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Abstract—Proton beam therapy is a unique form of radio-
therapy that utilizes protons to treat cancer by irradiating
cancerous tumors, while avoiding unnecessary radiation exposure
to surrounding healthy tissues. Real-time imaging of the proton
beam can make this form of therapy more precise and safer
for the patient during delivery. The use of Compton cameras is
one proposed method for the real-time imaging of prompt gamma
rays that are emitted by the proton beams as they travel through
a patient’s body. Unfortunately, some of the Compton camera
data is flawed and the reconstruction algorithm yields noisy and
insufficiently detailed images to evaluate the proton delivery for
the patient. Previous work used a deep residual fully connected
neural network. The use of recurrent neural networks (RNNs) has
been proposed, since they use recurrence relationships to make
potentially better predictions. In this work, RNN architectures
using two different recurrent layers are tested, the LSTM and the
GRU. Although the deep residual fully connected neural network
achieves over 75% testing accuracy and our models achieve only
over 73% testing accuracy, the simplicity of our RNN models
containing only 6 hidden layers as opposed to 512 is a significant
advantage. Importantly in a clinical setting, the time to load the
model from disk is significantly faster, potentially enabling the
use of Compton camera image reconstruction in real-time during
patient treatment.

Index Terms—Proton Beam therapy, Compton camera, Image
reconstruction, Deep residual neural network, Recurrent neural
network

I. INTRODUCTION

Because to its many advantages, proton beam therapy has
gained popularity as a form of cancer treatment. Most types
of radiation therapies work with the objective to damage the
cellular DNA of target cancer cells that reside in the nucleus of
every cell. X-ray therapy is able to deliver dosage at the tumor
site, but its radiation continues to travel through the body until
it exits the other side. This may potentially cause harm to
healthy surrounding tissues and organs that are unnecessarily
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exposed to radiation. By contrast, proton beams have a finite
range that can be controlled and they deposit the majority of
their energy just before they stop. This sharp energy increase
of the proton beam right before stopping is known as the Bragg
peak. Since almost no radiation is delivered beyond the Bragg
peak, healthy tissue can be spared from unnecessary radiation
[1]. In order to take full advantage of these properties of proton
therapy, we must have an efficient technique to image the
prompt gamma rays produced by the beam in real-time as they
travel through the patient’s body. A Compton camera can be
used to detect the prompt gamma rays emitted when the proton
beam travels through the body, and an algorithm is available to
reconstruct the beam’s image from the prompt gamma data,
which then provides an indirect image of the proton beam.
Unfortunately, a lot of the raw data of the Compton camera
is flawed and the reconstruction algorithm yields noisy and
insufficiently detailed images to evaluate the proton delivery
for the patient [2], [3].

Machine learning can be used to clean the raw Compton
camera data by identifying and removing false data before
image reconstruction [2], [3]. Research efforts to clean the
Compton camera data have led to the use of neural networks.
Shallow networks like the one in [2] use 1 to 2 hidden layers
to perform simple classifications of simulated prompt gamma
data under ideal conditions that do not represent the irradiation
conditions encountered during clinical proton beam radiother-
apy. This shallow network in [2] is a binary classification
network that simply determines which event data are true
events and should be used for reconstruction and which are
false events that should not be used for reconstruction. This is
improved upon in [3] using the deep residual fully connected
neural network described in [4] for triple event classification.
This neural network consists of 64 residual blocks with 8 fully



connected layers per block yielding a total of 512 hidden
layers. Each layer had 256 neurons, a 45% dropout rate,
and used leaky ReLU activation. More detailed results and
discussions about the impact of neural network processing
on the use and viability of Compton camera based imaging
in clinical proton radiotherapy are the focus of [3], while
providing details on the network and its training are the focus
of [4]. The full capabilities of the described neural network are
specified in [5], where preprocessing the data, all classification
capabilities, and postprocessing output data are described in
detail. Other recent work [6], [7] focused on hyperparameter
studies on the deep residual fully connected neural network
from [4], varying batch sizes, neurons, and layers. The use
of recurrent neural networks (RNNs) is proposed in [6], since
they use recurrence relationships in sequence data sets to make
potentially better predictions. The potential for RNNs to be
an improvement over feedforward neural networks (FNNs) is
shown in [8].

In this work, we test RNN architectures using two different
recurrent layers because of their potential for classifying
sequence data, the Long Short-term Memory (LSTM) (dis-
cussed in Section III-A1) and the Gated Recurrent Unit (GRU)
(discussed in Section III-A2). The LSTM uses memory cells
with gates and a carry track to encode and learn from sequence
data. The GRU uses two gating units to encode and learn from
sequence data. The goal in this change in type of network
architecture is to examine data as a sequence of interactions
rather than one single event, but preliminary results do not
show any benefit. We use models with 4 GRU layers and
with 4 LSTM layers and achieve similar testing accuracy
as the deep residual fully connected model from [4]. The
model with 4 GRU layers outperforms the deep residual fully
connected model in 3 classes but has a larger gap (within
10%) in accuracy in the other 10 classes. The model with
4 LSTM layer outperforms the previous deep residual fully
connected model in only 2 classes but has a smaller gap
(within 6%) in accuracy in the other 11 classes. Although
the deep residual fully connected model achieves a slightly
higher accuracy in nearly every class, the simplicity of our
RNN models containing only 6 hidden layers (4 recurrent and
2 fully connected) as opposed to 512 is an advantage. And
importantly in a clinical setting, the time to load the model
from disk is significantly faster, potentially enabling the use
of Compton camera image reconstruction in real-time during
patient treatment.

