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Abstract
As real-world images come in varying sizes, the
machine learning model is part of a larger system
that includes an upstream image scaling algorithm.
In this paper, we investigate the interplay between
vulnerabilities of the image scaling procedure and
machine learning models in the decision-based
black-box setting. We propose a novel sampling
strategy to make a black-box attack exploit vulner-
abilities in scaling algorithms, scaling defenses,
and the final machine learning model in an end-to-
end manner. Based on this scaling-aware attack,
we reveal that most existing scaling defenses are
ineffective under threat from downstream mod-
els. Moreover, we empirically observe that stan-
dard black-box attacks can significantly improve
their performance by exploiting the vulnerable
scaling procedure. We further demonstrate this
problem on a commercial Image Analysis API
with decision-based black-box attacks.

1. Introduction
Recent advances in machine learning (ML) techniques have
demonstrated human-level performance in many vision
tasks, such as image classification (Russakovsky et al., 2015;
Szegedy et al., 2016; 2017) and object detection (Ren et al.,
2015; Redmon et al., 2016). As real-world images come
in varying sizes, the practical ML system must include an
image scaling algorithm before the downstream ML model.
The scaling algorithm resizes input images to match the
fixed input size of a model, which takes the input and per-
forms vision tasks, such as classification.

The model and scaling algorithm in an ML system have
become attractive targets for attackers. ML models are
vulnerable to adversarial examples (Szegedy et al., 2013;
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Biggio et al., 2013): an adversary can add imperceptible
perturbations to the input of a model and change its pre-
diction (Madry et al., 2018; Carlini & Wagner, 2017). Re-
cently, scaling algorithms were also found to be vulnerable
to image-scaling attacks (Xiao et al., 2019; Quiring et al.,
2020): an adversary can manipulate a large image such that
it will change into a different image after scaling, thereby
inducing an incorrect prediction in the model. However,
image-scaling attacks are easily blocked by subsequent de-
fenses (Quiring et al., 2020; Kim et al., 2021) and are not
generalizable to other fields. We note that more subtle ex-
ploitation should leverage the weakness of the scaling stage
jointly with adversarial examples against the ML model.

In this paper, we investigate the interplay between vulnera-
bilities of the image scaling procedure and ML models. Our
investigation focuses on the more practical decision-based
black-box setting, where the attacker can only query the
model without a confidence score or knowledge of its inter-
nal implementation. We show that the attacker can jointly
attack the scaling procedure and the ML model, posing more
serious threats. From one side, black-box attacks (Brendel
et al., 2018; Chen et al., 2020; Cheng et al., 2019; 2020;
Li et al., 2020a; 2021; Zhang et al., 2021) can leverage the
weakness of the scaling function to improve their perfor-
mance significantly. On the other side, most image-scaling
defenses (Quiring et al., 2020; Kim et al., 2021) are not
effective in protecting the scaling function from being ex-
ploited by adversarial examples, even if they successfully
prevent the image-scaling attack.

As a first step, we generalize the attack setting and re-design
black-box attacks to jointly exploit the scaling function. We
characterize the common approach of existing black-box
attacks and identify noise sampling as a critical step shared
by these attacks. Based on this observation, we propose to
incorporate the weakness of the scaling function through a
novel technique which we call Scaling-aware Noise Sam-
pling (SNS). The overview of SNS is illustrated in Figure 1.
The high-level idea is guiding traditional low-resolution
black-box attacks to search for the adversarial examples
along a direction that best exploits the scaling function. Our
utilization of the noise sampling step makes SNS a plug-and-
play technique applicable to different attacks. In particular,
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we integrate SNS with two representative decision-based
black-box attacks: the boundary-based HSJ (Chen et al.,
2020) and the optimization-based Sign-OPT (Cheng et al.,
2020) attacks. We call these high-resolution attacks, target-
ing the ML pipeline as a whole and exploiting scaling.

Next, we design two novel techniques to circumvent image-
scaling defenses (Quiring et al., 2020). Such defenses not
only protect the scaling function but also hinder the tradi-
tional black-box attacks. To incorporate these defenses in
our high-resolution attacks, we identify their root mecha-
nism and propose novel approximations. First, we design
improved gradient estimation for the defense that slows
down the black-box attack’s convergence with non-useful
gradients. Second, we design offline expectation over trans-
formation (Athalye et al., 2018b) to attack randomized de-
fenses without additional queries to the black-box model.
With these techniques, we circumvent 4 out of 5 state-of-
the-art defenses to exploit the scaling function.

Finally, we conduct extensive experimentation to evaluate
our high-resolution black-box attacks and state-of-the-art
image-scaling defenses. We empirically confirm that jointly
attacking the scaling function and ML model effectively
improves the performance of black-box attacks. We also
show that the defended scaling functions retain weaknesses
that enable a stronger black-box attack. We finish with a
discussion about the evaluation of trustworthy ML.

Contributions. We take the first step towards exploring the
interplay between different vulnerabilities in black-box ML
systems, with additional novel insights into circumventing
pre-processing defenses in the black-box setting. Our con-
tributions can be summarized as follows.

• Improving black-box attacks. We propose a novel plug-
and-play technique called scaling-aware noise sampling,
which significantly improves black-box attacks when a
vulnerable scaling algorithm precedes the ML model.

• Circumventing image-scaling defenses. We show that
4 out of 5 state-of-the-art defenses, designed to protect
the scaling stage, retain weaknesses that enable stronger
black-box attacks.

• New perspective of trustworthy ML. We reveal that
preventing attacks targeting one component in the ML
system does not necessarily mitigate the vulnerability
from a broader perspective. The interplay of different
vulnerabilities leads to unexpected and stronger threats,
such as amplifying existing attacks.

2. Related Work
Black-box attacks against ML models are drawing increas-
ing attention due to their practical setting. In the black-box
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Figure 1: An overview of scaling-aware noise sampling.
This plug-and-play technique guides traditional black-box
attacks to exploit the weakness of the scaling function to
improve their performance significantly.

setting, the attacker can only query the target model without
knowledge of its internal implementation. Despite attacks
leveraging the transferability of adversarial examples (Pa-
pernot et al., 2017), the more common query-based attacks
fall into two categories: score-based and decision-based at-
tacks. Score-based attacks assume access to the confidence
score of the target model’s prediction, which facilitates es-
timating the model’s gradient (Li et al., 2020b; Chen et al.,
2017; Ilyas et al., 2018; Tu et al., 2019). Decision-based at-
tacks require access to the final decision without confidence
scores, which is challenging but more practical (Brendel
et al., 2018; Chen et al., 2020; Cheng et al., 2019; 2020; Li
et al., 2020a; 2021; Zhang et al., 2021). However, all these
attacks have only focused on the standalone model, omitting
that practical ML models must include a scaling function to
cater for input images of varying sizes.

Recently, image-scaling attacks (Xiao et al., 2019; Quiring
et al., 2020) reveal that the scaling function can be exploited
to hide a small image (from a different class) into a larger
image, thereby fooling the model after downscaling. How-
ever, this exploitation is easily prevented (Quiring et al.,
2020; Kim et al., 2021) and not generalizable to other fields.
This paper shows that more subtle exploitation should lever-
age the weakness of scaling functions to hide the adversarial
perturbation rather than an unperturbed image.

Understanding the trustworthiness of ML models is a critical
objective in practice. In this work, we aim to explore if the
interplay between vulnerabilities in practical ML systems
could cause more harm. From one side, we explore whether
the vulnerability of scaling functions could amplify black-
box attacks. From the other side, we explore whether black-
box attacks could still exploit defended scaling functions.



The Interplay Between Vulnerabilities in Machine Learning Systems

3. Background
3.1. Notation

A standard neural network f classifies low-resolution (LR)
images x ∈ L := [0, 1]p×q of height p and width q. For
example, ResNet-50 (He et al., 2016) accepts 224 × 224
input images1. A scaling function g downscales the high-
resolution (HR) image X ∈ H := [0, 1]m×n to the net-
work’s LR input space L. A pre-processor h sanitizes the
input X to prevent the attacker from hiding perturbation via
the scaling function g. We focus on the black-box attack
against the end-to-end classifier F := f ◦ g ◦ h. For both
f and F we denote their outputs as the classification label.
We provide more background of scaling in Appendix A.1.

