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Abstract

Markov chain Monte Carlo (MCMC) is an established approach for uncertainty
quantification and propagation in scientific applications. A key challenge in apply-
ing MCMC to scientific domains is computation: the target density of interest is
often a function of expensive computations, such as a high-fidelity physical sim-
ulation, an intractable integral, or a slowly-converging iterative algorithm. Thus,
using an MCMC algorithms with an expensive target density becomes impracti-
cal, as these expensive computations need to be evaluated at each iteration of the
algorithm. In practice, these computations often approximated via a cheaper, low-
fidelity computation, leading to bias in the resulting target density. Multi-fidelity
MCMC algorithms combine models of varying fidelities in order to obtain an ap-
proximate target density with lower computational cost. In this paper, we describe
a class of asymptotically exact multi-fidelity MCMC algorithms for the setting
where a sequence of models of increasing fidelity can be computed that approxi-
mates the expensive target density of interest. We take a pseudo-marginal MCMC
approach for multi-fidelity inference that utilizes a cheaper, randomized-fidelity
unbiased estimator of the target fidelity constructed via random truncation of a
telescoping series of the low-fidelity sequence of models. Finally, we discuss and
evaluate the proposed multi-fidelity MCMC approach on several applications, in-
cluding log-Gaussian Cox process modeling, Bayesian ODE system identification,
PDE-constrained optimization, and Gaussian process parameter inference.

1 Introduction

Simulation and computational modeling play a key role in science, engineering, economics, and
many other areas. When these models are high-quality and accurate, they are important for scientific
discovery, design, and data-driven decision making. However, the ability to accurately model
complex physical phenomena often comes with a significant cost—many models involve expensive
computations that then need to be evaluated repeatedly in, for instance, a sampling or optimization
algorithm. Examples of model classes with expensive computations include intractable integrals or
sums, expensive quantum simulations [43], expensive numerical simulations arising from partial
differential equations (PDEs) [38] and large systems of ordinary equations (ODEs).

In many situations, one has the ability to trade off computational cost against fidelity or accuracy
in the result. Such a tradeoff might arise from the choice of discretization or the number of basis
functions when solving a PDE, or the number of quadrature points when estimating an integral. It
is often possible to leverage lower-fidelity models to help accelerate high-quality solutions, e.g.,
by using multigrid methods [23] for spatial discretizations. More generally, multi-fidelity methods
combine multiple models of varying cost and fidelity to accelerate computational algorithms and have
been applied to solving inverse problems [11, 24, 38], trust region optimization [1, 4, 15, 31, 39],
Bayesian optimization [8, 21, 27, 28, 41, 45], Bayesian quadrature [17, 46], and sequential learning
[22, 35].
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Figure 1: Examples of low-fidelity sequences of models. (a) Sequence trapezoid quadrature estimates I, where
I}, is the trapzoid rule with 2k trapezoids. (b) Lokta-Volterra ODE solutions for prey u(t) (blue) and predator
v(t) (red) using Euler’s method with step size dt.

One critically important tool for scientific and engineering computation is Markov chain Monte Carlo
(MCMC), which is widely used for uncertainty quantification, optimization, and integration. MCMC
methods are recipes for constructing a Markov chain with some desired target distribution as the
limiting distribution. Pseudo-random numbers are used to simulate transitions of the Markov chain in
order to produce samples from the target distribution. However, MCMC often becomes impractical
for high-fidelity models, where a single step of the Markov chain may, for instance, involve a
numerical simulation that takes hours or days to complete. Multi-fidelity methods for MCMC focus
on constructing Markov chain transition operators that are sometimes able to use inexpensive low-
fidelity evaluations instead of expensive high-fidelity evaluations. The goal is to increase the effective
number of samples generated by the algorithm, given a constrained computational budget. A large
focus of the multi-fidelity MCMC literature is on two-stage Metropolis-Hastings (M-H) methods
[10, 14], which use a single low-fidelity model for early rejection of a proposed sample, thereby often
short-circuiting the evaluation of the expensive, high-fidelity model.