The remainder of this work is organized as follows: Sec-
tion II provides background on proton beam therapy to treat
cancer and the use of a Compton camera to image promp
gammas. Section III details the basics of machine learning
and recurrent neural networks, while also providing details on
the LSTM and GRU. Section IV outlines the hardware and
software we use to carry out this research project. Section V
contain the results of our work. Section VI contains our
conclusions and future work.

II. APPLICATION BACKGROUND
A. Proton Beam Therapy

Radiation therapy is a form of cancer treatment that uses
high doses of radiation to kill cancer cells. X-ray therapy, a
form of radiation therapy, is a common technique used for
cancer treatment, where the majority of the radiation dosage
is delivered upon entering the body. Because of this, the tumor
does not receive as high of a concentrated dose as it should.
In addition, X-rays will continue to travel posterior into the
human body until it exits out the other side. This is not ideal
as there is no need for extra radiation exposure within the
body. Proton therapy on the other hand, which is another form
of radiation therapy, is more efficient in this manner. Rather
than depositing the majority of the dosage at the entry site,
proton therapy works to deposit the majority of the dosage at
the tumor site itself, thus making the process more effective.
Proton therapy also has an advantage over X-ray therapy in the
sense that the proton beam travels no further posterior into the
body than the site of the tumor, allowing for minimal exposure
to surrounding tissue.

Depending on the size of the tumor, the beam may have to
kill the tumor cells layer by layer. When delivering a dosage to
a tumor, the professional who is treating the patient will create
what is called a safety margin. This safety margin enlarges
the treatment area to ensure that all parts of the tumor are
guaranteed to receive dosage. The safety margin is needed to
account for slight movements in the patient during treatment
as well as slightly different positioning of the patient from one
treatment to the next over several weeks.

If real-time information on the trajectory of the proton beam
through the patient’s body were available during a treatment,
the safety margin could be smaller and an optimal path could
be used. The use of Compton cameras is one proposed method
for the real-time imaging of prompt gamma rays that are
emitted by the proton beams as they travel through the body.

B. Compton Camera

The Compton camera is a multi-stage detector that produces
data used to generate images of proton beams used in proton
beam therapy [4]. As protons from the beam enter the body,
they interact with cells in the body causing the emission of
prompt gamma rays. Some of these gamma rays will collide
with the Compton camera. An interaction is when a prompt
gamma collides with a stage of the Compton camera. For each
interaction, the camera records z-, y-, z-coordinates and the
energy level of the scatter. The readout of interactions in a
single period is called an event. The raw output data from the
camera for each interaction is in the form (e;, x;, y;, z;) where
1 = 1,2, 3 for the three stages of the Compton camera, and e;
is the energy level.

Image reconstruction algorithms exist that can recover the
path of the proton beam from the Compton camera data. The
Compton camera’s capability to reconstruct full 3D images of
the proton beam range could be used with the patient’s CT scan
to compare the planned treatment dose and make adjustments.



Radiotherapy treatment requires a conformity between the
treatment plan and the treatment delivery, making sure that
patient’s bone and soft tissue landmarks are aligned as they
were at the time of treatment planning [1]. Having a patient
change position, wiggle, scratch, look the other way, or any
other subtle movement could cause disruption in the treatment
plan. By obtaining reliable information regarding the patient
from the reconstructed images, clinicians have the opportunity
to better ensure that the entire tumor receives the exact dose
as planned while making sure surrounding healthy tissues are
safe.

Prompt gammas are emitted at speeds close to the speed
of light consequently the camera is unable to detect the
true ordering of interactions in an event. The false events
cause noise in the image created impacting the usefulness of
the image [4]. Next we describe the three different type of
Compton camera scatters.

a) True Triples: In the True Triples event, the Compton
camera will detect the path of a single prompt gamma occur-
ring in some order. However, it is possible that the true path is
some other ordering. There are a total of 6 total combinations
of True Triple scatters: 123, 132, 213, 231, 312, 321 and, as
the data stands, only the 123 ordering is usable.

b) Double-to-Triples (DtoT): In the DtoT event, the
Compton camera will detect the path of a single prompt
gamma as a true triple. However, in reality, there were two
prompt gammas who had varying paths. One prompt gamma
could have detected as the first and third interaction and
the second prompt gamma could have been mistaken as the
second interaction. Similar to true triples, there are a total of
6 misdetection orderings: 124, 134, 214, 234, 324, 314. The
second prompt gamma interaction is classified as “4” in the
misdetection orderings. In this case, without processing the
data, all 6 orderings are unusable.

c) False Triples: In a false triples event, the Compton
camera will detect a true triple whereas in reality, there were
actually three different prompt gammas. As a result, this entire
event provides no insight into the path of a single prompt
gamma and must be discarded.

d) The Need for Machine Learning: In order to make
proton beam therapy more effective, real-time imaging is
needed to verify location and effectiveness of the proton beam,
in particular the location of the Bragg peak. Machine learning
is capable of classifying which type of scatter event occurred
based upon data provided by the Compton camera. These
classifications lead to removal of unusable data which will
clean the resulting image. A clearer image allows for treatment
verification. A sufficiently accurate machine learning model
could produce an image that is clear enough to be used
in proton beam therapy as a form of treatment verification.
A machine learning algorithm will need approximately 90%
testing accuracy to be useful for clinicians.