3.2. Adversarial Examples

Given an image x ∈ L and a classifier f , the traditional
adversarial example x′ is visually similar to x but misclas-
sified, i.e., f(x′) ̸= f(x) (Szegedy et al., 2013; Biggio
et al., 2013). Traditional attacks construct the adversarial
example by searching for δ such that f(x + δ) ̸= f(x),
while minimizing ∥δ∥ or maximizing the loss on f(x+ δ).

In this paper, we further consider the high-resolution adver-
sarial example. Given an image X ∈ H and an end-to-end
classifier F , the high-resolution adversarial example X ′ is
visually similar to X but misclassified, i.e., F (X ′) ̸= F (X).
Compared to the low-resolution x′, the high-resolution X ′

additionally passes through the scaling stage g ◦ h.

3.3. Image-scaling Attacks

Recent image-scaling attacks (Xiao et al., 2019; Quiring
et al., 2020) attack the scaling stage g to hide a smaller non-
adversarial image x∗ from a different class into the larger
image X . Conceptually, the adversarial image is visually
similar to X but changes into a different image x∗ after
scaling, thereby inducing misclassification. The details and
formulation of this attack can be found in Appendix A.2.

3.4. Image-scaling Defenses

The image-scaling attacks are prevented by several defenses,
which fall into pre-processing and detection defenses. We
briefly introduce five state-of-the-art defenses below and
provide more details in Appendix A.3.

Pre-processing Defenses. Quiring et al. (2020) propose to
sanitize the input image with median or randomized filter-
ing operations before scaling; they reconstruct pixels by a
median or randomly picked pixel within the sliding window.
These defenses instantiate the preprocessor h in Section 3.1.

Detection Defenses. Kim et al. (2021) propose three detec-

1We omit the channel dimension for simplicity.

tion defenses using spatial and frequency transformations:
unscaling, minimum-filtering, and centered spectrum. These
transformations result in discernible differences when ap-
plied to benign and perturbed images. For example, the
unscaling invokes downscale and upscale operations sequen-
tially to reveal the hidden image.

3.5. Threat Models

We focus on the decision-based black-box setting, where we
do not know the implementation of f and F ; we only know
the final predicted label without scores. This is the same
threat model as considered by image-scaling attacks and
defenses (Quiring et al., 2020; Kim et al., 2021). However,
we can still infer the knowledge of the scaling stage g ◦ h
with the brute-forcing method from Xiao et al. (2019). This
knowledge can be reused for subsequent attacks, as it is
typically fixed for a deployed ML model. We explain more
details of this method in Appendix A.3.3.

The objective of our attack is to leverage the weakness of
the scaling function to amplify existing black-box attacks
in terms of fewer queries, less perturbation, and higher opti-
mization efficiency. Since our attack exploits the weakness
of the scaling function, we also incorporate defenses that are
supposed to protect it. As a result, attacking the full pipeline
F (with scaling) yields significantly better performance than
attacking the standalone model f (without scaling).

4. Attack Methodology
Existing black-box attacks have only focused on the model
f rather than the end-to-end pipeline F . Even if these at-
tacks are deployed to attack the full pipeline F , they are
not designed to exploit the scaling stage g ◦ h to hide the
adversarial perturbation. Therefore, the main challenge is
how to make black-box attacks aware of the weakness of the
scaling function in a generalizable manner.

To address this challenge, we propose a novel technique
which we call Scaling-aware Noise Sampling (SNS). As
illustrated in Figure 1, SNS is a plug-and-play technique
that guides existing black-box attacks to leverage the weak-
ness of the scaling stage explicitly. We also propose two
novel designs to let SNS incorporate pre-processors that are
supposed to protect the scaling function.

4.1. Scaling-aware Noise Sampling (SNS)

We start by characterizing the common property of existing
black-box attacks. Most decision-based black-box attacks
walk near the decision boundary (Brendel et al., 2018; Chen
et al., 2020; Li et al., 2020a; 2021; Zhang et al., 2021) or
optimize for a particular objective function (Cheng et al.,
2019; 2020). These attacks have varying algorithms, but all
share a similar iterative approach: (1) find an adversarial
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Figure 2: Illustration of our proposed SNS. In the HR space
(left), randomly sampled noise V is unlikely to find the
exploitable space (grey). SNS overcomes this problem by
first sampling noise u in the LR space (right) and then
projecting it back to the HR U , which lies in the LR space.

point or direction through linear search; (2) sample noise to
estimate the gradient of a particular objective function; and
(3) use the gradient to update the previous point or direction.

Based on the above characterization, we propose to incor-
porate the weakness of the scaling stage into the noise
sampling by Scaling-aware Noise Sampling (SNS). The
high-level idea of SNS is illustrated in Figure 2. Instead
of sampling in the HR space H (as is done by naively ap-
plying attacks to the full pipeline), we sample noise in the
post-scaling space L and project it back to H. This novel
sampling strategy guides black-box attacks to search adver-
sarial examples along the direction that hides the most per-
turbation through the scaling function. As a result, attacking
the full pipeline F yields significantly better performance
than attacking the standalone model f . However, projecting
noise from L to H requires reversing the projection defined
by g ◦ h. This operation is not straightforward, especially
when incorporating the pre-processor h.

4.1.1. STRAIGHTFORWARD SNS

We first notice that reversing the projection of g ◦ h is an
instance of the image-scaling attack (Quiring et al., 2020),
as we also need to search for a point U ∈ H that projects to
the sampled u ∈ L. As such, a straightforward solution is
to solve the following image-scaling attack problem:

U∗ := argmin
U∈H

∥(g◦h)(X+U)−((g◦h)(X)+u)∥22, (1)

where U∗ ∈ H is the HR noise that lies on the LR space.

This approach is computationally prohibitive because we
need to solve an optimization problem for every sampled
noise. We overcome this problem with efficient SNS.

4.1.2. EFFICIENT SNS

To improve the efficiency of SNS, we note that the final
objective of SNS is to sample an HR noise that lies in the
LR space – it is not necessary to find the exact projection
of a noise sample, as it is already random. Inspired by this
observation, we find that an imprecise projection suffices

Algorithm 1 Scaling-aware Noise Sampling (SNS)

Require: Scaling procedure g ◦ h, initial point X ∈ H.
Ensure: A noise U ∈ H that lies on the space L.

Sample random noise u ∈ L (i.e., input space of f ).
Compute Ũ ∈ H using Equation (2).
Output U ← Ũ .

to guide the gradient estimation in black-box attacks. One
imprecise yet efficient projection we find is the gradient of
Equation (1), written as

Ũ := ∇U∥(g ◦ h)(X + U)− ((g ◦ h)(X) + u)∥22. (2)

We use this more efficient solution to construct SNS, as
summarized in Algorithm 1. It directs black-box attacks to
efficiently search adversarial examples along the direction
that hides the most perturbation through the scaling function.

4.2. Incorporating Median Filtering Defenses

Although SNS is compatible with any projection defined by
the scaling stage g ◦ h, the defense h may have a side effect
of hindering black-box attacks. Our empirical evaluation in
Section 5.3.1 reveals that median filtering defense can slow
down the convergence of black-box attacks.

We identify the root cause of this problem as the median
function’s robustness to outliers. When black-box attacks
conduct line search along a fixed direction, the median fil-
tering operation may not change its output in most of the
searching steps. As a result, the attack converges slower and
returns suboptimal results. Without loss of generality, we il-
lustrate how the HSJ attack (Chen et al., 2020) conducts line
search under the median function. Consider a starting point
x = [1, 2, 3] and gradient g = [0, 1, 0]. In this case, the line
search procedure simply attempts {x+ g,x+ 2g, ...} until
reaching the decision boundary. This procedure, however,
only increases the perturbation without changing the output
of the median function after reaching x+ 2g.