However, there are several limitations of two-stage multi-fidelity Monte Carlo. First, in many
applications, a hierarchy of cheaper, low-fidelity models is available; for instance, in the case of
integration, k-point quadrature estimates form a hierarchy of low-fidelity models, and in the case of a
PDE, varying the discretization. Thus, the two-stage approach does not fully utilize the availability
of a hierarchy of fidelities and may be more suitable for settings where the high- and low-fidelity
models are not hierarchically related, e.g., semi-empirical methods vs. Hartree-Fock in computational
chemistry. In addition, in such applications, there is often a limiting model of interest, such as a
continuous function that the low-fidelity discretizations approximate. Two-stage MCMC does not
asymptotically sample from this limiting target density and will at best sample from an approximation
of the biased, high-fidelity posterior. Finally, the two-stage method is unnatural to generalize to more
sophisticated MCMC algorithms such as slice sampling and Hamiltonian Monte Carlo (HMC).

We propose a class of multi-fidelity MCMC methods designed for applications with a hierarchy of
low-fidelity models available. More specifically, we assume access to a sequence of low-fidelity
models that converge to a “perfect-fidelity” model in the limit. Within an MCMC algorithm, we
can approximate the perfect-fidelity target density with an unbiased estimator constructed from a
randomized truncation of the infinite telescoping series of low-fidelity target densities. This class
of multi-fidelity MCMC is an example of a pseudo-marginal MCMC (PM-MCMC) algorithm—the
unbiased estimator essentially guarantees that the algorithm is asymptotically exact in that the limiting
distribution recovers the perfect-fidelity target distribution as its marginal distribution. Our approach
introduces the fidelity of a model as an auxiliary random variable that is evolved separately from
the target variable according to its own conditional target distribution; this technique can be used
in conjunction with any suitable MCMC update that leaves the conditional update for the target
variable of interest invariant, such as M-H, slice sampling, elliptical slice sampling, or Hamiltonian
Monte Carlo. We apply the pseudo-marginal multi-fidelity MCMC approach to several problems,
including log-Gaussian Cox process modeling, Bayesian ODE system identification, PDE-constrained
optimization, and Gaussian process parameter inference.

Related work. Multi-fidelity MCMC methods are commonly applied in a two-stage procedure,
where the goal is to reduce the computational cost of using a single expensive high-fidelity model by



using a cheap low-fidelity model as a low-pass filter for a delayed acceptance/rejection algorithm
[10, 11, 14]; see Peherstorfer et al. [36] for a survey. Higdon et al. [24] propose coupling a high-
fidelity Markov chain with a low-fidelity Markov chain via a product chain. In constrast, our approach
aims to sample from a “perfect-fidelity” target density while reducing computational cost; two-stage
MCMC algorithms result in biased estimates with respect to this target density. A related class of
methods is multilevel Monte Carlo [13, 18, 19, 44], which uses a hierarchy of multi-fidelity models
for Monte Carlo estimation by expressing the expectation of a high-fidelity model as a telescoping
sum of low-fidelity models. Dodwell et al. [13] use the M-H algorithm to form the multilevel Monte
Carlo estimates, simulating from a separate Markov chain for each level of the telescoping sum.
In practice multilevel Monte carlo requires choosing a finite number of fidelities, inducing bias in
the estimator with respect to the (limiting) perfect-fidelity model. In contrast, our method uses a
randomized fidelity within a single Markov chain with the perfect-fidelity model as the target.

Our approach applies pseudo-marginal MCMC to multi-fidelity problems. There is a rich literature
developing pseudo-marginal MCMC methods [2, 6] for so-called “doubly-intractable” likelihoods,
which are likelihoods that are intractable to evaluate. Several approaches in the pseudo-marginal
MCMC literature are particular relevant to our work. The first are the PM-MCMC methods introduced
by Lyne et al. [30], which describes a class of pseudo-marginal M-H methods that use Russian roulette
estimators to obtain unbiased estimators of the likelihood. However, this method samples the variable
of interest jointly with the auxillary randomness, which often leads to sticking.

