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Abstract

Primates display remarkable prowess in making rapid visual inferences even when
sensory inputs are impoverished. One hypothesis about how they accomplish
this is through a process called visual simulation, in which they imagine future
states of their environment using a constructed mental model. Though a growing
body of behavioral findings, in both humans and non-human primates, provides
credence to this hypothesis, the computational mechanisms underlying this ability
remain poorly understood. In this study, we probe the capability of feedforward
and recurrent neural network models to solve the Planko task, parameterized to
systematically control task variability. We demonstrate that visual simulation
emerges as the optimal computational strategy in deep neural networks only when
task variability is high. Moreover, we provide some of the first evidence that
information about imaginary future states can be decoded from the model latent
representations, despite no explicit supervision. Taken together, our work suggests
that the optimality of visual simulation is task-specific and provides a framework
to test its mechanistic basis.

1 Introduction

A longstanding goal in the brain sciences is to understand the neural algorithms and computations
that support humans’ ability to interact optimally with their surroundings. A popular cognitive level
theory for how humans visually reason about their environments, under uncertainty, is that they
rely on “simulation” through rich internal generative models of the world Kersten & Yuille (1996);
Tenenbaum et al. (2011); Battaglia et al. (2013); Ullman et al. (2017) to build and test hypotheses
about the future and plan effective behavior. The notion of visual simulation has been discussed
since at least Descartes, who theorized that this ability is implemented in the brain through the
same neural mechanisms as perception, and operates without any stimulation from the external
world Lokhorst (2005). Ullman expanded upon this theory in his seminal Visual Routines (Ullman
(1984)), in which he suggested that in order for visual simulation to work effectively it must utilize
syntactic computations, which can be flexibly re-applied to any visual features. Recent studies in
humans and non-human primates have provided insight into the potential neural underpinnings of
these cognitive-level theories Ahuja et al. (2022); Ahuja & Sheinberg (2019); Rajalingham et al.
(2021, 2022). While Ahuja & Sheinberg (2019) demonstrated the ability of simple feedforward
neural networks (FFNs) to perform their visual simulation task, they find a misalignment between
model and primate behavior. Similarly, Rajalingham et al. (2021) show this misalignment in recurrent
neural networks (RNNs) trained to play a simplified version of Pong (M-Pong) where the RNN had
to guess where to move a paddle to catch a linearly-moving ball. However, the authors found that
the same RNNs, when trained to predict the position of M-Pong balls across their trajectories, were
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Figure 1: Planko as a visual simulation task. Observers are shown a single image of a game board
and asked to predict whether the ball at the top of the image (in light blue) will fall into the catcher
at the bottom of the image. The grey lines in each image depict the trajectory of the ball at the top,
simulated in a world with Newtonian physics. We generate positive and negative game boards for
every ball and cup position, in which the planks are placed in a way to bounce the ball into the
catcher or not. We also generate four different versions of the game, in which the properties of the
ball and cup are modified: (a) Fixed positions of each, (b) the ball position is randomly sampled, (c)
the bucket position is randomly sampled, and (c) both the ball and bucket positions are randomly
sampled. Each modification increases the total number of game boards that can be generated, and
hence, the game’s difficulty.

able to learn routines for visual simulation that explained significantly more variance in behavior and
neural activity than RNNs without this constraint.

Contributions We explore the conditions under which visual simulation naturally emerges as the
optimal computational strategy in deep neural networks purely driven by task-constraints. We refrain
from providing any source of information about temporal dynamics to our network models, for
example, watching object trajectories or explicit supervision about the locations of objects in the
world. We start with the visual simulation task developed by Ahuja & Sheinberg (2019) and adapt it
to our suite of models and call it Planko (Figure. 1). In Planko, observers are tasked with predicting
the outcome of a ball falling through a random series of oriented planks without ever seeing the ball’s
trajectory. Unlike M-Pong, Planko is parameterized to make it possible to generate game boards that
range from trivially easy to extremely difficult. We investigate whether models can learn to solve
Planko, and whether the solutions they learn resemble the Newtonian physics used to generate game
boards despite having no explicit access to that information.
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• We find that a variety of feedforward deep neural networks (FFNs) and RNNs learn accurate
solutions for easy versions of Planko, but only an attentional circuit model grounded in neurobiology
can solve harder versions of the task (InT, Linsley et al. 2021).

• The InT’s attention maps indicate that it learns to focus on paddles that may interact with the
Planko ball, and regions of the game board where it expects the ball to fall through.

• A decoding analysis demonstrated that the InT incrementally simulates a Planko ball’s trajectory
through the game board, in hard but not easy game boards, and that this path closely approximates
the ground-truth trajectory generated in each board with Newtonian physics.

• Our findings indicate that robust visual simulation emerges as an optimal algorithm in difficult
environments, and that prior work Rajalingham et al. (2021, 2022) suggesting that additional
learning constraints are needed for visual simulation may be a byproduct of a trivial task driving
models to learn shortcuts.