We overcome this problem by providing an estimate of the
gradient that is more amenable to the line search. Since
our attack estimates the gradient using noise sampled from
Equation (2), we improve the gradient estimation by using
a trimmed and weighted average function in its backward
pass. The formulation of our improved median function and
the overall filtering defense can be found in Appendix C.

Our evaluation in Section 5.3.1 verifies that our improved
estimation not only reduces the query number of searching
adversarial examples but also exploits the scaling function
as much as possible. This is different from other differen-
tiable approximation approaches like BPDA (Athalye et al.,
2018a); e.g., using the identity function for approximation
will not be able to exploit the scaling function.
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4.3. Incorporating Randomized Defenses

In this section, we explain how to modify SNS to incorpo-
rate randomized pre-processing defenses that protect the
scaling function. Although such defenses can be easily cir-
cumvented in the white-box setting with expectation over
transformation (EOT) (Athalye et al., 2018a;b), we note
that directly applying EOT in black-box attacks is query-
inefficient due to a large number of sampling operations.

We overcome this challenge by computing the EOT offline
without querying the black-box model. That is, instead of
attacking the expectation over the full pipeline

Eh∼H F (X) = Eh∼H(f ◦ g ◦ h)(X), (3)

we attack the expectation over pre-processors

(f ◦ Eh∼H(g ◦ h))(X), (4)

whereH is the space that draws a randomized defense h. It
is also possible to attack the expectation over the defense
Eh∼H h(X), but we found this expectation hard to compute,
as image-scaling defenses h typically work jointly with the
scaling function g to be effective.

The above strategy effectively reduces the number of sam-
ples in EOT to zero; this is possible because we are able to in-
fer the knowledge of the scaling stage (see Appendix A.3.3).
As such, we only need to change the original scaling stage
g ◦ h in Equation (2) to Eh∼H(g ◦ h). In fact, we can derive
the closed-form expectation for a particular defense, as we
will discuss later in Section 5.3.2.

4.4. Plug-and-Play Integration with Black-box Attacks

Since noise sampling is a critical step for most black-box at-
tacks, our proposed SNS is directly applicable to all of these
attacks, as illustrated in Figure 1. We demonstrate its gener-
alizability with integrations of two representative black-box
attacks: the boundary-based HSJ attack (Chen et al., 2020)
and the optimization-based Sign-OPT attack (Cheng et al.,
2020). We refer to attacks on the model f as LR attacks, and
our improved attacks on the full pipeline F as HR attacks.

High-Resolution HSJ Attack. HSJ (Chen et al., 2020) ex-
tends the boundary attack (Brendel et al., 2018) by walking
near the decision boundary while adopting noise sampling to
improve the gradient estimation. We apply SNS to guide its
gradient estimation to hide perturbation. The detailed algo-
rithm of our HR HSJ attack can be found in Appendix B.1.

High-Resolution Sign-OPT Attack. Sign-OPT (Cheng
et al., 2020) optimizes a direction for minimal distance to
the decision boundary. We apply SNS to guide its gradient
to search a direction that meanwhile causes minimal per-
turbation before scaling. The detailed algorithm of our HR
Sign-OPT attack can be found in Appendix B.2.

5. Evaluation
Finally, we perform an empirical evaluation of our improved
HR black-box attacks and five state-of-the-art defenses de-
signed to protect the scaling procedure. Our evaluation is
designed to answer the following questions.

Q1: Can we improve black-box attacks by exploiting the
scaling function to hide adversarial perturbation?

We observe a significant improvement when LR black-box
attacks leverage our proposed SNS to attack the entire ML
pipeline. With the same query budget, our HR attacks gener-
ate adversarial examples with less perturbation. We demon-
strate this problem in a real-world Image Analysis API with
decision-based and transfer-based black-box attacks.

Q2: Can we still improve black-box attacks when the
scaling function is protected by defenses?

Our HR black-box attacks can still outperform their LR
primitives under four out of five state-of-the-art defenses.
These defenses include median filtering and all three detec-
tion defenses. We also analyze why these defenses fail to
protect the scaling function despite their success in prevent-
ing standard image-scaling attacks.

5.1. Evaluation Setup

Dataset and Models. We use ImageNet (Russakovsky et al.,
2015) and CelebA (Liu et al., 2015) datasets. For ImageNet,
we randomly choose 1,000 images whose scaling ratio is
at least 3 and downscale them to 672 × 672; the target
model is a pre-trained ResNet-50 model (He et al., 2016)
that accepts input images of size 224 × 224. For CelebA,
we randomly choose 1,000 images and rescale their faces to
672×672; the target model is a pre-trained ResNet-34 model
that accepts facial images of size 224 × 224 and predicts
the Mouth Slightly Open attribute. We provide more
details of these datasets and models in Appendix D.1. We
also include decision-based and transfer-based attacks on
the Tencent Image Analysis API, whose details and settings
can be found in Appendix D.2.

Attacks and Setup. We implement HR black-box attacks
based on the HSJ and Sign-OPT attacks as described in Sec-
tion 4.4. We use OpenCV’s linear scaling algorithm to repre-
sent the vulnerable scaling algorithm (Quiring et al., 2020).
We also provide evaluations of our HR attacks and the
above defenses in the white-box setting in Appendix G. Our
code is available at https://github.com/wi-pi/
rethinking-image-scaling-attacks.

Evaluation Metrics. We use standard metrics: (1) scaled
ℓ2-norm quantifies the adversarial perturbation divided by
the scaling ratio to compare perturbation across different
resolutions; (2) attack success rate (ASR) at various scaled
ℓ2-norm thresholds under a particular query budget.

https://github.com/wi-pi/rethinking-image-scaling-attacks
https://github.com/wi-pi/rethinking-image-scaling-attacks
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Figure 3: Comparison of our HR HSJ and Sign-OPT attacks with their LR primitives under no defenses. (a) and (b) compare
the adversarial perturbation under different query budgets. (c) and (d) compare the attack success rate under different
perturbation and query budgets. We include an ablation study to evaluate the effectiveness of our proposed SNS technique.

5.2. Evaluation of Q1: Undefended Image Scaling

In this experiment, we examine if black-box attacks can
exploit the scaling function to improve their performance.
For each query budget q ∈ {1000, 2000, ..., 25000}, we use
the LR and HR attacks to generate a set of LR and HR ad-
versarial examples, respectively. After that, we compare the
perturbation between these two sets of adversarial examples.

Evaluation of the Perturbation. Figures 3a and 3b show
the median perturbation generated by attacks when given
different query budgets. When there is no defense to pro-
tect the scaling function, our HR attacks can reduce the
perturbation significantly.

Evaluation of the Attack Success Rate. Figures 3c and 3d
show the attack success rate of LR and HR attacks when
given different perturbation budgets. When there is no de-
fense to protect the scaling function, our HR attacks boost
the success rate by a large margin. The solid lines of HR
attacks are way above the dotted lines of LR attacks.

Ablation Study (SNS). We have included an ablation study
in Figure 3 by disabling our proposed SNS. HR attacks
without SNS reduce to similar performance as LR attacks.
It shows that simply attacking the entire pipeline cannot
exploit the scaling function to gain benefits. We highlight
some of the comparisons in Table 3.

We also provide an ablation study that compares the perfor-
mance between the straightforward SNS and efficient SNS
discussed in Section 4.1, where we implement the straight-
forward SNS by solving Equation (1) using gradient descent
with the Adam (Kingma & Ba, 2015) optimizer (1000 steps,
0.01 learning rate), which decreases the objective function
to around 0.1. Due to the prohibitive computational cost, we
only compare the attack effectiveness between precise and
imprecise projections over 50 images. Table 1 shows that
Equation (2) loses little attack effectiveness while avoiding
the cost of Equation (1). It confirms our insight that improv-

Table 1: Comparison of HR attacks on CelebA with 10K
queries using the straightforward and efficient SNS.