Alternatively, several methods have considered sampling the randomness separately. The idea of
clamping random numbers is explored in depth by Andrieu et al. [3] and Murray and Graham [33]; the
latter applies to this pseudo-marginal slice sampling. In particular, our approach applies these ideas
to the specific setting of multi-fidelity models, where the random fidelity is treated as an auxillary
variable. Finally, while our approach applies to doubly-intractable problems, we are also motivated
by a larger class of multi-fidelity problems studied in the computational sciences that may not even
be inference problems, such as quantum simulations and PDE-constrained optimization.

2 Multi-fidelity MCMC

Monte Carlo methods approximate integrals and sums that can be expressed an expectation:

T
E.(h(0)) = / h(0) 7(0) db ~ %Zhw(ﬂ), where () ~ 7, (1)
t=1

and where 7 : © — Ry is the farget density that may only be known up to a constant, h(6) is a
function of interest, and {G(t)}thl are samples from 7. Markov chain Monte Carlo methods are then
used to generate samples 6(*) from 7 by simulating from a Markov chain with target 7.

In many settings, pointwise evaluations of the target function 7(6) are expensive or even intractable;
from here on we will assume that the goal is to compute statistics of a quantity of interest h(6) with
respect to a perfect-fidelity target density 7, (). In practice, the estimate in Equation (1) is instead
estimated using a cheaper, low-fidelity density (), where k € N := {1,2,...}. In particular, we
consider settings where there is a sequence of low-fidelity densities available that converge to the

. k . . . .
target, i.e., 7 (6) = Too(0). We assume that as k increases, the model becomes higher in fidelity
(with respect to 7, ) but more costly to evaluate, increasing in expense super-linearly with k.

For instance, 7., could represent a target density that depends on an intractable integral, the solution
of a PDE, the solution of a large system of ODEs, the solution of a large system of linear equations,
or the minimizer of a function. Thus, a typical evaluation of 7, requires an approximation at a
fidelity £ with a tolerable level of bias for a given computational budget. Here increasing %k could
correspond to finer discretizations of differential equations, increasing numbers of quadrature points,
or performing a larger number of iterations in a linear solver or optimization routine.

In the multi-fidelity setting, the goal is to combine several models of varying fidelity within an MCMC
algorithm to reduce the computational cost of estimating Equation (1). In this paper, we describe
a class of MCMC algorithms that leverages the sequence of low-fidelity models 7. Our strategy
for multi-fidelity MCMC (MF-MCMC) will be to construct an unbiased estimator of 7 (¢) using
random choices of the fidelity K and then to include K in the Markov chain as an auxiliary variable.
By carefully constructing such a Markov chain, it will be possible to asymptotically estimate the



functional in Equation (1) as though the samples were taken from the perfect-fidelity model; each
step of the Markov chain will nevertheless only require a finite amount of computation. Finally, our
approach allows us to essentially plug in any valid MCMC algorithm, and we apply this strategy to
develop multi-fidelity variants of a number of MCMC algorithms, such as M-H and slice sampling.

2.1 Pseudo-marginal MCMC for the multi-fidelity setting

Pseudo-marginal MCMC [2, 6] is a class of auxillary-variable MCMC algorithms that replaces the
target density 7 (6) with an estimator 7 (6) that is a function of a random variable. If the estimator is
nonnegative and unbiased, i.e., for all € ©, 7(0) > 0 and E[7(0)] = 7(6), then MCMC transitions
that use the estimator still have 7(0) as their invariant distribution. This property is sometimes referred
to as “exact-approximate” MCMC as the transitions are approximate but the limiting distribution
is exact. Estimators can be constructed from a variety of methods, including particle filtering [2];
our approach will use randomized series truncations, which has been consider in pseudo-marginal
MCMC methods such as Lyne et al. [30], Georgoulas et al. [16], and Biron-Lattes et al. [7].

