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—— Abstract

Polarization is an unprecedented coding technique in that it not only achieves channel capacity, but
also does so at a faster speed of convergence than any other technique. This speed is measured by
the “scaling exponent” and its importance is three-fold. Firstly, estimating the scaling exponent
is challenging and demands a deeper understanding of the dynamics of communication channels.
Secondly, scaling exponents serve as a benchmark for different variants of polar codes that helps
us select the proper variant for real-life applications. Thirdly, the need to optimize for the scaling
exponent sheds light on how to reinforce the design of polar code.

In this paper, we generalize the binary erasure channel (BEC), the simplest communication
channel and the protagonist of many polar code studies, to the “tetrahedral erasure channel” (TEC).
We then invoke Mori—Tanaka’s 2 X 2 matrix over F4 to construct polar codes over TEC. Our main
contribution is showing that the dynamic of TECs converges to an almost—one-parameter family of
channels, which then leads to an upper bound of 3.328 on the scaling exponent. This is the first
non-binary matrix whose scaling exponent is upper-bounded. It also polarizes BEC faster than all
known binary matrices up to 23 x 23 in size. Our result indicates that expanding the alphabet is a
more effective and practical alternative to enlarging the matrix in order to achieve faster polarization.
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1 Introduction

A fundamental question at the center of the theory of communication is whether we can fully
utilize a noisy channel to transmit information. In modern terminology, can error correcting
codes achieve channel capacity? The answer is positive; in fact, multiple code constructions
do so. Among them, polar code is a special one as it achieves capacity faster than any other
known code.
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Polar coding was invented by Arikan around 2008 [2]. During that time, Arikan was
experimenting with channel combining and splitting. By treating two independent binary
channels as a single quaternary channel (combining) and tasking ourselves with guessing
certain linear combinations of the inputs (splitting), he synthesized two channels, denoted
by W5 and WO, out of the original channel W. Arikan realized that, when combining and
splitting is applied recursively, the channels undergo an intriguing dynamic that ultimately
results in most synthetic channels being either almost noiseless or extremely noisy. This is
channel polarization, the first ingredient underlying polar codes.

The second ingredient of polar codes, also given by Arikan in said seminal paper, is the
relation between the dynamic of synthetic channels and the construction and performance of
the code. Arikan’s insight was that synthetic channels that become almost noiseless can be
used to transmit information bits, and synthetic channels that become extremely noisy can
be “frozen” to some fixed values. The rate at which we communicate meaningful bits is then
the proportion of synthetic channels that are almost noiseless. So, whether we can achieve
channel capacity becomes a problem of counting the numbers of good and bad synthetic
channels.

It then became apparent, perhaps even appealing, that one can study the dynamic of
synthetic channels by means of stochastic processes. Take the binary erasure channel (BEC)
as an example. Let W be BEC(e), the BEC with erasure probability €, where 0 < ¢ < 1.
The channels W5 and W© are BEC(2e — £2) and BEC(g?), respectively. A process {H,}n
is thus defined by having Hg := ¢ and H,,11 = 2H,, — H2 or H? with equal probability. It
can be shown that if

P{H, < f(n)} =1-Ho—g(n),

where f,g > 0 are functions in n, then there is a polar code of length 2", miscommunication
probability 2" f(n), and gap to capacity g(n).

It was at this point that the study of polar codes branched. On one branch, called the
error exponent regime, g is a constant and the asymptotics of f is examined. On the other
branch, called the scaling exponent regime, f is a constant' and the asymptotics of g is
examined. On the error exponent branch, it was shown that f(n) is roughly exp(—e”"),
where 5 > 0 is a constant depending on the matrix used in the code construction. The task
of determining  for each matrix has been fully resolved; interested readers are referred to
[3, 26, 22, 33].

On the scaling exponent branch, making progress is harder and slower. For BECs, [21, 25]
managed to estimate that g(n) ~ 2-"/3527. For binary memoryless symmetric (BMS)
channels, it was first shown that g(n) < 27"/# for some constant 0 < p < oo [20]. This
makes polar codes the only known code family that converges to capacity at a polynomial
rate in the block length. More realistic estimates of p were given later: 3.553 < u [18],
3.579 < p < 6 [23], p < 5.702 [17], p < 4.714 [31], and very recently p < 4.63 [49]. Now that
we know the p for polar code and the optimal value being p & 2 for random code [4, 24, 37],
the discrepancy begs the question: Can one modify polar code to reach a smaller scaling
exponent?