In current practice, the patient’s body is imaged before
undergoing treatment in order to map the position of the tumor.
A plan for how to target and treat the tumor with the proton
beam is then developed. The course of proton beam radiation

therapy itself then follows, and consists of the delivery of
the planned treatment in multiple treatment sessions over a
period of one to five weeks. Machine learning models would
be used to greatly improve the reconstructed images of the
delivered proton beam in real-time. The model is loaded as
part of the beam imaging software at the start of the day by
the operator and is then used to clean the Compton camera
data prior to reconstruction of the beam image for each patient
during treatment.

Additional details on the application are provided in the
report [9].

III. MACHINE LEARNING

Machine learning is a type of artificial intelligence where a
machine is trained to identify specific trends and patterns to
make predictions from data. In the case of Compton camera
data, the machine learning algorithm will try to predict the
appropriate class for a scatter event. The main benefit of
machine learning is its efficiency in producing results that
would take humans alone much longer. There are four different
ways that a machine can be taught: supervised, unsupervised,
semi-supervised, and reinforcement. Supervised learning is a
form of learning where the machine is provided a labeled data
set that has regular input data as well as the desired output
data. This allows the machine to produce a model that has been
fitted appropriately. Unsupervised learning is used when one
wants to identify hidden patterns within an unlabeled data set.
This allows the machine to identify any trends it finds in the
data without special instruction. Semi-supervised learning is
a mixture of supervised and unsupervised where the model is
provided some labeled data and a large amount of unlabeled
data. Reinforcement learning is similar to the way humans
learn where the machine will interact with the data and there
will be either a positive or negative reward depending on
whether the machine does something the programmer wants
or not. The method used in this study is supervised learning
because the data set contains both the data from the scatter
event and the corresponding label of which event scatter took
place.

A. Recurrent Neural Networks

Recurrent neural networks (RNNs) are an efficient neural
network used for time series tasks. They work similar to a
coupling process in biology. They rely on information from
the previous system or “loop” to move forward with the
next. In this type of neural networks, the sequence or order
of the network is very important. The system can be read
and executed differently if the elements of both series are in
different orders. In the case of RNNs, elements include an
input layer, hidden layers, and an output layer.

RNNSs use back-propagation through time to illustrate gra-
dients. The difference between RNN back propagation and
other methods such as in a feed forward network is that sum
errors are necessary at each time step because of the shared
parameters throughout the network. There are several types of
RNNss that are distinguished by the pathways between inputs



and outputs. RNNs may also contain activation functions that
allow a neuron to translate the input into a specific output.
Finally, there are a few RNN structures that vary depending
on the desired use. There are bidirectional recurrent neural
networks, long short-term memory, and gated recurrent units.
Bidirectional recurrent networks rely on future data to generate
predictions.

RNNS are a viable option for Compton camera data because
of their ability to encode information about previous events.
Shaping an event in the Compton camera as a sequence of
three interactions each with five features, we have transformed
the data produced by the Compton camera to a sequence.
Using the sequence of interactions the RNN will be able to
predict the ordering of interactions, i.e., the appropriate scatter.

1) Long Short-Term Memory: A Long Short-Term Memory
(LSTM) neural network is a type of RNN that is traditionally
used for natural language processing and time series fore-
casting. The unique aspect of LSTM is that it contains a
memory cell. This memory cell is used to store certain pieces
of information that may be needed later in the training process,
called a state. The memory cell has three gates to determined
the state: forget gate, input gate, and output gate. The forget
gate controls what stored information can be forgotten. The
input gate controls what information should be used to change
the state of the memory cell, and the output gate controls
which part of that information is needed at a given time. As
stated previously, RNNs use the output of one step and carry
it over into the next step in addition to the new data input. The
different gates classify the needed and unneeded information,
and the new state is outputted for the next step. The memory
cell was added to combat the main issue with RNNs which is
long-term dependency where as more and more information is
fed into the RNN, it becomes less effective in learning because
the network cannot remember everything.

2) Gated Recurrent Unit: A Gated Recurrent Unit is essen-
tially a streamlined version of the LSTM in Section III-Al.
The GRU has gating units that modulate the flow of infor-
mation inside of the unit. The GRU factors in the previous
short-term dependency with a reset gate by using a linear
interpolation between the previous activation function value
and the current one. The GRU also factors in previous long-
term dependencies with an update gate by taking a linear sum
between existing state and the newly computed state. Unlike
the LSTM, the GRU does not have separate memory cells.