We now apply the pseudo-marginal approach to the multi-fidelity setting. Here the target density
estimator arises from a random choice of the fidelity K € N that is governed by a distribution y on
N. We denote the estimator using 7 (#) to make the dependence on the random fidelity K explicit.
The estimator is constructed such that it is unbiased with respect to y, i.e.,

D p(k)aR(0) = moo (6) - 2)
k=1

The distribution y is also constructed by the user: ideally, the estimator 7 i (6) will prefer smaller
values of K while having sufficiently low variance as to allow the Markov chain to mix effectively.
Thus the simulations can be run at inexpensive low-fidelities, while the estimates will be as though
the perfect-fidelity model were being used.

The standard pseudo-marginal MCMC approach is to construct a Markov chain that has the following
joint density as its stationary distribution:

(0, K) = u(K ) (6). )

Observe that while Equation (3) does not depend on the perfect-fidelity target density 7, it returns
the desired marginal 7., via Equation (2). As a concrete example, a pseudo-marginal M-H algorithm
generates a new state 6’ and fidelity K jointly using ¢(6’; ) as the proposal for §’, ¢(K'; K) = u(K’)
as the proposal distribution for the fidelity, and accepts/rejects the state according to
_ w0, K" )q(0;6")q(K K')  #re(6')q(0;6) @
- w(0,K)q(050)q(K' K) 7 (0)q(050)
where the equality holds since the distribution terms for K and K’ cancel. Note that the right-hand
side of Equation (4) is the standard M-H ratio but that the target density 7 is replaced with the
estimator 7.

However, standard pseudo-marginal MCMC using joint proposals of the state and fidelity can “get
stuck” when the estimator is noisy and fail to accept new states. Thus, we apply the approach in
Murray and Graham [33] that augments the Markov chain to include the randomness of the estimator
via a separate update; here the randomness of the estimator arises from the fidelity K. Concretely,
we construct a Markov chain that simulates from Equation (3) by alternating sampling between the
conditional target densities (K |0) and 7 (0| K) (steps 5 and 6 of Algorithm 1, respectively). We refer
to this strategy as multi-fidelity MCMC (MF-MCMC), since by conditioning on K = k, the update
for the state § becomes a standard deterministic update applied to a low-fidelity model 7 (), and
any appropriate MCMC update can be used here, making it straightforward to use complex MCMC
methods, such as slice sampling and HMC. Similarly, any suitable MCMC update for the fidelity K
can be used using the conditional target 7 (K6).

Many techniques can be used to construct an unbiased estimator of 7, with randomness K; we
describe a general approach in the next section. However, it is generally difficult to guarantee the
estimator is nonnegative, as required by pseudo-marginal MCMC. One technique considered by
Lin et al. [29] and Lyne et al. [30] is to instead sample from the target distribution induced by the
absolute value of the estimator and applying a sign-correction to the final Monte Carlo estimate in



Equation (1), an approach borrowed from the quantum Monte Carlo literature where it is necessary
for modeling fermionic particles. This approach has been applied to the M-H algorithm, but we note
that this general approach can be applied much more broadly, as we do in this work.

In problems where the estimator may be negative, we sample from the conditional target distributions
using the absolute value of the estimator |7 ()|, and we denote these conditionals with 7(K | 0)
w(K)| 7k (0)| and 7(0| K = k) o |7, (0)]. The estimate in Equation (1) is then corrected using the
signs o (6, k) of evaluations of 74 (6),

i o Szt HO)o (00, K©)
S (00, K®)

/ h(0) = (6) =: Ir, )
where { ("), K("M)}T_ | are the sampled values from the joint distribution 7 (0, K) o< |7 (0)|u(K).
Importantly, the sign-corrected estimate still asymptotically leads to the desired estimate of the
functional of interest. Let o (6, k) denote the sign of the estimator such that 74 (0) = o(0, k) |7, (6)].
The estimator I in Equation (5) is formed using a Monte Carlo estimate of the functional after

expanding it into its joint distribution, i.e.,
S 00.k)R0. k)0

[ rOma®)d = |5~ o))t ©
k=1

The full multi-fidelity MCMC algorithm with sign correction summarized in Algorithm 1. We note
that while the Markov chain no longer converges to a target with the marginal 7, the final estimate
after sign-correction—which is the downstream goal of interest—converges to the quantity of interest
due to Equation (6). While this may seem limiting if one is interested in the posterior itself, useful
unbiased posterior summaries may be still be obtained via the functional, such as the posterior mean,
variance, quantiles, and histograms that may be used to visualize marginal distributions.