1 Not always; sometimes f — 0 but only exponentially fast in n. Note that 2" f(n), the upper bound on
the miscommunication probability, is allowed to exceed 1, so the corresponding code can be meaningless.
Yet the asymptotics of g capture the behaviors of other meaningful codes.



I. Duursma, R. Gabrys, V. Guruswami, T.-C. Lin, and H.-P. Wang

The answer is positive: Arikan used the matrix [19] (this is called the kernel in literature)
to combine and split channels. Instead, one can use a larger matrix, for instance
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to combine and split channels. In [16, 50, 46, 45, 5, 28], binary matrices ranging from 3 x 3
to 64 x 64 are deployed and the scaling exponents over BECs are estimated. The best scaling
exponent up to every matrix size is plotted in Figure 2. There are also meta-asymptotic results
stating that p ~ 2 can be achieved using larger and larger matrices. This statement was
proved over g-ary erasure channels [36], binary erasure channels [15], all BMS channels [19],
and finally discrete memoryless channels [48].

As much as we want to lower polar code’s scaling exponent, there is one caveat that
renders large matrices impractical: the smallest matrix whose scaling exponent is strictly
better than [19] is the 8 x 8 matrix above. Using this matrix takes twice more time to decode
(estimate based on the method of [9]), whereas the benefit we gain is that p slightly decreases
from 3.627 to 3.577. As the matrix gets larger and deviates more from the tensor powers of
[19], the time complexity grows drastically. For this reason, it is unlikely that we will ever
see polar code based on large matrices (unless it is for other concerns [6]).

Large matrix aside, many other techniques emerge with empirical evidence that they

improve polar code — concatenation, cyclic redundancy check, and list decoder to name a few.

But none of them sees a proof of improvements in the scaling exponent; in fact, quite the
opposite was reported [30]. So we are back to the starting point where we want to improve
polar codes’ scaling exponent while minimizing the complexity penalty.

One approach that seems promising, albeit very little is known due to its innate technical
difficulty, is to use a non-binary input alphabet. This line of research started from Sasoglu [42,
41, 13], wherein the goal was to find at least one way to polarize arbitrary finite alphabets

regardless of the speed. In particular, the usual matrix [19] is known to polarize prime fields.

Later, Sahebi-Pradhan [40] and Park-Barg [35] showed that [19] cannot polarize non-prime
fields. Then, Mori-Tanaka [33] classified all matrices that can polarize finite fields (i.e., the
alphabet size must be a prime power). One step forward, Nasser [34] classified all binary
operators (i.e., bivariate functions) that can polarize arbitrary finite alphabets. In [7, 8], the
authors showed that, for any polarizing matrix over prime fields, one has p < oo. In [48], the
authors showed that pu & 2 is reachable over arbitrary finite alphabets.

Why is a non-binary input alphabet attractive? There are at least three reasons. First,
modulation?: For quadrature amplitude modulation (QAM) and amplitude and phase-shift
keying (APSK), a constellation point is more likely to be confused with constellation points
nearer to it. A non-binary channel models this proximity relation more naturally than
a series of correlated binary channels do [44, 11]. Second, two-stage polarization: If we
weakly-polarize a binary channel with [19], treat two binary channels as a quaternary channel,
and strongly-polarize the quaternary channel with the 4 x 4 Reed—Solomon matrix, we can

improve the asymptotics of f(n) from exp(—2%°") to exp(—2°-5731") [38] (see also [1, 12]).

Third, and most importantly, scaling exponent: Several works have observed that non-binary
matrices of the form [L9] just polarize faster than [}9] [51, 29, 43]. Could it be that the

wl
non-binary scaling exponents are smaller?