IV. HARDWARE AND SOFTWARE

We used the GPU cluster ada in the UMBC High Perfor-
mance Computing Facility. The ada system has 3 distinct node
types. Four nodes each with 8 Nvidia RTX 2080 Ti GPUs
each with 11GB GPU memory. Seven nodes with 8 Nvidia
Quadro RTX 6000 GPUs each with 24GB of GPU memory.
Two nodes each with 8x Nvidia Quadro RTX 8000 GPUs each
with 48GB memory. Each node has 384 GB of CPU memory
(12 x 32 GB DDR4 at 2933 MT/s) except the two RTX 8000
nodes which have 768GB of CPU memory(12 x 64GB DDR4
at 2933 MTYs).

Networks built on ada were built with the software package
Anaconda3 and Tensorflow v2.6.0 with the bundled Keras
module.

V. RESULTS

For our studies, we trained the neural network on a data
set that was generated using a Monte Carlo simulation and
that consisted of 1,443,993 records and 15 features. These
features represent spatial coordinates, Euclidean distance, and
energy deposition for each interaction. An interaction is a
grouping of three spatial coordinates and an energy level.
Each row is either a triple, double-to-triple, or a false triple
and consists of three interactions each. Our training data set
only consisted of True Triples, Double-to-Triple scatter, and
False events. Furthermore, when testing the neural network we
used datasets that used 150MeV (Mega electron Volt) beams
with three different dosage rates: 20kMU (kilo Monitor Unit),
100kMU, and 180kMU. The larger kMU values correspond
to more intense dosage rates. Both the training and testing
datasets were reshaped to be sequentially read. Therefore each
record of 15 features was reshaped to 3 interactions of 5
features each: three spatial coordinates, Euclidean distance,
and energy deposition. Each record is fed into the neural
network as a sequence of 3 interactions. The testing data
contains 37,151 testing data points for 20kMU/min, 17,425
for 100kMU/min, and 12,254 for 180kMU/min from MCDE
model test 1 150MeV.

Previous research explored fully connected networks in
depth. We explore recurrent neural networks using the LSTM
and GRU layers. We begin by examining the number of
epochs, the batch size, and the learning rate. We then explore
the number of layers and number of neurons in order to deter-
mine a promising configuration for a recurrent neural network.
RNNs with both GRU and LSTM models are examined. These
studies lead us to the use of 4 recurrent layers of 128 neurons
with a batch size of 2048 and learning rate of 10~3. Table I
shows the constant parameters for all RNN studies.

TABLE I: Constant RNN parameters

Hyperparameter Value
Recurrent Layer Activation Tanh
Final activation Softmax
Output Layer 13 Neurons
Optimizer Nadam
Loss Function Categorical Crossentropy
Train,Validation Split 0.8/0.2

Our goal is to discover how long these models could be
trained before plateauing. Testing models with more epochs
than 512 showed an increase in validation accuracy. However,
after 1024 epochs the model learns very slowly. A 4 GRU
layer model with 1024 epochs has a validation accuracy of
71% and the same model with 8192 epochs has a validation
accuracy of 77%.

A learning rate scheduler is used to change the learning
rate during model training. One possible learning rate schedule
is a step schedule which changes the learning rate at certain



epochs. This can be done using a Keras callback which will
adjust the learning rate during training. A piece-wise function
such as the one in Equation (1) can represent a step learning
schedule. We use ¢ to represent the current epoch and p to
represent the total number of epochs, then L is a function of
epochs and determines our learning rate at the i*" epoch. Our
initial studies using a step learning rate schedule showed that
a learning rate schedule could make approximately a 6% to
7% increase in accuracy while preventing overfitting.

The impact of the learning rate schedule on accuracy and
generalization lead us to study a 32,000 epoch model with the
learning rate schedule that also has 2 dense layers of 128 and
64 neurons respectively. We test these parameters on both the
models with LSTM and the models with GRU layers. The
final models will then be tested using a new data set and
will have confusion matrices made to verify their accuracy.
A confusion matrix contains all 13 misdetection orderings as
well as a percentage that is determined by how frequently the
model classified each event correctly or incorrectly. The main
diagonal of a given matrix shows the percentage of correct
classifications of the network. All other entries in the matrix
are percentages where the network incorrectly classified an
event.

A. 32,000 Epoch Network with Learning Rate Schedule

The 4 LSTM layer model has a very high training and
validation accuracy. The dense layers for the LSTM model
have the ReLU activation function for both layers. This causes
us to believe the model could be a possible improvement
over the previous model. We notice the rise in accuracy at
the epochs where the learning rate is lowered. We also notice
how training and validation accuracy converge at the end with
the lowering learning rates. The model has a final validation
accuracy of 89% which is a significant improvement over all
previous studies. The model however is overfit. There is a
significant difference in the validation accuracy and the testing
accuracy.

The dense layers for the GRU model have the leaky ReLLU
activation function for both layers the parameters are the
same for the GRU. The GRU layers produce a model with
a slightly lower final validation accuracy of 86%. However
the model performs different on the test data. Ultimately, this
model is still overfit with the large difference in validation
and testing accuracy. The overfitting of these models tells us
that we should try and apply some regularization to them such
as dropout layers in order to make the model more general.
Regularization techniques will help bring the testing accuracy
closer to the validation accuracy.