3 Unbiased low-fidelity estimators via randomized truncations

In this section, we discuss how to construct an unbiased estimator of 7, (), given a sequence of
low-fidelity likelihoods with the property 75 (6) — 7o (0) as k — co. This estimator has the property
that it requires a finite amount of computation with probability one, and it also has a tunable amount
of expected computation per estimate, i.e., it uses low-fidelity density evaluations to estimate the
perfect-fidelity target density. The central idea of this estimator has been used for decades, going
back to John von Neumann and Stanislaw Ulam. More recently it has found use in applications of
inference and optimization in related work such as Glynn and Rhee [20], Lyne et al. [30], Beatson
and Adams [5], and Jacob et al. [26].

First note that we can express the perfect-fidelity model as a telescoping sum of low-fidelity models:
let mo(6) = 0 and write

Too(0) =D mi(0) — mi_1(6). (7)
k=1

The estimator 7 g is then constructed by taking a random truncation K ~ p of the infinite telescoping
series. The sampled terms in the sum are then reweighted to ensure the estimator remains unbiased:

K
i (0) =Y wi e (mi(0) — w1 (0)). (8)
k=1

Two approaches are commonly used to ensure that the resulting estimator is unbiased: weighted
single-term estimators and Russian roulette estimators. The single-term estimator [30] is constructed
by importance sampling a term from the series in Equation (7): the truncation level is drawn as
K ~ pu, and the Kth term is used to form the estimate

e (0) = u(K) " (mx (0) = mrc—1(0)) - ©)

Thus, the weight in Equation (8) is Wy x = u(K) '1(K = k). In the Russian roulette es-
timator, the remaining terms in the estimator are reweighted by their survival probabilities,



Algorithm 1 Multi-fidelity Monte Carlo with sign-correction

1: Input: Initial state 6 and fidelity K, truncation distribution p
2: fort=1,...,T do
3: Given current K and 6, form estimator 7 g (0) = Zszl Wi, ik (T (0) — m—1(6))
4: Save sign o (0, K) = sign(7x(6))
5: Update fidelity K leaving invariant the target conditional
7(K10) o (K| ()]
6: Update state 6 leaving invariant the target conditional
T(O|K = k) o< |7k (0)]

7: end for
8: Output: Samples {(0(*), K(V)} and estimate I = (Zle a(t)h(e(t))) / (23:1 a(t))

ie, Wik =(1- ZI,:,;ll w(k"))"11(K > k). The distribution y controls the number of terms in
the estimator, and a good proposal distribution should match the tails of the sequence of low-fidelity
densities [5, 30, 37].

The ability to use cheaper models is a key feature of multi-fidelity inference, and the low-fidelity
estimator provides a means to reduce the computational cost of multi-fidelity Monte Carlo. However,
these estimators are an example of a class of methods that explores a compute-variance tradeoff:
computationally cheaper estimates leads to high variability. The resulting increase in variance slows
down the convergence of the MCMC procedure and could lead to an overall less efficient method due
to a reduced effective sample size.

4 Summary of the multi-fidelity MCMC recipe

Here we summarize the recipe for constructing a multi-fidelity Markov chain Monte Carlo algorithm.

First, identify a sequence of increasing-fidelity target densities with the property that their limit is
the desired “perfect-fidelity” density. Low-fidelity densities should be cheap with the cost rapidly
increasing within the sequence. In the context of Bayesian inference, it may be appropriate to focus
the multi-fidelity aspects on the likelihood term and construct the target densities via, e.g., 7 (0; D)
m0(0) L (6 ; D), where 7 is the prior, Ly, is a low-fidelity likelihood, and D is the set of observations.
This likelihood-based version is what we use in several of the experiments.