2 Modulation means translating digital signals to analog signals. A digital signal will be mapped to a
point on the complex plane, which represents a sine wave with certain amplitude and phase; such a
point is called a constellation point, the union of all points a constellation diagram.
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Consider [39]’s technique that uses [19] to polarize non-binary channels; their result has
an implication that non-binary channels’ scaling exponent is at least as good as binary
channels’. In this paper, we aim to answer the question of whether the former is strictly
better than the latter. By defining a toy model that contains a pair of BECs as a special
case and estimating the scaling exponent of [1{], we provide a proof of concept result that
an expansion in alphabet size does result in an improvement in scaling exponent. Recall that
BECs form a one-parameter family and that this property makes its scaling behavior easy
to analyze. This paper’s overall strategy is to show that the descendants of a quaternary
channel converge to an almost—one-parameter family; we then analyze the scaling behavior
of this family and conclude the following.

» Theorem 1 (main theorem). Treating a pair of BECs as a quaternary channel, the 2 X 2

matriz [L9] over Fy induces a scaling exponent less than 3.451. Here, w? + w + 1 = 0.

This paper is organized as follows. Section 2 reviews the essence of polar code. Section 3
defines tetrahedral erasure channels (TECs), defines balanced TECs to be those that possess
some symmetry, and defines edge-heavy TECs to be those that will be polarized faster.
Section 4 defines serial combination and parallel combination that will be used to polarize
TECs. Section 5 shows that unbalanced TECs tend to become very close to balanced TECs,
so it suffices to consider the speed of polarization of the latter. Section 6 shows that edge-light
TECs tend to become very close to edge-heavy TECs, so it suffices to consider the speed
of polarization of the latter. Section 7 shows the speed of polarization of a generic TEC is
faster than the classical BEC.

2 Polar Code

Readers who are familiar with polar code can safely skip this section. This section serves
a simplified, high-level summary of classical polar code. More details are found in [47,
Chapter 2]. We assume BEC throughout the section.

Let X € Fs be a random variable following the uniform distribution. Let Y € Fo U{?} be
a random variable with P{Y =X } =1 —c and P{Y =7} = ¢. Here, € € [0, 1] is called the
erasure probability. The pair (XY is called a binary erasure channel (BEC) and denoted by
BEC(e). The entropy H(BEC(e)) = H(X|Y) = ¢ is defined through Shannon’s mean.

Let (X1]Y1) and (X3|Y3) be two iid copies of BEC(e). Define the serial combination
BEC(e)" to be (X1 + X32|Y1,Y3). That is, what do we know about X; + X5 when given Y;
and Y5? One sees that it is information theoretically equivalent to BEC(2e — £2). Define the
parallel combination BEC(¢)© to be (X;|Y1, Y2, X1 + X3). That is, what do we know about
X7 when given Y7, Y5, and X7 + X357 One sees that it is information theoretically equivalent
to BEC(g?).

Serial and parallel combinations apply recursively. A polar code of block length 2"
consists of a subset of strings Z C {o,0}™. In this code, a synthetic channel

Cn

(. - ((BEC(e))>) ) (1)

will be used to transmit useful information iff (¢1,¢1,...,¢,) € Z. The code rate of this polar
code is |Z|/2™. The exact miscommunication probability of this polar code is hard to find,
but has an upper bound of

;H(( - ((BEC(2))*) )c)
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symmetric
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balanced TECs

tetrahedral erasure channels

discrete memoryless channels

Figure 1 The Euler diagram of channels featured in this paper. The cross is the set of pairs
of BECs; it will converge to the set of balanced TECs (Section 5). The balanced TECs will then

converge to edge-heavy TECs (Section 6). And then edge-heavy TECs polarize faster than BECs.

Note that BECs are a one-parameter family of extreme BMS channels, hence the thick curve.

To define a good Z, choose a function f(n) and collect all strings (¢1, ¢, ... ,¢n) € {0, 0}
such that H(formula (1)) is less than f(n). The fact that the erasure probabilities undergo
simple evolutions & + 2 — £2 and ¢ ++ £2 motivates the following stochastic process: define
{H,}, by initial value Hy := ¢ and evolution rule H, i = 2H, — H? or H? with equal
probability. Then the code rate |Z|/2" coincides with P{ H,, < f(n) }. The gap to capacity
gn)=1—Hy—|Z|/2" =1— Hy —P{ H, < f(n) } is thus motivated.