Attacks ℓ2
ASR under different ℓ2 budgets

1.0 2.0 3.0 4.0 5.0

HSJ (HR) + Eq. (1) 1.68 22.9% 63.7% 85.7% 97.1% 100.0%
HSJ (HR) + Eq. (2) 1.72 20.0% 60.0% 82.9% 97.1% 100.0%

Table 2: Comparison of HR and LR attacks on CelebA with
certain query budgets and image sizes. ASR is the attack
success rate under perturbation budget ℓ2 = 2.0.

Attacks Query = 10K Query = 15K Query = 20K
ℓ2 ASR ℓ2 ASR ℓ2 ASR

HSJ (LR, 224×224) 5.26 10.8% 4.16 14.0% 3.58 18.3%
HSJ (HR, 672×672) 1.73 59.6% 1.37 74.5% 1.17 86.2%
HSJ (HR, 1120×1120) 1.03 90.4% 0.82 98.9% 0.70 100.0%

ing the precision of a noise is not necessary — as long as
the noise lies in the desired subspace, estimating gradients
using such noise suffices to incorporate the vulnerability.

Ablation Study (Scaling Ratio). We provide an ablation
study in Table 2 to examine the effectiveness of our chosen
scaling ratio. Here, the attacker chooses a scaling ratio of 3
and 5. The results show that the attacker is free to choose
a larger scaling ratio to yield even better results (under the
assumption that the target model permits such large images).

Ablation Study (Attack Strategy). We evaluate a sequen-
tial attack (detailed in Appendix E) against the scaling func-
tion and ML model in Figure 4; our joint attack outperforms
the sequential attack by a large margin. Interestingly, the
sequential attack in Figure 4b becomes worse when the tar-
get adversarial example was obtained with more queries, as
opposed to the joint attack. It suggests that naively hiding
a pre-generated adversarial example under the defense is
harder than directly targeting the whole pipeline.
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Figure 4: Comparison of attack strategies. Our joint attack
is significantly better than the naive sequential combination
of image-scaling attacks and adversarial examples.

5.3. Evaluation of Q2: Defended Image Scaling

In this experiment, we examine if black-box attacks can still
leverage the scaling function to improve their performance
when there are defenses to protect the scaling function. We
will discuss the details of each defense and analyze why
they can (or cannot) prevent our improvement even if they
have successfully blocked the image-scaling attack.

5.3.1. MEDIAN FILTERING

Defense Details. The median filtering defense sanitizes
the input image by applying the median filter kmed. To
evade this defense, an adaptive attacker has to perturb pixels
in each window w, such that the filtering output wm =
kmed(w) changes to the desired value wt. This defense
was regarded as robust to an adaptive attacker that changes
the filter’s output by setting pixels within the range R :=
[wm, wt] to wt. However, given that |R| ≤ |w|/2, the
attacker needs only to modify at most half of the pixels to
change the filtering output into a target value.

Discussion. The above observation implies that median fil-
tering’s effectiveness relies on the (large) value of |R|. In its
original evaluation, |R| is always large as they only hide a
non-adversarial image. When considering adversarial pertur-
bation, the target pixel wt will be close to the original output
wm, implying a small range R = [wm, wt] that decreases
the effectiveness. Thus, although the median filtering de-
fense can effectively prevent image-scaling attacks, it does
not completely close the scaling function’s vulnerability of
stealthily hiding perturbation.

Evaluation. We evaluate the median filtering defense us-
ing our HR attacks and the improved gradient estimation
described in Section 4.2. The comparison of HR and LR
attacks are shown in Figure 5. As we can observe, our HR
attacks still converge faster to a better solution than their LR
primitives. As for attack success rate, HR attacks are able
to outperform LR attacks even with 5K fewer queries.

Table 3: Comparison of HR and LR attacks with certain
query budgets. ASR is the attack success rate under pertur-
bation budget ℓ2 = 1.0. (∗our SNS or improved gradient
estimation is disabled, †under median filtering defense)

Attacks Query = 10K Query = 15K Query = 20K
ℓ2 ASR ℓ2 ASR ℓ2 ASR

HSJ (LR) 1.78 33.0% 1.19 45.0% 0.94 53.0%

HSJ (HR∗) 1.42 36.0% 1.01 50.0% 0.82 60.0%
HSJ (HR) 0.45 74.0% 0.35 88.0% 0.28 90.0%

HSJ (HR†∗) 6.01 19.0% 3.29 30.0% 2.31 34.0%
HSJ (HR†) 1.24 39.2% 0.85 57.7% 0.68 67.0%

Sign-OPT (LR) 1.79 30.5% 1.22 43.2% 0.99 51.6%

Sign-OPT (HR∗) 1.58 32.6% 1.10 45.3% 0.90 54.7%
Sign-OPT (HR) 0.57 66.3% 0.40 80.0% 0.32 86.3%

Sign-OPT (HR†∗) 5.07 20.8% 3.30 29.2% 2.33 34.4%
Sign-OPT (HR†) 1.44 34.4% 0.95 51.0% 0.74 59.4%

Ablation Study. We have included an ablation study in
Figure 5 by disabling our improved gradient estimation of
the median filtering defense. When our improved estima-
tion is diabled, HR attacks are impractical and converge
significantly slower. We have also highlighted some of the
comparisons in Table 3.

5.3.2. RANDOMIZED FILTERING

Defense Details. The randomized filtering defense (Quir-
ing et al., 2020) sanitizes the input image by applying the
random filter krnd, which randomly picks a pixel from w.
To evade this defense, an adaptive attacker has to set every
pixel in a window to the desired value. This defense was
regarded as robust but lacked a rigorous argument.

Discussion. We adopt the circumventing strategy in Sec-
tion 4.3 to analyze this defense. Specifically, we find that
the expectation of randomized filtering scaling can be for-
mulated as a uniform scaling procedure:

Eh∼H(g ◦ h)(X) = X ⋆ ku, (5)

where ⋆ denotes 2D convolution and ku is the uniform
scaling kernel (detailed in Appendix F). This observation
shows that the randomized filter can process the input such
that any followed scaling function will be made uniform in
expectation, thereby leaving no space to hide perturbation
stealthily. We discuss effective defenses and robust scaling
algorithms with more details in Appendices A.3.4 and A.3.5.

Evaluation. We are not able to circumvent the randomized
filtering defense to improve attacks. This result is verified
in the white-box setting where we use PGD (Madry et al.,
2018) to attack the entire pipeline (details in Appendix G.2).
It shows that the randomized filtering defense can properly
address the actual weakness of scaling functions.
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Figure 5: Comparison of our HR HSJ and Sign-OPT attacks with their LR primitives under the median filtering defense. (a)
and (b) compare the perturbation under different query budgets. (c) and (d) compare the attack success rate under different
perturbation and query budgets. We include an ablation study that disables our improved gradient estimation for the median.
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Figure 6: The histogram of distortions as measured by the
unscaling defense. Benign images and adversarial examples
produced by our HR black-box attacks are indistinguishable.

5.3.3. SPATIAL DOMAIN DETECTION

In the spatial domain, Kim et al. (2021) leverage unscal-
ing and min-filtering to reveal the injected perturbation
through processing the input image X with some func-
tion T . For example, the unscaling defense considers T
as the composition of downscaling and upscaling, which
explicitly reveals the hidden perturbation. After that, they
quantify the resulting distortion with perceptual metrics like
MSE and SSIM. One could model the distortion score as
t(X) := MSE(X − T (X)) and employ a threshold-based
detector to determine whether the input image X is benign
or perturbed. Our evaluation in Figure 6 shows that these
defenses cannot detect the hidden perturbation when they
are sufficiently small. Results from the minimum-filtering
defense are not shown as they show similar observations.

(a) Benign (b) Image-
Scaling Attack

(c) HR-HSJ
(undefended)

(d) HR-HSJ
(median)

Figure 7: The centered spectrum of benign and adversarial
examples. Our HR attacks do not exhibit artifacts like (b).

