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Abstract— In this paper, we address the problem of hardware
Trojan testing with the buyer of an Integrated Circuit (IC), who is
referred to as the defender, and the malicious manufacturer of the
IC, who is referred to as the attacker, strategically acting against
each other. Our developed model accounts for both imperfections
in the testing process as well as costs incurred for performing
testing. First, we analytically characterize Nash Equilibrium (NE)
strategies for Trojan insertion and testing from the attacker’s and
the defender’s perspectives, respectively, considering them to be
fully rational in nature. Further, we also characterize NE-based
Trojan insertion-testing strategies considering the attacker and
the defender to have cognitive biases which make them exhibit
irrationalities in their behaviors. Numerous simulation results are
presented throughout the paper to provide important insights.

I. INTRODUCTION

The presence of hardware Trojans in Integrated Circuits (IC)
pose a serious threat to the semiconductor industry. In such
threats, a malicious manufacturer alters the design of an IC to
attain malign objectives such as leakage of sensitive system
information, degradation of system performance, and even
complete disruption of system operation [1]. Mitigation of
hardware Trojan threats requires testing acquired ICs to check
for the presence of Trojans in them [1]–[5]. For example, the
authors in [2] have designed sequences of test patterns that
can generate noticeable differences between the power profile
of a genuine IC and its Trojan counterpart for the detection
of Trojans, but the effectiveness of the proposed scheme is
limited in terms of the manufacturing processes, behaviors,
and the sizes of the inserted Trojans. Again, a region-based
partitioning scheme for detecting Trojans has been proposed
in [3]. Further, in [5], the authors propose a methodology,
referred to as MERO, to optimize the probability of detecting
inserted Trojans using statistical methods.

Since a malicious manufacturer can act in a strategic man-
ner while inserting Trojans, the authors in [6]–[11] design
game theoretic [12] hardware Trojan testing techniques to
account for strategic interactions. However, while such works
provide useful insights, nevertheless, game theoretic models
and analytical approaches developed by past work suffer from
various limitations. For example, the work in [8] analyzes a
two-player Trojan detection game, but limits investigation of
the equilibrium to an example scenario of the model. Again,
the approaches in [7], [9] rely on the use of software-based
techniques for analyzing game theoretic testing strategies.
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Analytical characterizations of testing strategies at Nash Equi-
librium (NE) can be found in [10], which, however, ignores
the costs incurred in the testing process. Moreover, all the
aforementioned works, including [11], overlook imperfections
of the testing process as well as ignore the human factors
involved in performing Trojan insertion-testing, both of which
can greatly impact attack-defense strategies. We aim to over-
come such limitations in this paper.

Specifically, in this paper, we analytically characterize NE-
based strategies for Trojan insertion-testing under consid-
erations of both costs incurred for performing testing and
imperfections of the testing process. Further, we also address
human cognitive biases of the defender and the attacker in
our characterization of Trojan insertion-testing strategies. The
main contributions of the paper are as follows:
• We analytically characterize NE-based strategies for Tro-

jan insertion-testing under consideration of both testing
costs and testing imperfections.

• Further, in addition to adopting a game theoretic perspec-
tive, we employ Prospect Theory [13] to model cognitive
biases of the defender and the attacker (manufacturer)
and characterize NE-based strategies for Trojan insertion-
testing under the resulting behavioral irrationalities.

• We present numerous simulation results to gain important
insights into the developed strategies.

The rest of the paper is organized as follows. Section II
analyzes game theoretic Trojan insertion-testing strategies
under considerations of testing costs and testing imperfections
while considering the defender and the attacker to be fully
rational. Section III analyzes Trojan insertion-testing strategies
when the defender and the attacker exhibit irrationalities.
Section IV presents simulation results to provide insights.
Finally, Section V concludes the paper.