In a way, the study of polar code over BEC is the study of the cdf of H,, with emphasis
put on the hard threshold at 1 — Hy. Abusing the same logic, this paper is a study of a
stochastic process {W,,}, that lives in [0,1)° " {p+ ¢+ r + s+t = 1}, which happens to
have peculiar implications in coding theory.

3 A New Channel Model

We are to define a type of quaternary channels in this section. This should be the smallest
possible set of quaternary channels that meet the following: (a) it should model a pair of
BECs as a special case; and (b) it should be closed under pre-processing the input using
invertible linear transformations.

3.1 Tetrahedral erasure channel

Let the input alphabet be F3; and we assume the uniform input distribution throughout the
paper. For any input (z1,z2) € F2, the output will be in (F U {?})? and assume one of the
following five erasure patterns:

(21,21 4+ 22, z2) with probability p;

x1,7,7) with probability g¢;

?,7,x9) with probability s;

(
(?, 21 + x2, 7) with probability r;
(
(7,7,7) with probability ¢.

17:5
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Here we call p, q,r, s,t the subspace erasure probabilities and they sum to 1. Such a channel is
denoted by TEC(p, g, r, s,t). For brevity, we say a TEC outputs (z1, x2), outputs 1, outputs
1 + T2, outputs x2, and outputs nothing to represent the five erasure patterns.

A TEC can be related to a tetrahedron whose vertices are (0,0,0), (1,1,0), (1,0,1),
and (0,1,1). Outputting (z1,2) corresponds to the vertex (z1,21 + 23, 22). Outputting
corresponds to the edge (z1,21,0) — (21,1 — 21,1). Outputting nothing corresponds to the
tetrahedron per se. That is to say, a TEC takes a vertex as an input and outputs the same
vertex with probability p, outputs an edge attached to that vertex with probability g +r + s,
and output the entire tetrahedron with probability t.

There is another way to interpret a TEC. Consider F4 and let w be a primitive element
therein. A TEC takes z = zjw + x2 € Fy as an input and outputs z, tr(x), tr(wz), tr(z/w),
or nothing, each with probability p, ¢, r, s, and t. Here, tr: Fy — Fy is the field trace. It is
the matrix trace if we use the matrices [39], [§%], [14], [{3] to represent 0,1, w, 1+ w € Fy.

TEC is not an ad hoc channel that we happen to know how to deal with. It relates to
other channels that have been discussed in literature.

» Proposition 2. The “g-ary erasure channel with erasure probability €” [32, 36/, when
q=4, is a TEC of the form TEC(1—¢,0,0,0, ¢).

» Proposition 3. When transmitting two bits 1 and x4 through BEC(§) and BEC(e),
respectively, the outputs can be simulated by TEC( (1 —§)(1 —¢€), (1 —d)e, 0,0(1 —¢), de).

The proofs are trivial. The propositions imply that any scaling exponent estimate for
TEC immediately generalizes to 4-ary erasure channels and BECs.

3.2 Channel functionals

The conditional entropy (hereafter entropy) of a TEC is defined by the following; it is meant
to be compatible with Shannon’s definition:

H(TEC(p,q,r,s,t)) = # +t.

The edge mass of a TEC is defined by the following; it measures the “polarizability” of a
TEC:

E(TEC(p,q,r,s,t)) =q+7r+s.
The Quetelet index of a TEC W is defined by
EW)
QUY) = .

HW)(1 —H(W))

Clearly, 0 < E(W) < 2min(H(W),1 — H(W)) and 0 < Q(W) < 4. We call a TEC W edge-
heavy if Q(W) > 24/7 — 4. Adolphe Quetelet invented the body mass index that determines
if a person is overweight or underweight. Here, we use Quetelet index to determine if a TEC
possesses too much edge mass (easy to polarize) or too little (hard to polarize).

A TEC is balanced if ¢ = r = s. Put it another way, the edges of the tetrahedron weigh
the same. It is not hard to see that H and E uniquely determine a balanced TEC by

pzl—H(W)—@, q:r:s:@7 tzH(W)—%VV).

The moment of inertia of a TEC is defined by
A(TEC(pa q,7, S, t)) = (q - 7")2 + (T - 5)2 + (S - Q)Q

A TEC is balanced iff its moment of inertia vanishes. See also the “symmetric over the
product” condition in [10] and the “equidistance” condition in [42].
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4  Channel Synthesis

TECs can be serially combined or parallelly combined as in the theory of density evolution [27].