5.3.4. FREQUENCY DOMAIN DETECTION

In the frequency domain, Kim et al. (2021) examine the num-
ber of peaks in the spectrum image, as it assumes injected
perturbations manifest as high-frequency and high-energy
noise. It applies a low-pass filter (with a predefined thresh-
old) on the input’s spectrum image to reveal such peaks.
However, our HR attacks in Figure 7 do not have such
artifacts. A sophisticated defender could employ learning-
based detectors to detect the hidden perturbation; we leave
its black-box circumvention to future work.

5.4. Attacking Cloud API

Finally, we conduct black-box attacks on the Tencent Cloud
API. This experiment demonstrates that the attacker can
also exploit the scaling function in online APIs to improve
their attack. For decision-based online attacks, we test 100
ImageNet images, each with 3K queries ($1.18 USD per
image). The results are shown in Figure 8 and highlighted
in Table 4, where the HR attack significantly outperforms
its LR counterpart.
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Figure 8: Comparison of the decision-based LR and HR
HSJ attacks on the Tencent Cloud API.

Table 4: Highlighted comparison of the decision-based LR
and HR HSJ attacks on Tencent Cloud API. ASR is the
attack success rate under perturbation budget ℓ2 = 2.0.

Attacks Query = 1K Query = 2K Query = 3K
ℓ2 ASR ℓ2 ASR ℓ2 ASR

HSJ (LR) 10.57 10.9% 6.64 18.2% 7.42 21.8%
HSJ (HR) 4.24 25.9% 2.93 43.1% 1.92 51.7%

The transfer-based attacks in Figure 9 confirm that C&W
attack (Carlini et al., 2019) can achieve significantly higher
transferability and success rates than their LR counterparts.
In particular, Figure 9a show that HR attacks do not misuse
the confidence parameter to overclaim improvements.

6. Discussion
The evaluation of the trustworthiness of ML systems must
consider the interplay of different vulnerabilities. When
weaknesses coexist in the different stages of the ML pipeline,
defenders should carefully analyze if these weaknesses
could amplify attacks designed to exploit any of them. This
work shows that black-box attacks can be made stronger
given the knowledge of a vulnerable preprocessing stage,
scaling in our case. Further, it shows that defenses, which
are effective against the standalone image-scaling attack,
can be exploited to make the black-box attack stronger.

To prevent a false sense of security, the defender should also
address the weakness exploited by the attack rather than the
attack itself. Although existing image-scaling defenses can
successfully block the image-scaling attack, most of them
fail to mitigate the underlying vulnerability of scaling algo-
rithms properly. This leaves an open space for an attacker to
jointly exploit other weaknesses in ML, like the adversarial
example, as is done in this work.

Limitations. In this paper, we mainly focus on the black-
box attacks that estimate gradients and optimize for ℓ2 norm.
There are other attacks that do not directly estimate gradi-
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Figure 9: Comparison of the transfer-based LR and HR
C&W attacks on the Tencent Cloud API. The reported pre-
diction score is returned by the API and indicates how con-
fident it predicts the input as its ground-truth label.

ents and optimize for the ℓ∞ norm, such as RayS (Chen &
Gu, 2020). In such cases, it is possible to integrate them by
projecting their search direction to the exploitable subspace;
for instance, adapting our Equation (2) to optimize the di-
rection instead of the noise. Despite, the benefits would still
manifest in ℓ2 norm; the vulnerability of scaling algorithms
mainly improve perceptual quality, so ℓ∞ norm is inappli-
cable. Benefits in terms of ℓ∞ norm would require future
work to explore other vulnerabilities that discard a large
amount of information in the magnitude of pixel values.

7. Conclusion
This paper explores the interplay between vulnerabilities
of image scaling and ML models in the black-box setting.
We propose a novel sampling strategy to make black-box
attacks exploit the weakness of scaling functions. With our
novel circumvention strategy, we show that 4 out of 5 state-
of-the-art defenses, designed to protect the scaling stage,
retain weaknesses that enable stronger black-box attacks.
The purpose of this work is to raise the concern of threats
that jointly exploit different vulnerabilities, whereas current
efforts focusing on defending against each vulnerability sep-
arately. Further work is necessary to identify and mitigate
other threats that jointly target different ML components.
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A. Background of Image Scaling
In this section, we provide additional details of the image-
scaling attack and the formulation of scaling algorithms.

A.1. Image Scaling

The scaling procedure g(·) resizes a high-resolution (HR)
source image X ∈ H := [0, 1]m×n to the low-resolution
(LR) output image x ∈ L := [0, 1]p×q . The overall scaling
ratio is defined as β = min{βh, βv}, where βh = n/q and
βv = m/p are the scaling ratios in two directions. In this
paper, we only consider downscaling where β > 1.

The scaling function can be implemented in different ways;
we review two formulations that facilitate our analysis. Both
formulations indicate that the standard scaling function is a
linear operation, thus the post-scaling space L can be viewed
as a subspace of the pre-scaling space H.

Matrix Multiplication. Xiao et al. (2019) conduct an
empirical analysis of common scaling functions. They rep-
resent image scaling as matrix multiplications:

x = g(X) = L×X ×R, (6)

where L ∈ Rp×m and R ∈ Rn×q are the two constant-
coefficient matrices determined by the applied scaling func-
tion. They also provide an efficient strategy to deduce ap-
proximations of these matrices from given implementations.

Convolution. Quiring et al. (2020) interpret scaling as a
convolution2 between the source image X and a fixed linear
kernel k determined by the scaling algorithm:

x = g(X) = X ⋆ k, (7)

where ⋆ denotes the 2D convolution with proper padding
and stride size to match the desired output shape.

A.2. Image-Scaling Attacks

The scaling attacks (Xiao et al., 2019; Quiring et al., 2020)
target only the scaling procedure in an ML system pipeline.
They demonstrate that an attacker can exploit the scaling pro-
cedure to compromise an arbitrary downstream ML model.

2More precisely, this should be cross-correlation (Dumoulin
& Visin, 2016a). But we will use the term convolution for consis-
tency.

Source Image (S)

Target Image (T)

Attack Image (A)

Image-Scaling
Attack
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Output Image (D)

S ≈ A

T ≈ scale(A)

✗

Prediction

+Δ

Figure 10: Illustration of the image-scaling attack (Quiring
et al., 2020). The HR adversarial example A looks similar
to the clean image S, but changes into a target image T after
scaling. The color indicates pixels from different images.

Figure 10 illustrates the pipeline of this attack. An adver-
sary computes the attack image A by adding imperceptible
perturbations ∆ to the source image S, such that it becomes
similar to a target image T (with a different label from S) af-
ter scaling, thereby fooling the downstream classifier. They
formulate the attack as a quadratic optimization problem:

min ∥∆∥22 s.t. ∥g(S +∆)− T∥∞ ≤ ϵ, (8)

where the attack image A := S +∆ satisfies the box con-
straint A ∈ [0, 1]m×n.

Besides empirical attacks, Quiring et al. (2020) conduct
an in-depth analysis of common scaling algorithms and
corresponding convolution kernels used in Equation (7).
They identify the use of non-uniform kernels of a fixed
width as the root cause for scaling attacks. Such kernels
assign higher weights to a small set of vulnerable pixels in
the source image. For example, in Figure 10, the attacker
only needs to modify a few vulnerable (orange) pixels in
the source image to change the scaling output completely.

The scaling attack works under the black-box setting. It
only needs hundreds of decision-only queries to deduce the
fixed scaling algorithm in an ML system (Xiao et al., 2019).

A.3. Image-Scaling Defenses

Researchers proposed several add-on defenses against the
scaling attack; these defenses fall into two categories: pre-
vention and detection defenses. We review five state-of-the-
art defenses as summarized in Table 5.
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Defense Type Technique

Median (Quiring et al., 2020) Pre-processing Apply median filtering in each window to remove injected perturbation.
Randomized (Quiring et al., 2020) Pre-processing Randomly sample pixels in each window to remove injected perturbation.

Unscaling (Kim et al., 2021) Detection Down-scale and then up-scale an image to reveal and detect perturbation.
Min-filtering (Kim et al., 2021) Detection Apply minimum filtering to reveal injected perturbation.
Spectrum (Kim et al., 2021) Detection Identify more-than-one peaks in the centered spectrum.