B. Regularization

We adjusted the number of epochs to be 16384 and added
dropout layers between every hidden layer with a dropout rate
of 20%. The model used Equation (1) as the learning rate
schedule.
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This helps regularize the model. While drastically reducing the
model’s validation accuracy to below 80%; the validation and
testing accuracy are much closer. This model performs almost
as well as the deep residual fully connected model for both the
LSTM and the GRU. While the model is almost as accurate
as the deep residual fully connected model. Its load time is
10s for the GRU model and 7s for the LSTM model which is
an advantage. The fully connected model loads in 47s. Also
having still only 4 recurrent layers and 2 dense layers is an
advantage because there is a great deal more than can be done
with such a simple model. Table III through Table VIII show
the confusion matrices for the regularized GRU and LSTM
models.

TABLE II: Comparison of GRU model with deep fully con-
nected network.

Class | GRU | DRECN | GRU - DRFCN
123 76.4 79.1 -2.7
132 79.4 76.0 3.4
213 73.5 76.4 -2.9
231 79.1 80.7 -1.6
312 83.1 82.4 0.7
321 76.2 76.5 -0.3
124 71.9 76.0 -4.1
214 74.0 75.0 -1
134 72.0 754 -3.4
314 78.3 75.4 2.9
234 63.9 73.6 -9.7
324 73.9 753 -1.4
444 63.5 72.6 -9.1

Comparing the GRU and LSTM models with the deep
residual fully connected (DRFCN) model from [5] in each
classification at the dosage rate of 100kMU/min, we see in
Table II that the GRU model outperforms the deep fully
connected model in three categories and is within 10% in
all categories. Similarly, the LSTM only outperforms in two
categories but is within 6% as shown in Table IX.

Another test was run on the 4 layer LSTM with 2 dense
layers model except the number of neurons per dense layer
was increased from 128 and 64 to 256 and 128. The dropout
rate remained at 0.2. Table X shows the comparison results.
This model is within 5% within every classification. Finally
in Table XI we see a comparison of overall accuracy and the
load times.



TABLE III: Confusion matrix for 4 GRU layer model with learning rate schedule Equation (1) trained on triples, double to
triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model test] 150MeV 20K

beam.

TABLE IV: Confusion matrix for 4 GRU layer model with learning rate schedule Equation (1) trained on triples, double to
triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model testl 150MeV

100K beam.

TABLE V: Confusion matrix for 4 GRU layer model with learning rate schedule Equation (1) trained on triples, double to
triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model testl 150MeV

180K beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 73.8 5.4 1.7 35 4.2 2.0 5.6 0.5 0.2 0.1 1.6 1.1 0.2
132 2.5 794 1.9 1.6 33 2.6 0.1 0.0 5.0 0.8 0.4 22 0.2
213 1.5 3.4 75.7 3.5 2.5 2.9 0.6 4.7 3.1 1.8 0.1 0.0 0.2
231 2.0 2.1 3.4 713 4.0 22 0.0 0.1 0.7 35 3.7 0.7 0.2
312 1.6 2.0 1.2 1.7 81.1 2.7 2.1 0.9 0.5 6.0 0.0 0.1 0.0
321 1.2 2.7 2.1 2.3 4.3 78.7 0.7 2.1 0.0 0.4 0.4 4.9 0.2
124 4.2 0.4 0.8 0.1 5.2 2.3 70.6 9.0 0.9 1.0 0.3 0.9 42
214 0.4 0.3 5.1 0.3 2.3 4.4 5.7 74.6 0.3 2.1 0.3 0.4 3.7
134 0.6 5.8 3.0 1.7 0.8 0.1 0.4 0.3 72.7 10.5 0.5 0.8 2.7
314 0.0 1.5 1.7 4.1 6.0 0.4 0.5 0.9 6.8 74.4 0.1 0.9 2.6
234 3.6 2.8 0.1 8.2 0.4 1.0 0.1 1.1 1.8 1.0 65.7 9.4 4.8
324 1.3 5.7 0.1 0.4 0.4 7.3 0.9 0.3 0.6 1.2 43 74.4 32
444 0.9 2.2 0.3 0.9 0.0 0.0 5.6 6.3 5.6 7.5 4.4 7.2 58.9

123 132 213 231 312 321 124 214 134 314 234 324 444
123 76.4 44 1.8 3.1 3.5 1.7 45 0.8 0.2 0.0 2.0 1.4 0.1
132 2.0 79.4 1.5 1.2 35 2.0 0.0 0.0 6.8 0.6 0.6 1.9 0.3
213 2.0 3.7 73.5 3.7 3.2 1.9 0.5 4.9 3.6 2.7 0.2 0.0 0.1
231 1.9 2.2 3.1 79.1 3.1 1.9 0.0 0.0 1.2 3.4 3.4 0.6 0.1
312 1.1 1.7 1.5 2.1 83.1 2.7 1.7 0.6 0.3 4.7 0.0 0.2 0.1
321 0.8 33 2.7 2.8 5.6 76.2 0.6 32 0.0 0.6 0.3 3.8 0.2
124 59 0.5 0.5 0.1 53 1.6 71.9 7.7 0.8 0.7 0.2 1.3 3.4
214 0.7 0.2 5.8 0.4 2.5 4.2 5.6 74.0 0.5 2.1 0.2 0.5 3.4
134 0.3 6.5 2.8 1.7 0.7 0.0 0.4 0.5 72.0 11.0 0.6 0.4 32
314 0.1 0.5 1.6 2.9 5.8 0.2 0.1 0.7 59 78.3 0.1 1.1 2.8
234 4.7 3.1 0.5 8.0 0.2 0.9 0.4 0.5 1.1 0.8 63.9 10.3 54
324 1.2 4.7 0.2 0.9 0.4 6.1 0.7 0.3 0.8 1.3 5.4 73.9 4.1
444 1.0 0.9 0.4 0.6 0.9 1.0 4.2 4.6 6.4 8.3 3.0 5.2 63.5