4.1 Serial combination

Let U .= TEC(p,q,r,s,t) and V := TEC(p', ¢’, ', s',t') be two TECs. The serial combination
of U and V is defined to be the task of guessing (u; +v1, uz +v2) given the output of inputting
(u1,u2) into U and the output of inputting (vi,v2) into V. Let us go over all 25 erasure
patterns that are classified into five scenarios.

Scenario one — U outputs (u1,u2) and V outputs (vy,v2): Now we know (ug + vy, us + v2)
in its entirety. This scenario happens with probability pp’.

Scenario two — U outputs u; with or without us, and V outputs v; with or without
vg, but either uy or vy is missing: In this case, we can infer u; + vy, but we cannot infer
ug + va. So this case feels like (21, x2) = (uy + v1, us + v2) underwent a TEC and only
went through. The probability that only x; went through is pq’ + q¢’ + qp’.

Scenario three — U outputs (u1,us) or uj + uz, and V outputs (v1,vs) or vy + va, but
scenario one does not happen: For this case, we know neither u; + v nor us + vo. But we
can infer (u1 +wv1) + (ug +v2). So this case feels like (x1, x2) == (ug + v1, ug + v2) underwent
a TEC and only z; + x5 went through. The probability that only x; + x5 went through is
pr’ +rr’ +rp'.

Scenario four — U outputs us with or without u;, and V outputs vy with or without vy,
but either u; or vy is missing: In this case, we can infer x5 = us + vo but not x; = u; + v;.
So this case feels like 7 is erased. This scenario happens with probability ps’ + ss’ + sp/.

Scenario five — U outputs one bit (u; or u; + ug or us) and V' outputs one bit (vq or
v1 + v2 or vy) but the erasure patterns do not match; or at least one of U and V outputs
nothing: We cannot infer u; + v1 because either u; or vy is missing. We cannot infer us + v
because either ug or vy is missing. We cannot infer (u; + v1) + (ug + v2), either. So this case
feels like both x1 = u; +v; and x1 = uy + vo are erased, so is x1 + 2. The probability that
we learn nothing about (z1,22)is (¢+7r+3s)(¢ +7" +5') —qq —rr' —ss' +t+t' —tt'.

Note that these five scenarios correspond to the five erasure patterns in the definition
of TEC. Denote by U ® V' the serial combination of U and V; it is a TEC with subspace
erasure probabilities

UmV =TEC( pp', pq’ +qq +qp’, pr'+rr'+rp’, ps’'+ss’ +sp’, 1—the four to the left ).

4.2 Parallel combination

The parallel combination of U := TEC(p, q,r,s,t) and V = TEC(p',¢',r’,s',t') is defined to
be the task of guessing (uy,us) given (uj + v1, us + v2) (the perfect output of U m V'), the
result of feeding (uj,us) into U, and the result of feeding (vy,vy) into V.

Denote by U ® V the parallel combination of U and V. One can go over its erasure
scenarios like the previous subsection does. For instance, if U outputs u; and V outputs
v1 + vg, then we can infer v; (using u; and uy + v1), followed by ve (using v1 and vy 4 va),
and finally us (using ve and us +vs); and hence we can completely recover u; and uy. Details
omitted, it can be shown that U ® V is a TEC with subspace erasure probabilities

U®V := TEC( 1—the four to the right, t¢'+qq +qt’, tr'+ri' +rt', ts'+ss' +st’, tt' ).

17:7
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Note that there is a duality between TEC(p, ¢,, s,t) and TEC(¢, s, , ¢, p) that keeps FE
as is, maps H to 1 — H, and swaps parallel and serial combinations. The duality grants us
the convenience of proving half of a theorem and the other half follows by symmetry.

4.3 Mori-Tanaka’s twisting kernel

A 2 x 2 polarization kernel K over F, is defined with a “twist” as follows: For a pair of
inputs u,v € Fy, let K be the linear transformation that reads (u,v) — (u + wv,v) or,
equivalently,

hﬂquﬁﬂ.