2 The Planko challenge

The Planko challenge is inspired by prior work in visual simulation, which measured primate accuracy
in simulating the trajectory of moving balls, and used fMRI to identify regions of cortex that correlated
with their behavior (Ahuja et al., 2022). Much like M-Pong, models trained on that task learned
shortcut solutions to solve it (Ahuja & Sheinberg, 2019). With our Planko challenge, we have
controlled for variations in the task space to explicitly prevent the learning of shortcut solutions,
and in order to understand the extent to which it changes the strategies learned by models for visual
simulation.

Each Planko board depicts a ball at the top of the screen placed above ten randomly oriented and
positioned planks. A catcher is placed at the bottom of the screen (Figure. 1). Each plank is
parameterized by its angle of inclination, length, and its position on the screen. The Planko ball and
catcher are placed in accordance with task difficulty as discussed below. The physics of this world
are specified by Newton Dynamics (http://www.newtondynamics.com). The ball’s trajectory as

Figure 2: FFN and RNN performance on the Planko challenge. Error bars depict 95% bootstrapped
confidence intervals. The InT is significantly more accurate than any other model on the most
challenging versions of Planko: when the basket position or both the basket and ball positions are
randomly placed across stimuli.
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Figure 3: The InT learns to solve Planko by learning a visual simulation strategy that resembles
the ground truth physics. Sample positive and negative Planko boards were shown to an InT
while decoding the position of the ball from the activities of excitatory units. Ground truth paths are
depicted in red and decoded paths from the InT are depicted in blue.

it falls downward is tracked to determine if it eventually lands in the catcher (positive class) or falls
to the ground (negative class). Figure 1 illustrates example Planko ball trajectories for both positive
and negative classes.

2.1 Parameterizing Planko board difficulty

By bounding the variations in the Planko board elements, we systematically control for the challenge
associated with solving the board for neural network models. Planko-D1 (Figure. 1a) is the easiest
variant of the task in which both the ball and catcher positions are constant across the entire dataset.
Planko-D2 (Figure. 1b) and Planko-D3 (Figure. 1c) are intermediate-level boards. While in Planko-
D2 the initial ball position is randomly sampled from the upper 40% of the game board (with the
catcher position remains constant), Planko-D3 places the catcher in a random location sampled from
the lower 40% of the game board (with the ball position constant). Planko-D4 (Figure. 1d) is the
version of the task wherein both the ball and catcher positions are stochastic. Boards in which the
ball hits either vertical wall are excluded from the data used for the neural network analysis.

3 RNNs, but not FFNs, solve Planko-D4

General setup All models used herein were trained to classify each Planko game board into one
of either positive or negative classes. Model parameters were optimized with Stochastic Gradient
Descent implemented via the Adam algorithm Kingma & Ba (2014) with an initial learning rate of
3e � 4. Binary Cross Entropy (BCE) was used as the training objective. Each train (test) dataset
consisted of 200K (5K) Planko boards of dimensions 64⇥ 64 pixels. Training was carried out on a
NVIDIA TITAN Xp GPU for 100 epochs while measuring validation accuracy after each epoch over
a held-out set of 10K boards.

The InT Model The Index-and-Track circuit (a complete model description in Linsley et al. 2021)
architecture consisted of an input layer with 64 1⇥ 1 convolutional filters followed by the InT circuit
with 3⇥ 3 horizontal kernels and 64 output channels. A 1⇥ 1 convolutional “readout" followed by a
linear layer transformed the final RNN hidden state to the classification output. The RNN is trained
for T = 24 time steps.

4



Figure 4: The InT’s attention maps reveal solution strategies. (a) Testing the RNN (InT) with
boards where everything is held constant except the ball which is horizontally translated. (b) The
hidden state activity at timestep T for the RNN for the boards in (a). (c) The decoded ball positions
from the hidden state vs the ground truth simulated paths.

Baselines In addition to the InT, we trained a simple feedforward 2-layer convolutional neural network
(termed “Baseline CNN"), a standard VGG16 Simonyan & Zisserman (2014), and a 12-layer CNN
with a parameter count identical to the InT circuit.

Classification results The performance landscape of models across the Planko tasks revealed that
both FFNs and RNNs solved easier versions of the task (Figure. 2). However, the InT was significantly
more accurate on Planko-D4, the most challenging version.

Decoding analysis We train a decoder to extract the coordinates of the Planko ball positions from
the final timestep InT activities. The decoder is trained to minimize the mean-squared error between
the predicted ball coordinates and the ground truth ball position obtained from the physics simulator.
The decoder consisted of three layers of 1⇥ 1 convolution and pooling operations and finally a linear
readout layer. The model was trained on 64 channel 64⇥ 64 feature tensors from the final timestep
of the trained InT ciruit. A total of 16 decoder models are trained for each of the 16 ball positions
from the simulator for 20 epochs with 200,000 feature tensors. The mean-squared error is measured
on the validation set after every epoch and the model with the least error is used to predict the ball
position from new boards.

4 Conclusion

We explore the conditions under which “visual simulation" emerges as the naturally optimal algorithm
in task-optimized RNNs. We demonstrate that only the most performant RNN, on our most variable
task, adopts a “simulation" strategy. To the best of our knowledge, we provide the first evidence that
information about imaginary future states can be decoded from RNN internal representations. While
this work is preliminary, we are hopeful that it paves the way for RNN-guided electrophysiology
research to understand the mechanistic basis of visual simulation.
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