123 132 213 231 312 321 124 214 134 314 234 324 444
123 72.1 7.2 22 2.4 43 2.6 6.2 0.5 0.0 0.0 1.7 0.7 0.0
132 1.7 81.0 1.2 1.2 1.2 2.2 0.2 0.0 5.5 1.0 0.7 3.6 0.5
213 1.0 3.1 75.4 4.1 2.4 2.9 0.2 6.5 3.4 1.0 0.0 0.0 0.0
231 1.4 1.7 43 75.4 5.3 1.9 0.2 0.2 0.7 4.1 3.6 0.7 0.2
312 1.0 3.4 0.7 1.7 80.7 2.9 1.9 0.7 0.5 5.5 0.0 0.2 0.7
321 1.7 1.7 2.4 2.7 4.8 78.1 1.4 3.4 0.0 0.2 0.2 3.4 0.0
124 6.0 0.8 0.6 0.0 4.7 1.9 70.8 8.2 0.5 0.4 0.2 1.1 49
214 0.8 0.0 5.1 0.6 29 44 52 74.0 0.5 1.5 0.2 0.6 4.1
134 0.6 6.4 3.3 1.7 1.4 0.0 0.3 0.2 71.6 10.7 0.9 0.5 2.3
314 0.1 0.2 0.6 3.7 6.3 0.3 0.1 1.0 6.4 77.4 0.1 0.6 33
234 3.7 2.5 0.6 7.6 0.3 1.1 0.3 0.5 1.6 0.6 67.0 8.7 5.4
324 1.4 4.8 0.1 0.8 0.6 6.6 14 0.2 0.9 1.0 6.0 72.1 4.2
444 0.8 1.2 0.3 0.7 0.6 0.4 4.9 44 6.5 7.7 4.0 5.9 62.6




TABLE VI: Confusion matrix for 4 LSTM layer model with learning rate schedule Equation (1) trained on triples, double to
triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model test] 150MeV 20K

beam.

TABLE VII: Confusion matrix for 4 LSTM layer model with learning rate schedule Equation (1) trained on triples, double
to triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model testl 150MeV

100K beam.

TABLE VIII: Confusion matrix for 4 LSTM layer model with learning rate schedule Equation (1) trained on triples, double
to triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model testl 150MeV

180K beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 782 3.6 1.3 2.4 2.2 1.8 72 0.4 0.1 0.0 1.8 0.8 0.2
132 4.3 74.9 23 1.8 2.7 2.9 0.4 0.0 6.6 0.7 0.7 23 0.3
213 22 3.1 75.0 3.0 1.9 2.5 0.8 6.3 3.6 1.3 0.1 0.0 0.3
231 3.6 2.3 3.8 733 3.4 2.3 0.1 0.2 1.3 3.6 53 0.6 0.3
312 3.4 2.2 1.5 2.3 742 32 4.0 1.2 0.7 6.9 0.0 0.1 0.2
321 2.2 2.5 2.5 1.9 3.6 76.5 1.6 3.1 0.0 0.2 0.5 5.0 0.4
124 4.4 0.4 0.6 0.2 2.8 1.5 75.9 7.3 0.7 0.7 0.2 0.9 44
214 0.8 0.3 4.7 0.1 1.1 33 8.9 74.7 0.5 1.2 0.3 0.3 4.0
134 0.6 4.7 2.8 1.6 0.5 0.3 0.8 0.5 753 8.4 0.9 0.4 32
314 0.0 1.0 2.1 33 5.0 0.4 0.7 1.1 8.3 72.8 0.2 1.0 4.0
234 4.9 2.1 0.2 6.4 0.1 0.6 0.5 1.2 1.8 0.8 67.8 8.0 5.7
324 1.8 5.4 0.1 0.4 0.3 6.7 1.8 0.4 0.6 1.0 7.1 70.6 3.9
444 1.3 1.9 0.3 0.9 0.0 0.0 72 6.0 4.1 5.3 5.0 6.0 62.1