This kernel was studied by Mori-Tanaka [33] and is shown to be polarizing. If we treat Fy as
F2, then K reads ((ul,uz) , (v1, 112)) — ((u1 +v1 4+ v, ug +v1), (vl,vg)) or, equivalently,

1

[Ul uz VU1 Uz] — [u1 Uz U1 Uz} [} 1y 1] )
where uy,ug,v1, v € Fy. The kernel K combines two TECs U and V' to synthesize U & (Vw)
and U @ (Vw), where Vw is the channel that multiplies the input by w before feeding it into
V. For brevity, W ® (Ww) and W @ (Ww) are denoted by W5 and WO, respectively.

Multiplying a TEC by w behaves like a rotation of order 3 (after all, w® = 1 and it is
rotating the tetrahedron). It maps TEC(p,q,r,s,t) to TEC(p, s,q,r,t). If W is balanced,
rotation does not alter it: W = Ww. If it is not balanced, then the rotation helps mis-match
q, 7, s so that a large probability is paired with a small probability. More precisely,

TEC(p, q,r,s,t)" := TEC( p?, ps+sq+qp, pg+qr+rp, pr+rs+sp, 1—the other four ),
TEC(p, q,7,5,t)° := TEC( 1—the other four, ts+sq+qt, tq+qr+rt, tr+rs+st, t* ).

Twisting makes it easier to reduce ¢, r, and s and redistribute the mass to p and t¢.

4.4 Channel process

For a TEC W, we call W5 the serial-child of W and W© the parallel-child of W. Together,
they are the children of W. The descendants of W are the children of W together with the
descendants of the children of W. The nth-generation descendants of W are the (n — 1)th-
generation descendants of the children of W the Oth is W itself.

When W is understood from the context, let W be W. For n a positive integer, let W,,
be a random child of W, _; with equal probability.

The common strategy used to estimate the scaling exponent concerns a concave function
¥: [0,1] — R such that ¥(0) = ¥(1) = 0 and is positive elsewhere. With 1, one finds a
0 < p < oo such that

YHWT)) + P(HWO))
2y (H(W))

<2 Vn

With this “eigenvalue,” a routine argument [47, Sections 5.8-5.10] will show that

P{ H(W,) < exp(—e""") } > 1 = H(Wp) —27"/»,
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5 Unbalanced TEC Becomes Balanced

In this section, we argue that TECs undergoing the polarization process tend to become

more balanced than before. We do so by showing that the moments of inertia are decreasing.

» Theorem 4 (uniform loss of inertia). A(WY), A(W®) < A(W)(1 — A(W)/3) for any
TECW.

A proof of the theorem is in Appendix A.1 of the full version [14]. Now the recurrence
relation A(W,,41) < A(W,,)(1— A(W,,)/3) is equivalent to A(W,, 1) — A(W,,) < —A(W,,)?/3
and analogous to the ordinary differential equation f’(n) < —f(n)?/3. Solving it, we get
f(n) = O(1/n); analogously, A(W,,) = O(1/n).

» Corollary 5 (ultimate loss of inertia). Fiz a TEC W, then A(W,,) = O(1/n) as n — cc.
Another way to look at it is the average decay of A(W,,).
» Proposition 6 (average loss of inertia). A(WP) + A(W©) < A(W) for any TEC W.

A proof of the proposition is in Appendix A.2 of the full version [14]. By the proposition,

AW) =2 AWE) + AWO) = AWEE) + AWBO) + AWOE) + A(WOO) > A(WEHR)....

Hence the expectation of A(W,,) over all W, is at most A(WW)/2™.

Corollary 5 and Proposition 6 imply that any unbalanced TEC will promptly become very
similar to a balanced one.? The speed of polarization of unbalanced TECs is thus dominated
by that of balanced TECs. We now turn to the analysis of the polarization speed of balanced
TECs.

6 Balanced TECs Hoard Edge Mass

In this section, we argue that the Quetelet index Q(W,,) :== E(W,,)/H(W,,)(1 — H(W,,)) of a
sufficiently deep descendant is about 1.6. Put another way, there is a “trap” that constrains
the relation between E(W,,) and H(W,,).

