
1283 for the normalized RMS noise amplitude of 0.21. This Dsd is considered the opti-
mum normalized slider damping factor. Afterward, the RMS energy increases as higher 
slider damping is added. A similar trend is noticed for a higher RMS noise; the RMS 
energy decreases until it reaches a Dsd of 3778. Note that Dsd is not similar to the general 
linear damping ratio as the VIRM is nonlinear. The impact of the slider damping level 
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will change depending on the system response because of dependencies in the system 
EOM related to the radial position of the slider masses and the relative velocity of the 
primary structure. 

 

 

Fig. 2. RMS energy for different Dsd  for different white noise: (a) Normalized RMS noise =0.21, 
(b) Normalized RMS noise=2.66 

4 Artificial neural network 

An artificial neural network is a parallel computational model based on simulated hu-
man brain functionality. In this study, a feed-forward neural network is applied. A feed 
–forward neural network consists of an input layer, where the inputs of the problem are 
received, hidden layer, which adjusts the weights to determine the relationship between 
inputs and outputs, and an output layer which produces outputs (Fig. 3). The inputs to 
the model are the RMS amplitude of white noise and Dsd, and the output is the RMS 
value of the total energy. The network used in the study is trained using 30 neurons in 
the hidden layer. The MATLAB neural network fitting wizard app is utilized, and the 
‘Lavenberg-Marquardt’ training algorithm is selected to develop a nonlinear relation-
ship between inputs and targets using the available dataset. The data is randomly se-
lected for three subsets: 70% for training, 15% for validation, and 15% for testing. The 
validation dataset is used to halt the learning algorithm when the generalization starts 
improving. The testing dataset shows an independent measure of how the network per-
forms after training.  
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Fig. 3. Schematic diagram of ANN model 

5 Estimation and prediction of VIRM damping ratio 

To investigate the dynamic effect of the VIRM, the structure is excited with 20 different 
white noise levels for a range of Dsd. The normalized RMS amplitude of the white noise 
ranges from 0.24 to 5.32, with an incremental difference of 0.26. The training is done 
for the VIRM Dsd ranging from 0 to 6000 with an increment of 4 for each RMS noise. 
All structures analyzed have 2% inherent damping in the primary structure. The gener-
ated ANN model is utilized to find the RMS total energy results for Dsd. Fig. 4 compares 
the RMS total energy from the ANN model and numerical simulation. The figure shows 
similar RMS energy characteristics in response to the VIRM Dsd for both the simulation 
results and as predicted by the ANN.  
 

 
 

Fig. 4. Comparison of predicted and simulated RMS total energy for Dsd at normalized RMS 
noise amplitude: (a) 0.24 (b) 1.8 

Higher-order polynomial curve fitting technique is applied to the output results. The 
Dsd that produces the minimum RMS energy in the curve fitted data is considered the 
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sliders' optimum Dsd. Fig. 5 presents the Dsd resulting from the ANN predicted model 
and the exhaustive search. It can be observed that the predicted results from the ANN 
model are close to the optimum obtained from the exhaustive search method. The max-
imum difference between the normalized damping factor is 10.88% when the normal-
ized RMS noise amplitude is 0.59.  Additionally, the average difference between the 
predicted and simulated results is 2.06%.  

 

 
 

Fig. 5. Comparison of the exhaustive search and the ANN predicted optimum Dsd for a range of 
normalized RMS noise amplitude   

6 Conclusion and future study 

This paper aims to generate an ANN model to estimate the optimum normalized damp-
ing factor of the VIRM in a SDOF system. Through numerical analysis of the SDOF 
system, a dataset was generated for a range of normalized damping factors of the VIRM 
and this dataset was utilized to train the model. This proposed model can effectively 
reduce the computational costs associated with the long iterations in the exhaustive 
search method and help predict the structure’s dynamic response. Although the pre-
dicted results are not precise in some cases, the results can be improved by modifying 
the hidden layer configuration or utilizing a more precise optimization technique to get 
the training dataset. The results of this work show that once the ANN model is built, it 
can be an effective tool for finding the optimum VIRM Dsd without doing an iterative 
optimization technique. 
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