123 132 213 231 312 321 124 214 134 314 234 324 444
123 80.0 3.8 1.6 2.5 1.3 1.3 59 0.6 0.1 0.0 1.9 0.8 0.1
132 34 75.8 22 1.2 3.1 2.5 0.0 0.0 8.1 0.7 0.6 2.1 0.3
213 2.3 2.8 72.5 3.9 3.0 1.8 1.0 6.2 4.1 1.7 0.2 0.1 0.3
231 3.1 1.5 4.4 759 2.7 2.6 0.1 0.2 1.7 3.0 4.2 0.5 0.2
312 2.6 2.0 22 2.5 76.1 39 2.7 1.0 0.6 6.1 0.0 0.1 0.2
321 1.5 3.1 3.3 2.8 4.7 73.5 1.9 3.9 0.0 0.3 0.2 4.5 0.3
124 5.8 0.4 0.3 0.1 2.8 1.0 77.1 6.7 0.5 0.7 0.3 0.8 3.4
214 1.0 0.1 52 0.4 1.7 33 8.2 74.2 0.5 1.0 0.1 0.4 39
134 0.4 4.9 2.7 1.4 0.5 0.1 0.7 0.7 74.2 9.1 0.8 0.2 43
314 0.1 0.6 1.8 29 4.5 0.2 0.5 1.1 8.9 73.7 0.3 0.8 4.6
234 5.6 2.2 0.4 6.2 0.2 0.7 0.5 0.5 1.2 0.5 68.5 7.7 5.6
324 1.8 4.2 0.1 0.8 0.4 6.7 1.2 0.5 0.7 0.8 7.3 69.6 6.0
444 1.1 0.6 0.3 0.6 0.5 0.4 6.0 4.9 5.6 5.0 3.0 3.7 68.3

123 132 213 231 312 321 124 214 134 314 234 324 444
123 77.6 6.2 1.9 1.2 1.9 1.7 6.0 0.5 0.0 0.0 22 0.7 0.0
132 3.1 78.8 1.7 1.2 1.4 1.7 0.5 0.0 5.8 1.2 0.7 3.4 0.5
213 1.2 22 75.4 4.8 1.2 3.1 1.2 6.0 4.1 0.5 0.2 0.0 0.0
231 34 1.7 53 71.6 4.1 2.4 0.0 0.0 1.2 4.3 4.8 0.5 0.7
312 3.9 2.4 1.0 1.7 73.7 3.1 4.8 1.0 0.5 6.7 0.0 0.2 1.0
321 1.7 2.2 2.7 1.9 3.1 76.9 3.1 3.6 0.0 0.2 0.7 3.4 0.5
124 5.4 0.8 0.6 0.1 3.0 1.1 76.6 6.6 0.5 0.3 0.3 0.9 3.8
214 1.0 0.0 4.1 0.5 1.8 33 8.8 74.2 0.4 0.7 0.3 0.2 4.7
134 0.5 5.0 3.5 1.3 0.8 0.1 0.6 0.4 73.7 8.8 1.0 0.8 3.6
314 0.0 0.2 0.9 3.0 5.4 0.3 0.5 1.3 8.3 74.3 0.2 0.8 4.8
234 4.4 1.7 0.6 5.8 0.2 0.9 0.3 0.6 1.0 0.6 712 6.4 6.1
324 2.5 4.4 0.0 0.6 0.5 6.7 2.0 0.4 0.5 0.6 6.5 69.9 5.4
444 0.6 1.0 0.3 0.7 0.3 0.4 6.8 4.9 5.8 5.1 4.7 4.2 65.3




TABLE IX: Comparison of LSTM model with deep fully
connected network.

Class | LSTM | DRFCN | LSTM - DRFCN
123 80.0 79.1 0.9
132 75.8 76.0 -0.2
213 72.5 76.4 -3.9
231 75.9 80.7 -4.8
312 76.1 82.4 -6.3
321 73.5 76.5 -3
124 717.1 76.0 1.1
214 74.2 75.0 -0.8
134 74.2 75.4 -1.2
314 73.7 75.4 -1.7
234 68.5 73.6 -5.1
324 69.6 753 -5.7
444 68.3 72.6 -4.3

TABLE X: Comparison of the 4 layer LSTM with dense layers
of 256 and 128 neurons with deep fully connected network at
100kMU dose rate.

Class | LSTM | DRFCN | LSTM - DRFCN
123 71.8 79.1 -1.3
132 76.7 76.0 0.7
213 75.8 76.4 -0.6
231 78.4 80.7 -2.3
312 71.8 82.4 -4.6
321 73.7 76.5 -2.8
124 74.5 76.0 -1.5
214 74.0 75.0 -1
134 71.5 754 -3.9
314 71.7 754 -3.7
234 71.8 73.6 -1.8
324 74.2 753 -1.1
444 68.2 72.6 -4.4

VI. CONCLUSIONS AND FUTURE WORK

Results from the RNN (recurrent neural network) hyper-
parameter study in Section V demonstrated that a learning
rate scheduler benefits the model by increasing accuracy and
efficiency. The learning rate schedule improves validation
accuracy between 6% to 7%. Test results showed that at a
higher number of epochs and with a smaller learning rate,
the accuracy of the network increases. Due to the success
of the learning rate scheduler, the LSTM (Long Short-Term
Memory) and GRU (Gated Recurrent Unit) models were
trained using the scheduler. For these studies, a piece-wise
function was created to illustrate the change in learning rate.
From Section V-A, the maximum training accuracy for the
model reached was 89% with 32,000 epochs.

In Section V-B, we use dropout layers in between each
recurrent layer to randomly zero out 20% of the neurons in
each layer. A model with 4 GRU layers of 128 neurons and
2 dense layers of 128 and 64 neurons, respectively, has a
testing accuracy of 73.4%. The model is able to load from
its saved state to an active state, i.e., load from disk to GPU
memory in 10s. A model with 4 LSTM layers of 128 neurons
and 2 dense layers of 128 and 64 neurons, respectively, has a
testing accuracy of 73.2%. The model is able to load from disk
in 7s. The major advantage of this model are that it contains
only 6 hidden layers which leaves a tremendous amount of

TABLE XI: Comparison of top performing models with the
deep residual fully connected network (DRFCN) from [4].