Table 5: Techniques used by recent scaling defenses.

A.3.1. PREVENTION DEFENSES

Quiring et al. (2020) propose the only two prevention de-
fenses, i.e., median and randomized filtering. Both defenses
apply filtering operations to sanitize the input image before
scaling. Specifically, they reconstruct each vulnerable pixel
by a median or a randomly picked pixel within a sliding
window. As a result, the attacker has to perturb a signifi-
cantly larger number of pixels within a window to evade
these defenses. Finally, they claim that the median filtering
defense is more practical; the randomized filtering defense
could hurt the downstream classifier’s performance. We
analyzed these defenses in more detail in Section 5.3.

A.3.2. DETECTION DEFENSES

Kim et al. (2021) propose three detection defenses using
spatial and frequency transformations: unscaling, minimum-
filtering, and centered spectrum. These transformations
result in discernible differences when applied to benign
and attack images. The unscaling invokes downscale and
upscale operations sequentially to reveal the injected im-
age. If the input image is benign, this procedure should
reveal a similar image to the original input one. In case
of an attack image, this sequence would reveal a different
image. Similarly, minimum filtering reveals such differ-
ences using the minimum filter operation. By measuring
this difference, they construct a threshold-based detector
using mean squared error (MSE) and structural similarity
index (SSIM). They also notice that the attack perturbation
manifests as high-energy and high-frequency noise, which is
detectable by examining the spectrum image. We analyzed
these defenses in more detail in Section 5.3.

A.3.3. INFER THE KNOWLEDGE OF DEFENSES

One can easily infer the knowledge of deployed scaling
function and defense even in the black-box setting. Existing
image-scaling attacks (Xiao et al., 2019) brute-force the
scaling function g and the network’s input space L with hun-
dreds of black-box queries. They run image-scaling attacks
with all combinations of standard scaling functions and in-
put sizes until succeed. Note that this inferred knowledge
can be reused in the following attacks, as this setting is typi-
cally fixed for a deployed ML model. Finally, one can easily

extend this method to infer the knowledge of the defense h,
as the number of defense parameters is also limited.

A.3.4. ROBUST SCALING ALGORITHMS

Besides the above add-on defenses, Quiring et al. (2020)
identify several scaling algorithms that are naturally robust
to the scaling attack. These algorithms are robust because
they use either uniform kernels or dynamic kernel widths.
For instance, the area (i.e., uniform) scaling algorithm con-
volves the input image (of scaling ratio β) with a uniform
kernel ku of size β × β, where each entry of ku is set
to 1/β2 – the kernel considers each pixel in the window
equally. Thus, the attacker cannot find vulnerable pixels to
inject another image stealthily.

Ideally, such algorithms should be part of the ML pipeline,
but the default scaling algorithm in common ML frame-
works is not robust (Quiring et al., 2020). Thus, switching
to a different (robust) algorithm faces compatibility issues,
such as changing dependent libraries, performance degra-
dation, and even model retraining. As such, deployed ML
systems would prefer add-on defenses that can easily fit as
plugin modules (Kim et al., 2021). However, our discussion
and evaluation in Section 5.3 show that ML systems need
to avoid such add-on defenses; they should deploy scaling
algorithms that are robust by design.

A.3.5. EFFECTIVE IMAGE-SCALING DEFENSES

We discuss what it means for a scaling defense to be effec-
tive (or “robust” under the terminology from Quiring et al.
(2020)). Prevention defenses are effective if images do not
change their appearance after the defended scaling, such
that the attacker cannot hide a large perturbation stealthily.
Since a defended scaling procedure g ◦ h can be viewed as
a new scaling function, we note that it must also satisfy the
argument from (Quiring et al., 2020) about robust scaling
algorithms (refer Appendix A.3.4). This simple observation
indicates that an effective prevention defense should pro-
cess the input, such that the followed scaling function can
weight all pixels uniformly. As for detection defenses, they
are effective if they can detect the attack with acceptable
false acceptance and rejection rates.
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B. Integration with Black-box Attacks
In this section, we provide the detailed algorithm of our
improved HR black-box attacks.

B.1. High-resolution HSJ Attack

Algorithm 2 High-Resolution HSJ Attack (Simplified)

Require: Scaling function g, classifier F , an image X ∈ H,
iterations T , other parameters for HSJ attack.

Ensure: Perturbed image Xt ∈ H.
Initialize X̃0 such that F (X̃0) ̸= F (X).
for t in 1, 2, ..., T do

▷ Binary Search
Find Xt near the boundary between X and X̃t−1.
▷ Scaling-aware Noise Sampling (Section 4.1)
Sample unit vectors {U1, U2, ...} using Algorithm 1.
▷ Gradient-direction Estimation
Estimate gradient direction g with {U1, U2, ...}.
▷ Update Perturbed Image
Search the step size ξ.
Set X̃t ← Xt + ξ · g.

end for
Find Xt near the boundary between X and X̃t−1.
Output Xt.

B.2. High-resolution Sign-OPT Attack

Algorithm 3 High-Resolution SignOPT Attack (Simplified)

Require: Scaling function g, classifier F , an image X ∈ H,
iterations T , other parameters for Sign-OPT attack.

Ensure: Adversarial direction θt.
Initialize adversarial direction θ0.
for t in 1, 2, ..., T do

▷ Scaling-aware Noise Sampling (Section 4.1)
Sample unit vectors {U1, U2, ...} using Algorithm 1.
▷ Gradient-direction Estimation
Estimate a better gradient ĝ with {U1, U2, ...}.
▷ Update adversarial direction
Set θt ← θt−1 − η · ĝ.
Search a point near the boundary along θt.

end for
Output θt.

C. Circumventing Median Filtering Defense
In this section, we provide more details of our circumvention
of the median filtering defense, including its precise formu-
lation, technical implementation, and additional empirical
evaluations.

C.1. Improve Gradient Estimation for Median

For any input sequence z ∈ [0, 1]n, the improved median
function can be written as

improved-median(z) :=

∑n
i=1 zi · ωi∑n

i=1 ωi
, (9)

where ω ∈ Rn is the weighting vector.

A useful weighting vector should satisfy two important prop-
erties: (1) it proportionally extends the gradient to non-
median values; (2) it limits the number of changed values to
mitigate the perturbation. We satisfy these two properties
through quantile bounding and the absolute deviation to
median, which define the weight as

ωi := (1− |zi−median(z)|) ·1{z(a) ≤ zi ≤ z(b)}, (10)

where z(a), z(b) are the a-th and b-th quantile of scalar val-
ues in z. We set (a, b) to (0.2, 0.8) based on an empirical
evaluation in Appendix C.2. Intuitively, values that deviate
more from the median are assigned smaller gradients, and
the total number of changed values is limited if all values
are close to the median.

We note that, however, the above approximation of median
function may not be optimal; we leave better-optimized
approximations as the future work.

C.2. Approximation of Median’s Gradient

In Appendix C.1, we approximate the median function by
“trimmed and weighted average” to provide a useful gradient
for black-box attacks. To this end, we introduce the weight
with quantile bounding, as defined in Equation (10). Here,
we provide empirical evaluations of different choices of the
quantile position a and b using our HR HSJ attack.

Figure 11 shows that constrained bounds can result in subop-
timal performance, such as (0.4, 0.6) and (0.3, 0.7). In con-
trast, relaxed bounds could obtain better performance, such
as (0.2, 0.8) and (0.1, 0.9). We finally choose (0.2, 0.8)
as it obtains better performance when given lower query
budgets (5K) and higher budgets (25K).

C.3. Formalizing the Median Filtering Defense

Our circumvention strategy in Section 4.2 describes the high-
level idea of improving the gradient estimation of the median
function. However, formulating the median filtering defense
is not straightforward because it is originally proposed as a
selective operation that only modifies vulnerable pixels, to
which the scaling function gives high weights.