Next, introduce a truncation distribution ;2 on N. This truncation distribution should be chosen to
balance between expected cost and variance of the resulting estimator; our overall goal is to mostly
use cheap low-fidelity densities, but high-variance estimators will presumably damage the mixing
time and/or the asymptotic variance.

Initialize the Markov chain with a reasonable choice for § and a draw of K from the distribution p.
Each step of the Markov chain simulation consists of an update to 6 given K and an update of K
given 6. The update of 6 given K can be performed using any standard MCMC algorithm, e.g., M-H,
slice sampling, or HMC, applied to the low-fidelity estimator. It is important to use the absolute
value of the estimator and keep track of its sign. The update of K given @ is also flexible, but it is
reasonable to construct the update so that only a few K are considered in each step, as each of those
fidelities will need to be evaluated. By default, we consider a simple random walk on the positive
integers for our experiments. After running a sufficient number of steps of the Markov chain, use the
sign corrected-estimator in Equation (5) to compute the expectation of the function h(6).

5 Experiments

In all experiments, we use a random-walk M-H update to sample from the conditional K |0, and
truncation distribution p(K) = geometric(K; o). Additional experimental details are in Appendix F.
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Figure 2: Conjugate Gaussian model. Left: Histograms for M-H (a,b) and slice sampling (d,e). Right:
Comparison of posterior standard deviation estimate vs computation for M-H (c) and slice sampling (d) methods.
Average posterior mean computed over 4 different chains.

5.1 Toy conjugate Gaussian models

In order to understand the behavior of MF-MCMC on a simple example of Bayesian inference, we
first examine an example where the computational cost of evaluating the sequence of low-fidelity
likelihoods does not increase with k. Consider a perfect-fidelity likelihood Lo (0) = N (x50, 00)
and a low-fidelity likelihood Ly, (0) = N (z; 6, o}), where o7 — o2,. The prioris mo(8) = N(0]0,1),
and so a closed-form posterior density can be computed. Here we consider the sequence 07 = 1+2/k?
and 02, = 1. In Figure 2 we compare the results of single-fidelity and multi-fidelity M-H and slice
sampling as well as the two-stage M-H algorithm summarized in Appendix C.4. We consider 2
two-stage M-H settings with high and low fidelities of {£HF, kXF'} = {1000, 10} and {kHF, KL} =
{100, 5}. The histograms show the bias of each method after simulating 10,000 samples, and the
solid gray curve denotes the exact posterior density. We also compute a measure of total cost and a
running average of the estimate of the posterior standard deviation functional, where the dotted black
line denotes the true value. The number of cost-adjusted likelihoods was computed by upweighting
each likelihood evaluation by the fidelity. Here the multi-fidelity methods typically converge to a
similar value as the single high-fidelity methods but in fewer cost-adjusted likelihood evaluations.

5.2 Log-Gaussian Cox processes

We examine an application of MF-MCMC to the log Gaussian Cox process (LGCP) model [32], where
the perfect-fidelity model is a function of an integral and the lower-fidelity sequence of models arises
from k-point quadrature estimates. Let log f ~ GP(0, ), where k¢(z, 2') = exp (— 55 ||z — 2/[|3)
and where / is a lengthscale hyperparameter. Consider an inhomogenous Poisson process on X C R
with intensity A\(z) = e/(*). Given a random set of points { X, }_,, the perfect-fidelity likelihood is

n=1»

N
Loo(f) = exp </x(1 — ef(m))dx) H ef (Xn), (10)

n=1

Typically, inference in the LGCP uses a grid-based approximation of Equation (10), where the
points are binned into counts and modeled with a Poisson likelihood [12, 34, 42], resulting in a
biased posterior. Because the likelihood depends on a high-dimensional latent Gaussian vector, we
perform inference for f using the elliptical slice sampling (ESS) algorithm (see Appendix C.3). We
approximate the integral in Equation (10) with a trapezoidal quadrature rule ;, where the number of
quadrature points is a linear function of k.
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Figure 4: Lokta-Volterra system parameter identification. The fidelity represents (a function of) the step size dt
of the ODE solver.