Model Accuracy | Load Time
DRFCN (512 FCL) 75.8% 47s
4 LSTM w/ more neurons 74.4% 15s
4 GRU 73.4% 10s
4 LSTM 73.2% Ts

space for further research and growth while already having a
testing accuracy of 73%. Further, in real-time imaging, loading
from disk is a potentially significant advantage when treating
patients.

The key results of this work are summarized in Table XI.
The Model column refers to the architecture of the model.
The first row shows the results of the deep residual fully
connected network (DRFCN) in [5]; this model has 512 fully
connected layers (FCL). 4 LSTM w/ more neurons represents
the 4 LSTM layer model with two dense layers of 256 and 128
neurons. 4 GRU represents the model with 4 GRU layers and
2 dense layers of 128 and 64 neurons. 4 LSTM represents the
model with 4 LSTM layers and 2 dense layers of 128 and 64
neurons. The Accuracy column represents the overall testing
accuracy of the model at the dosage rate of 100kMU/min. The
Load Time column represents the observed wall clock time in
seconds to load the model from its saved state to an active
state, i.e., from disk to GPU memory. These measurements
report observations on a reference computer, a basic laptop
with an 11th Gen Intel Core i7-1165G7 CPU at 2.80 GHz with
16 GB of memory. The laptop has Intel Optane Memory H10
with 512 GB Intel QLC 3D NAND solid state drive connected
by PClIe 3.0 x4 with NVMe interface. The GPU on the laptop
is an Intel Iris Xe Graphics card. On a large cluster like taki
or ada, described in Section IV, these times would in fact be
slower, since the central rotating disk storage is much larger
and connected only via network cables to the compute nodes.
Even with high-performance fiber-optic cables, this is slower
than direct connection from solid state storage inside a laptop.
However, such direct connection and use of solid state storage
is more realistic for the type of computer used in a clinical
setting in a treatment room.

The DRFCN model has the highest accuracy of 75.8% with
the load time of 47s. The models in the last two rows of the
table have accuracies of 73.4% and 73.2% respectively while
loading in 10s and 7s. These 4 GRU and 4 LSTM models
are much simpler with only 6 hidden layers instead of 512. In
particular, they have a factor 85 fewer layers while being only
2% less accurate. These two recurrent models are also 4 times
faster to load from disk which is an advantage when treating
the patient. This demonstrates the two recurrent models are
much smaller than the DRFCN model but perform almost
as accurately. Smaller models require less GPU memory to
process similar amounts of data as well as process similar
amounts of data in less time compared to larger models. This
can save time and resources when in clinical use. In clinical
use, the Compton camera software would be started-up and
that process would include loading the neural network. Given
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Fig. 1: The left column (a), (c), (e) uses testing data without the NN classification for data correction, called the “uncleaned”
data. The right column (b), (d), (f) uses testing data with NN classification for data correction, called the “cleaned” data with
the 4 layer GRU model described in Section V-B. Testing data used comes from MCDE model testl 150MeV.



the possibility of human error by the operator, a neural network
that is quicker to load from disk and that processes data
quicker would be advantageous. An error in the use of the
neural network during treatment can be corrected quicker on
the two smaller recurrent models.

To illustrate the effect that network event classification
can have on the PG images produced from the camera
data, reconstructed PG images are shown in Figure 1 for
the GRU model. In Figure 1, there are three rows of PG
image reconstructions for each dose rate corresponding the
the MCDE model testl 150MeV. The technical report [9] show
reconstructed images for the 4 LSTM layer model. The images
in the left column are the respective PG images reconstructed
with raw data prior to NN classification, called the “uncleaned”
data. The images in the right column are the respective PG
images reconstructed with data after it has been corrected
based on the NN classifications, called the ‘“cleaned” data.
Since each PG image is from data collected during delivery
of the same 150MeV proton beam they will have the same
position and range even though they are reconstructed from
data collected at different dose rates. We observed an improved
visual appearance of the beam in which the start point and end
point are now easily distinguishable at all three dose rates. The
method used to reconstruct these images is described in [4].

The 6 hidden layer model has a large space for improvement
due to its simplicity. Transformer networks were briefly ex-
plored in [9] and its initial results did not increase accuracy as
expected. However, the hyperparameter space is very large and
there is still potential in finding the optimal combination and
architecture. The bidirectional LSTM are also tested in [9], but
did not show any improvement. More complex architectures
than 4 recurrent layers and 2 dense layers should be explored
in addition to more techniques of regularization. There is also
room in the RNN and DRFCN merged models where, rather
than stacking the RNN layers in front of the DRFCN, the RNN
layers could be dispersed between the FCLs, placed inside the
residual blocks, or placed behind the DRFCN. From the results
of this work, it is still possible that the optimal configuration
of hyperparameters has still not been achieved for the more
complex recurrent architectures (RNNs with residual blocks
and transformers). Therefore, hyperparameter searches and
exploring different optimization techniques could increase the
accuracy of those models.
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