Recall that a balanced TEC W is edge-heavy if Q(W) > 2v/7 —4. Let o := 2¢/7T—4 ~ 1.3.

» Theorem 7 (trapping region). If W is balanced and edge-heavy, then its children are
edge-heavy.

A proof of the theorem is in Appendix B.1 of the full version [14]. The theorem implies
that all descendants of an edge-heavy are edge-heavy. For a TEC that is not edge-heavy, its
descendants will still become “edge-heavier” by the following theorem.

» Theorem 8 (attraction toward the trap). Fiz any € > 0; choose § = 3¢/8. Let W be
any balanced TEC. We have that Q(W) < a — e implies QW) = QW) (1 + H(W)4) and
QW) = QW) (1 + (1 — H(W))3).

A proof of the theorem is in Appendix B.2 of the full version [14]. It is clear that the
factors H(W) and 1 — H(W) before ¢ slow down the rate at which Q(W,,) approaches
21/7 — 4, especially when H (W) is close to 0 or 1, respectively. These factors cannot be
optimized away. To see why, suppose that H(W) = z ~ 1 and E(W) = y = 0. Then

3 Note that Corollary 5 is a weak statement about every single descendant of W, while Proposition 6
implies a strong statement about A(WW,,) averaged over all nth-generation descendants. Only Corollary 5
will be used later.
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H(W©) is about 22 + O(y?) and E(W©) is about 2zy + O(y?). Hence Q(W©) is about
22y /2%(1 — 2?) ~ y/x(1 — ) = Q(W). That being the case, we would like to add that TECs
whose Quetelet index can hardly be improved are already polarized, so we shall not worry
about them. Besides, we can prove uniform attraction using Theorem 8.

» Theorem 9 (uniform attraction). Fiz any ¢ > 0. For any balanced TEC W such that
QW) < a — ¢, there exists an integer m > 0 such that Q(W,,) = Q(W)(1 + ¢/8) for all
n=m.

A proof of the theorem is in Appendix B.3 of the full version [14]. Uniform attraction
means that every child is at least making some positive progress toward the trap. Small
steps of the descendants accumulate to a giant leap of the family.

» Corollary 10 (ultimate attraction). For any & > 0 and any balanced TEC W such that
QW) > 0, there exists an integer m > 0 such that Q(W,,) = a — € for alln > m.

Proof. Apply the uniform attraction theorem repeatedly. Every application improves the
Quetelet index by a factor of 1 + (o — Q(W,,))/8. So after a finite number of applications
the Quetelet index can be made > o — ¢. |

To summarize this and the previous section, we have two trends: unbalanced TECs tend
to become balanced; and “edge-light” TECs tend to become edge-heavy.
The following proposition is a bound on Quetelet index in the opposite direction.

» Proposition 11 (attraction on the other side). Let W be a balanced TEC with Q(W) < 2.
Then Q(WUY) £ 2 and Q(W®) < 2.

Some comments on how to prove this proposition is in Appendix B.4 of the full version [14].

The following proposition gives a tighter trapping region than Theorem 8 and Proposi-
tion 11 do. A proof is omitted but similar to those of Theorem 8 and Proposition 11. For
the optimal trapping region, see the discussion in Appendix D of the full version [14].

» Proposition 12. Let f(z) = 2(1—2)(1.66—0.38z(1—x)). Then E(W) < f(H(W)) implies
EWD) < f(HW®D)) and EW®) < f(HWP©)). Let g(z) = (1 — z)(2 — 2z(1 — x)/3).
Then E(W) = g(H(W)) implies E(W®) > g(H(W?)) and E(W®) > g(H(W?°)).

7 Edge-heavy TECs Polarize Faster

Let W be any balanced TEC with a fixed H(W) = z and a variable E(W) = y. Then
H(WPB) =2z — 22 4+ 4?/12 is increasing in y and H(W©®) = 22 — y?/12 is decreasing in y.

The monotonicity has two applications. Application one: If we know too little to lower
bound Q(W), we will upper bound H(W©) using z2. In this case, the speed of polarization
is at least p =~ 3.627, the number induced by the standard polar code. Application two:
If we know Q(W) > «, we will upper bound H(W©) using 2% — (ax(1 — 2))?/12. This
time, H(W©) and H (W) are more separated so the speed of polarization is strictly better
than p ~ 3.627. Any positive «, not necessarily 2v/7 — 4, can improve the scaling. This is
demonstrated by the following lemma that uses 9/7 in place of «.