We will first show how to formulate the selective filtering
defense as a masked pooling layer with a boolean mask that
represents vulnerable pixels. After that, we show a simple
strategy to identify these vulnerable pixels.



Supplementary Material: The Interplay Between Vulnerabilities in Machine Learning Systems

0K 5K 10K 15K 20K 25K
Query Budget (#)

100

101

M
ed

ia
n 

Pe
rtu

rb
at

io
n 

(s
ca

le
d 
` 2

)
HSJ (HR, a=0.4, b=0.6)
HSJ (HR, a=0.3, b=0.7)
HSJ (HR, a=0.2, b=0.8)
HSJ (HR, a=0.1, b=0.9)
HSJ (HR w/o improve)
HSJ (LR)

Figure 11: The performance of our HR HSJ (with improved
median) under the median filtering defense and the LR HSJ.
We show different quantile bounds in Equation (10).

Masked Pooling Layer. We describe the pooling layer
as a convolution, as the pooling layer works like a discrete
convolution but replaces the linear kernel with some other
function (Dumoulin & Visin, 2016b). This allows us to
represent the defense as

h(X) := p(X) · mask+X · (1− mask), (11)

where p is the pooling function, mask is a boolean mask
with 1 denoting vulnerable pixels. The pooling function is
given as p(X) := X ⋆ k, where ⋆ denotes 2D convolution
with reflect padding to keep the same shape, and k denotes
the filter function determined by the defense. In the case
of the median filtering defense, we set k to the improved
median function in Equation (9) in the backward pass, and
switch to the standard median function in the forward pass.

Identifying Vulnerable Pixels. We then explain how to
determine the boolean mask in Equation (11). For any fixed
scaling algorithm, we can write the scaling function as a
matrix multiplication like Equation (6). By setting all entries
in x ∈ L to one and solving for X ∈ H, we have

X∗ = L+ ×D ×R+ ∈ H, (12)

where L+ and R+ are the pseudo-inverse (Ben-Israel &
Greville, 2003) of L and R. Conceptually, this recovers
the element-wise weight of each pixel in the source image
during scaling. That is, every non-zero entry in X∗ indicates
a vulnerable pixel in the source image; we thus determine
the boolean mask as

mask = 1{X∗ ̸= 0}, (13)

where the indicator function 1 and operator ̸= are all com-
puted in element-wise.

In summary, we have formalized the median filtering de-
fense as a masked pooling layer in Equation (11). This
formulation allows us to apply SNS in Section 4.1 with a
precise definition of (h ◦ g).

D. Experimental Details
In this section, we provide more details of our evaluation
setup. We run all experiments on 8 Nvidia RTX 2080 Ti
GPUs, each with 11 GB memory.

D.1. Datasets and Models

We use two datasets in our evaluation: ImageNet (Rus-
sakovsky et al., 2015) and CelebA (Liu et al., 2015).

ImageNet. We randomly choose 1,000 images larger than
672 × 672 and downscale them to 672 × 672. The target
model is a ResNet-50 (He et al., 2016) model pre-trained
by TorchVision3, which attains 76.13% Top-1 accuracy and
92.86% Top-5 accuracy on ImageNet. We discard source
images that are mis-classified before running the attack.

In the white-box setting, we use a ResNet-50 model adver-
sarially trained by Engstrom et al. (2019), which attains
57.90% Top-1 accuracy on benign inputs and 35.09% Top-1
accuracy under PGD attack with 100 steps and an ℓ2-norm
budget of 3. We only choose correctly classified images to
avoid the artifacts of its slightly lower benign accuracy.

CelebA. We randomly choose 1,000 images and rescale
their faces to 672× 672. For simplicity, we pre-cropped the
facial images and directly evaluate LR and HR attacks on
such images, but it is straightforward to adopt the complete
pre-processing pipeline that includes facial extraction, as
this procedure is not randomized. The target model is a
pre-trained ResNet-34 model that accepts facial images of
size 224× 224 and predicts the Mouth Slightly Open
attribute with 92.4% accuracy.

D.2. Image Analysis API

The Tencent Image Analysis API accepts a variety of images
and returns Top-5 labels (with probability scores) that best
describe the image. This API uses OpenCV’s linear scaling
as inferred by Xiao et al. (2019).

We define the ground-truth label as the benign input’s Top-1
label; we only consider benign inputs whose Top-1 score
is above 50%. A successful attack should decrease the true
label’s score to below 10%. Our attacks did not leverage
these scores; they only have access to the final decision.
When running transfer-based attacks on this API, we adopt
the robust model in Appendix D.1 as the surrogate model;

3https://pytorch.org/vision/stable/models.
html

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
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attacks on a non-robust model cannot transfer to this API.

D.3. Attacks

We use HSJ (Chen et al., 2020), C&W(Carlini et al., 2019),
and PGD (Madry et al., 2018) attacks implemented by Ad-
versarial Robustness Toolbox4 (Nicolae et al., 2018). For
the Sign-OPT attack (Cheng et al., 2020), we use its official
implementation5. Particularly, we did not change the de-
fault parameters used in black-box attacks; all optimization
parameters are fixed to the official recommendation.

For the C&W attack, we set the binary search step to 20 with
a maximum of 1,000 iterations. The confidence parameter κ
is set to {0, 1, ..., 10}. For the PGD attack, we set the num-
ber of steps to 100 with ℓ2-norm budget ϵ = {1, 2, . . . 20}
and step size 0.1× ϵ.

E. Exploiting Vulnerabilities Sequentially
In Section 5.2, we have shown how to jointly exploit vul-
nerabilities in upstream scaling and downstream classifier.
However, we note that it is also possible to sequentially
exploit these two vulnerabilities. For example, the attacker
can deploy the conventional black-box attacks on the down-
stream model, and leverage the image-scaling attack to hide
the adversarial example within its original clean image. This
requires solving Equation (8), where T is the standard ad-
versarial example generated by a black-box attack on the
downstream model.

However, we note that the sequential attack is suboptimal.
This attack only finds an HR image whose downscaled ver-
sion is close enough to the given LR adversarial example; it
cannot guarantee that the obtained HR image is still adver-
sarial after downscaling. As black-box adversarial examples
are typically near the decision boundary, the final solution
may still lie in the correct label’s decision area even if it is
close enough to the given adversarial example. This prob-
lem is more severe when it is hard to precisely invert the
median filtering defense.

Figure 4 compares the performance of our joint attack and
the alternative sequential attack (all based on HSJ). The
sequential attack injects adversarial examples from LR HSJ
to their HR source images. Figure 4a shows that jointly
attacking the pipeline uses the query budget more efficiently;
the 5K joint attack even beats the 20K sequential attack.
Figure 4b shows that the sequential attack is suboptimal
under the median defense; it becomes worse when the target
adversarial example was obtained with more queries (thus,
more sensitive to the imprecise results from image-scaling

4https://github.com/Trusted-AI/
adversarial-robustness-toolbox

5https://github.com/cmhcbb/attackbox

attacks). We thus focus on the more practical joint attack,
which directly optimizes to attack the entire ML system.

Finally, we conjecture that the sequential attack only works
when the given target image can induce a misclassification
with high probability, such as an image from another class
(like the standard image-scaling attack) or an adversarial
example generated by the C&W attack with high confidence.

F. Analyzing Randomized Filtering Defense
In the following arguments, we show that the randomized
filtering defense, when viewed jointly with the scaling func-
tion, can be regarded as a uniform scaling procedure.

Without loss of generality, we study randomized filtering
over a 3×3 window w in the source image S and an arbitrary
convolution kernel k. We also pad the input properly so
the window w is always surrounded by other pixels. Since
both the scaling and filtering functions can be written as a
convolution, we restate the defended scaling D = (g◦h)(S)
over a window w with output pixel d2,2 as

d2,2 = w ⋆ krnd ⋆ k

=

w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3

 ⋆ frnd ⋆

k1,1 k1,2 k1,3
k2,1 k2,2 k2,3
k3,1 k3,2 k3,3

 ,

where the randomized filter krnd randomly picks a pixel
from the 3× 3 window w with probability 1/9.