We apply multi-fidelity and single-fidelity ESS algorithms to a coal mining disasters data set (Carlin
et al. [9]). The data contain the dates of 191 coal mine explosions that killed ten or more men in
Britain between March 15, 1851 and March 22, 1962. Figure 3 (left) shows the estimated mean
intensity and standard deviation on coal mining disasters data between one run of multi-fidelity ESS
and single-fidelity ESS with k£ = 10, 100, 1000 quadrature points. In this plot, the high- (k = 1000)
and multi-fidelity posterior mean and standard deviation estimates match well, and the bias in the
lowest fidelity (kK = 10) estimate is apparent. We also computed the cost-adjusted number of
likelihood evaluations performed in each iteration of MF-ESS and SF-ESS. Figure 3 (right) shows the
average estimated mean intensity at the time step ¢ = 1862 on the three models against the average
cost-adjusted number of likelihood evaluations per iteration. We observe that the multi-fidelity and
high-fidelity estimates are close after many iterations of sampling, but that the multi-fidelity estimate
converges with less computation.

5.3 Bayesian ODE system identification

We now apply the MF-MCMC approach to Bayesian system identification for the Lotka-Volterra
ODE. Let u(t) > 0 represent the population size of the prey species at time ¢, and v(¢) > 0 represent
the population size of the predator species. The dynamics of the two species given parameters
a, 8,7, > 0 are given by a pair of first-order ODEs:

d d
U= (o — Bv)u = au — fuv, V= (= = du)v = —yv — duw. (11)
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System identification solves the inverse problem by estimating the parameters of the ODE system
0 = («, 8,7, 0). Taking a Bayesian approach, we specify a noise model for the observed data and
priors on the parameters, and we use MCMC to infer a distribution over the solution. For simplicity,
we assume that the initial conditions are known and fix o = 0.25.

Define z, = (u(ty),v(tn)) and let z1(0),...,zn(0) be the solutions to the Lotka-Volterra
differential equations at times t¢1,...,¢y given the initial conditions and the system parame-
ters 0 = («, 3,7, 0). Suppose we have observations arising from log(y,,) = log(z,) + €., where
€ ~ N(0,02I). The low-fidelity likelihood is a function of a numerical solution of the ODE using a
time step of size dt (Equation (F.3)). We compared the performance of a multi-fidelity elliptical slice
sampler to single-fidelity ellipitical slice samplers with step size dt = 1 x 107>, 1 x 10~%. For the
ODE solver, we considered both an Euler solver and an 4th-order Runge-Kutta solver (Figure F.1).
Figure 4a shows 200 trajectories corresponding to parameters sampled from the posterior distributions
under each method using the Euler solver. Figure 4b shows posterior mean estimates for each system
parameter. We observe that the estimates from the multi-fidelity slice sampler approach the estimates
reported by Howard [25] (black dotted lines) in less time than the single-fidelity samplers.

5.4 PDE-constrained optimization

We now consider global optimization of a PDE-constrained objective, where an expensive physical
simulation is run repeatedly in an outer loop problem. A common approach for global optimization
is simulated annealing, which has been applied to constrained global optimization [40]. Consider a
model for heat flow in a thin rod of length L with spatial coordinates = € [0, L]. Let u(x, t) represent
the temperature in the rod at position x and time ¢, and let @ represent a desired target temperature.
The goal is to minimize a loss function subject to u satisfying a linear heat equation. This objective
along with an initial condition and homogenous boundary conditions can be summarized as:

minimize,, |lu — |3
u 0%u
E_ -w-l-?ﬁ-u, (12)
u(z,0) = sin (7z/2)
u(0,t) =u(L,t) =0, xz€][0,L],t€][0,T],

subject to Q@

where «, 8 > 0 are the system parameters. The goal is to find § = («, 8) that minimizes the objective
and satisfies the constraints. To solve the PDE, we discretize the domain into a grid of size Az and
represent the second derivative using the central difference formula. This induces a system of ODEs
that we solve numerically using a Tsitouras 5/4 Runge-Kutta method, setting At = 0.4Az? so as to
satisfy a CFL stability condition. Here the fidelity of the problem is given by the size of the spatial
discretization Az, which in turn controls At¢. We compared against two single-fidelity discretizations
of the spatial coordinate, where Az = 5 x 1073, 1 x 102, The results are in Figure 5, where we plot
two of the MF results with 79 = 0.1, 0.25. In these examples, the multi-fidelity estimates converge
faster than the single-fidelity estimates in wallclock time.