» Lemma 13 (eigenfunction and eigenvalue). Let ¢(x) := (x(1 — x))%%7(5 — \/2(1 — z)).
For balanced TECs with QW) > 9/7,

YHWE)) + (HW))

20 (H(W)) < 0.818.
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Comments on how to verify the lemma is in Appendix C of the full version [14].

» Theorem 14 (main theorem). Consider a pair of BECSs treated as a TEC, or consider any
TEC where pgrst > 0. The 2 x 2 matriz [L9] over Fy induces a scaling exponent less than
3.451.

Proof. Two iid copies of BEC(g) can be seen as W := TEC((1—¢)2, (1—¢)e, 0,e(1 —¢), £2).
If € is 0 or 1, there is nothing to prove. Suppose 0 < & < 1, then both W= and W© have
five positive subspace erasure probabilities. (That is, their “p, g, r,s,t” are all positive). The
descendants of a TEC with five positive subspace erasure probabilities satisfy the same
property. In particular, all descendants have positive Quetelet index.

Let W be a TEC whose descendants all have positive (). By Corollary 5, it takes W a
finite number of generations to become very similar to a balanced TEC. That is, for any
d > 0 there exists an m > 0 such that A(W,,) < . Although W, is never balanced, what
we proved about balanced TECs still hold for “almost-balanced” TECs up to a diminishing
error term. So we may proceed as if W,, is balanced for n > m.

By Corollary 10, it takes another finite number of generations to become “almost edge-
heavy.” In particular, there exists an m/ such that Q(W,,/) > 9/7 (note that 9/7 ~ 1.286
and 2v/7 — 4 ~ 1.291).

Before the m/th generation, the eigenvalues of the form

YHWT)) + (HWR))
2 (H(Wn))

was less than 1. After the m/th generation, the eigenvalues of said form will be less than
0.818 < 271/3451 by Lemma 13. As n goes to infinity, 0.818 dominates the overall scaling
behavior. Hence W, and hence any BEC, enjoys scaling exponent less than 3.451. |

In the abstract, we claim that the scaling exponent of [L9] over TECs (and hence BECs)
is < 3.328. This number will be derived in Appendix D of the full version [14] with more
intense numerical calculations. In particular, there is a new trapping region that is bounded
by two linear splines and is significantly smaller than the region bounded by az(1 — ) for
a = 2v/7 — 4 and 2; the attraction toward the new trap is witnessed by sampling TECs with
low edge-mass. In Appendix E of the full version [14], we also examine the actual values of
H(W,,) and its asymptotic behavior aligns with the estimate 3.328.

8 Conclusions

In this paper, we argue that [1{] polarizes BECs faster than [{9] does. We first show that a
pair of BECs will be transformed into balanced TECs. We then show that balanced TECs
will be transformed into edge-heavy TECs. Finally, we show that edge-heavy TECs assume
a better scaling exponent.

Our rigorous overestimate of the scaling exponent is 3.451; there is another overestimate
of 3.328 with strong numerical evidence. Compared to Arikan’s 2 x 2 matrix with u = 3.627,
Fazeli-Vardy’s 8 x 8 matrix with p & 3.577 [16], Trofimiuk—Trifonov’s 16 x 16 matrix with
=~ 3.346 [46], and Yao—Fazeli-Vardy’s 32 x 32 matrix with p ~ 3.122 [50], our result
suggests that one should consider expanding the alphabet size prior to enlarging the matrix
size. More precisely, the rigorous estimate is analogous to a 15 x 15 binary matrix; the more
accurate estimate is analogous to a 20 x 20 binary matrix (see Figure 2).
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341 B

28 L1 | | | | | |
0 10 20 30 40 50 60 70

Figure 2 Horizontal axis: matrix size; vertical axis: scaling exponent of the best known matrix

[16, 50, 46, 45, 5]. A matrix size will be skipped if no known matrix outruns all smaller matrices.
Underlying channel is BEC. Our estimates 3.451 and 3.328 are marked as dotted lines.
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