We study the central pixel w2,2 and its weight w′
2,2 during

this defended scaling. First, the randomized filtering slides a
3× 3 window around each pixel wi,j and randomly changes
its value to w2,2 with a probability Pr[wi,j ← w2,2] = 1/9.
Second, the scaling algorithm gives the weight ki,j to each
pixel wi,j . Since the pixel wi,j could hold the value of w2,2,
the overall weight of w2,2 can be described as Pr[w′

2,2 ←
ki,j ] = 1/9. Thus, we can write the expected value of the
weight w′

2,2 as

Ek∼K[w
′
2,2] =

∑
1≤i,j≤3

1

9
· ki,j =

1

9
, (14)

where K is the filter space determined by krnd and we have
assumed a normalized scaling kernel k. This shows that
the pixel w2,2 is given a uniform weight in expectation.
Extending to other pixels, we have:

Eh∼H[(g ◦ h)(S)] = S ⋆ ku, (15)

where H is the space of defense functions chosen by the
randomized filtering defense and ku is the uniform area
scaling kernel defined in Appendix A.3.4.

https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/cmhcbb/attackbox
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(a) C&W Vanilla
(scaled ℓ2 = 17.44)

(b) C&W Scaling
(scaled ℓ2 = 5.84)

(c) C&W Medain
(scaled ℓ2 = 14.4)

Figure 12: Adversarial examples from (a) C&W, (b) HR
C&W, and (c) HR C&W under the median filtering defense.
The confidence is set to κ = 2. The shape is 224 × 224
for (a), and 672 × 672 for (b) and (c). HR C&W attack
produces less perturbation even under the median defense.

G. High-Resolution White-box Attacks
In this section, we provide details of extending white-box
attacks (Carlini et al., 2019; Madry et al., 2018) to the full
ML pipeline. This is useful for transfer-based black-box at-
tacks as well as evaluating the worst-case robustness of ML
pipeline and image-scaling defenses. Since white-box at-
tacks can easily circumvent defenses using BPDA (Athalye
et al., 2018a) and EOT (Athalye et al., 2018b), this evalua-
tion is only for the completeness of this paper and does not
claim any technical novelty.

G.1. Formulating White-box Attacks

Formulating white-box attacks is straightforward by viewing
the entire ML pipeline as a sequential model. For example,
the objective function of C&W attack becomes

min ∥∆∥2 + c · (f ′ ◦ g ◦ h)(X +∆)

s.t. X +∆ ∈ H,
(16)

where f ′ is the loss function quantifying the confidence of
the model f ’s ground-truth prediction, X is the HR source
image, and ∆ is the HR adversarial perturbation. Similarly,
the objective function of PGD attack becomes

max J
(
(f ◦ g ◦ h)(X +∆), y∗

)
s.t. ∥∆∥2 ≤ ϵ,

(17)

where J(·) is the cross entropy loss, y∗ is the ground truth
label of X , and ϵ is the specified perturbation budget.

G.2. Evaluating Image-scaling Defenses

G.2.1. PRE-PROCESSING DEFENSES

From the perspective of a whole ML pipeline, pre-
processing defenses for the scaling function can be circum-
vented by BPDA (Athalye et al., 2018a) in white-box attacks.
However, as we find the gradient of our masked pooling
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Figure 13: Comparison of HR white-box attacks under
different constraints and prevention scaling defenses. Only
the randomized filtering defense is robust.

layer formulation in Appendix C.3 to be useful, we will
keep the median filtering formulated as Equation (11) for
consistency. Adversarial examples produced by HR C&W
attacks are shown in Figure 12.

We use HR C&W and PGD attacks in Appendix G.1 to eval-
uate the robustness under the confidence and perturbation
constraint, respectively. Similar to the setting in Section 5.3,
we generate two sets of adversarial examples using the LR
and HR attacks, respectively.

Figure 13 shows the performance of HR white-box attacks
when attacking the entire ML system pipeline. Overall, HR
attacks are able to gain incentives under no scaling defense
or the median filtering defense. In Figure 13a, the HR C&W
attack was able to achieve the same confidence with lower
perturbation. In Figure 13b, the HR PGD attack was able to
decrease more accuracy with the same perturbation budget.

The only exception is the randomized filtering defense in
Figure 13b, which successfully protects the ML system’s
robustness against threats from the scaling procedure. We
show that scaling algorithms adopting uniform kernels or
dynamic kernel widths (Quiring et al., 2020) are robust as
well in Appendix G.2.3.

G.2.2. DETECTION DEFENSES

Although we empirically observe that HR white-box attacks
evade all existing detection defenses out of the box, we note
that a learning-based detector may still work. In that case,
one could adaptively evaluate the detector’s effectiveness
using the following approach. Given any detection function
d, we first choose a loss function L so that L(X + ∆) is
minimized when the detection d(X +∆) is incorrect. We
then add the loss function L as a regularizer to our objective
functions. For instance, Equation (17) would become:

max J
(
(f ◦ g ◦ h)(X +∆), y

)
− γ · L(X +∆)

s.t. ∥∆∥2 ≤ ϵ,
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Figure 14: Compare the performance of vanilla and HR
PGD attacks on scaling algorithms that are robust by design.
This verifies the robustness of such scaling algorithms.

where γ is the hyper-parameter that controls the weight of
the added regularizer. This approach is similar to the attack
from Carlini & Farid (2020) against a learning-based deep-
fake detector (Frank et al., 2020), which also detects the
artifacts of deep-fakes in the spectrum domain. We leave
the investigation of such attacks to future work.

G.2.3. ROBUST SCALING ALGORITHMS

Recall that Quiring et al. (2020) have identified a few scaling
algorithms that are robust against the scaling attack (see
Appendix A.3.4). We also evaluate their robustness against
the HR image-scaling attack. In Figure 14, we report the
evaluation of scaling algorithms that adopt uniform kernels
(CV Area) or dynamic kernel widths (PIL Linear). As
evident from the plots, HR PGD attacks cannot exploit
these scaling algorithms to improve the vanilla one. This
verifies the robustness of known-robust scaling algorithms
in a setting where the attacker jointly targets the whole ML
system pipeline.

H. Black-box Adversarial Examples by HSJ
Figure 15 shows more black-box adversarial examples from
our HR HSJ attack. HR HSJ attack is able to produce less
perturbation than the LR HSJ attack for a given query budget.
The same observation holds for median-defended scaling
after 200 model queries.
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ℓ2 = 102.97 ℓ2 = 65.52 ℓ2 = 44.56 ℓ2 = 29.36 ℓ2 = 6.53 ℓ2 = 3.13

ℓ2 = 92.00 ℓ2 = 41.31 ℓ2 = 19.13 ℓ2 = 5.12 ℓ2 = 0.50 ℓ2 = 0.28

ℓ2 = 141.19 ℓ2 = 94.72 ℓ2 = 40.54 ℓ2 = 17.68 ℓ2 = 2.85 ℓ2 = 1.45

ℓ2 = 77.26 ℓ2 = 52.14 ℓ2 = 29.18 ℓ2 = 18.77 ℓ2 = 5.90 ℓ2 = 3.23

ℓ2 = 67.02 ℓ2 = 30.75 ℓ2 = 14.41 ℓ2 = 9.58 ℓ2 = 2.04 ℓ2 = 1.08

ℓ2 = 104.79 ℓ2 = 44.41 ℓ2 = 17.77 ℓ2 = 10.06 ℓ2 = 2.37 ℓ2 = 1.41

Figure 15: Adversarial examples in the black-box setting. 1st–3rd (4th–6th) rows: examples generated by HSJ, HR HSJ,
and HR HSJ under the median filtering defense. 1st–6th columns: examples at 100, 200, 500, 1K, 5K, 10K model queries.
Perturbations: the scaled ℓ2-norm distance to the original image, numbers in bold font denote obtaining less perturbation
than the LR HSJ attack. The shape of above images from LR and HR HSJ attacks is 224× 224 and 672× 672, respectively.