5.5 Gaussian process regression parameter inference

Let X € RV*P and consider a Gaussian process regression model with a squared exponential kernel:

f~GP(0,kg), y=f(X)+e, e~N(0,08), ko(z,2')=exp (—#m—xﬂ@) , (13)
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Figure 6: Parameter inference in a Gaussian process regression model. Left: The posterior distribution of the
parameter 6. Right: The posterior mean estimate vs computional cost.

where we assume o3 is known. Let 3¢ := [kg (24, %;)]icn] je[N]-

In many applications of Gaussian process modeling, one is interested in integrating out the parameters
6 using MCMC. Computing the posterior 7(6| X, y) is expensive because each evaluation of the
likelihood p(y|X,6) = N (y |0, Xg + 021) involves computing a determinant and solving a linear
system with respect to the matrix ¥y + 031, which has an O(N?) computational cost associated with
standard methods (e.g., Cholesky decomposition). For simplicity, we will only consider the fidelity
of solution to the linear system, but we note that the determinant can considered using the approach
described in Potapczynski et al. [37]. Additional derivations and details are in Appendix F.5.

We generate synthetic data from the GP model with N = 100, 02 = 1, and lengthscale 6y = 45.
For the GP model, we use a log Normal prior on # given above in Equation (F.5) with parameters
vy = 3.8,v1 = 0.03. In Figure 6, we compare these approaches using single-fidelity, multi-fidelity,
and two-stage M-H samplers. The low-fidelity likelihood sequence was constructed by computing
the solution to the linear system using a preconditioned conjugate gradient solver with & steps. The
single-fidelity likelihoods were a high-fidelity likelihood (¥ = IN) and a low-fidelity likelihood
(k = kn < N), and the multi-fidelity M-H samplers used 7o = 0.1. The two-stage M-H approach
used high and low fidelities of & € {100, 5}. For all methods, we use a M-H sampler with 7" = 50000
iterations. In the histograms, we observe that the high-fidelity, multi-fidelity and two-stage approaches
tend to lead to similar posteriors, while the low-fidelity sampler has more noticable bias with respect
to the high-fidelity histogram. The estimate produced by the multi-fidelity samplers converged in
fewer cost-adjusted likelihood evaluations than the high-fidelity and two-stage approaches.

6 Discussion and future work

In this work, we introduced a class of multi-fidelity MCMC that uses a low-fidelity unbiased
estimator to reduce the computational cost of sampling while still maintaining the desired limiting
target distribution of the Markov chain. In particular, we have demonstrated the use of our framework
on more advanced MCMC algorithms beyond M-H, such as slice sampling, and to additional
settings such as optimization. Our results show a reduction in computation while producing accurate
solutions in comparison with high-fidelity models when it is possible to construct a target estimator
that is not too noisy. Many future directions remain. First, applying MF-MCMC to large-scale
expensive applications has many computational challenges. Making the method more robust to
specialized problems is important, especially if the estimator is heavy-tailed. Thus, constructing good
proposal distributions matching properties of the low-fidelity target sequence is crucial, especially for
application to high-dimensional problems. In addition, we have thus far focused on target densities
where there is a single computation whose fidelity is varied. However, in many settings, there may be
target densities with multiple computations that converge at different rates, for example, if the target
density includes both an intractable integral and a solution of a linear system. Our framework can
be extended to that setting by adjusting the proposal distribution, and it is useful to understand how
these rates impact the convergence properties of the sampler.
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