II. GAME THEORETIC TROJAN TESTING

Consider that there are N types of Trojans, viz. {1, · · · , N}.
Also, consider that there is a malicious IC manufacturer
(referred to as the attacker A) who inserts a Trojan of type
i ∈ {1, · · · , N} with a probability qi into a manufactured
IC, where 0 ≤

∑N
i=1 qi ≤ 1. Further, consider that there is

a buyer (referred to as the defender D) who acquires an IC
from A and tests the acquired IC to check for the presence
of Trojan type i ∈ {1, · · · , N} with a probability pi, where
0 ≤

∑N
i=1 pi ≤ 1. In this section, we consider that D and

A are fully rational in nature. Suppose that the cost incurred



Defender \ Attacker Trojan not inserted Insert Trojan type 1 Insert Trojan type 2 Insert Trojan type 3
IC not tested BS , −BS −V1, V1 −V2, V2 −V3, V3

Test Trojan type 1 BS − c1, c1 −BS PdF − (1−Pd)V1 − c1,
−PdF +(1−Pd)V1+c1

−V2 − c1, V2 + c1 −V3 − c1, V3 + c1

Test Trojan type 2 BS − c2, c2 −BS −V1 − c2, V1 + c2 PdF − (1−Pd)V2 − c2,
−PdF +(1−Pd)V2+c2

−V3 − c2, V3 + c2

Test Trojan type 3 BS − c3, c3 −BS −V1 − c3, V1 + c3 −V2 − c3, V2 + c3 PdF − (1−Pd)V3 − c3,
−PdF +(1−Pd)V3+c3

TABLE I
PAYOFF MATRIX FOR DEFENDER (D) AND ATTACKER (A) WITH THREE TROJAN TYPES (N = 3)

by the defender D to test the IC against Trojan type i is ci.
Moreover, to model the imperfections of the testing process,
consider that, given that the attacker A has inserted a Trojan
of type i and that the defender D has conducted a test to check
for the presence of Trojan type i, the conducted test detects
the inserted Trojan with a probability Pd.

Note that we consider that the attacker does not insert any
Trojan with a probability q0 = 1−

∑N
i=1 qi, in which case we

say that the defender obtains a benefit BS from putting the IC
to desired use. Also, note that we allow the defender to not
test the acquired IC with a probability p0 = 1 −

∑N
i=1 pi. In

such a scenario, given that the attacker A has inserted a Trojan
into the sold IC, if the defender D chooses not to test the IC,
or tests the IC against a Trojan type which was not inserted
by the attacker, or tests the IC against the inserted Trojan
type but the conducted test fails to detect it, then the inserted
Trojan remains undetected and we consider that an undetected
Trojan of type i ∈ {1, · · · , N} causes D to incur damage Vi
(while providing a benefit Vi to A). However, if the defender
D is able to successfully detect the presence of the Trojan that
was inserted by the attacker, then we consider D to impose a
fine F on the malicious manufacturer (with D refraining from
using the acquired IC in such a case). Note that, we consider
the testing costs incurred by the defender to positively impact
the attacker’s utility, which reflects the ‘satisfaction’ that the
attacker obtains from making the defender incur costs for
defending against attacks. For illustration, the payoff matrix
of the game for N = 3 is shown in Table I.

First, we investigate the pure strategy NE of the aforemen-
tioned game. As can be seen from Table I, the strategy of
the attacker not inserting any Trojan is a strictly dominated
strategy (i.e., we have

∑N
i=1 qi = 1 at NE). The existence

and characteristics of pure strategy NE of the game depends
on Pd. If there exists i ∈ {1, · · · , N} such that Vi =
maxk∈{1,··· ,N} Vk and Pd ≤ ci

F+Vi
, the game permits pure

strategy Nash equilibria which corresponds to the attacker A
inserting any such Trojan type i (which would be a maximally
damaging Trojan type) with the defender choosing not to test
the IC. The equilibrium follows from the fact that, given that
A inserts a Trojan type i that is maximally damaging in nature,
the payoff that the defender obtains from choosing not to test
the IC is at least as much as that of the other strategies (under
Pd ≤ ci

F+Vi
). Again, given that D chooses not to test the IC,

the best response of the attacker is clearly to insert a Trojan
type i that is maximally damaging in nature.

Now, when Pd > ci
F+Vi

∀i ∈ {1, · · · , N}, in which case the
strategy of the defender choosing not to test the IC becomes
strictly dominated, a pure strategy NE exists only if there
exists i ∈ {1, · · · , N} such that Vi = maxk∈{1,··· ,N} Vk and

Pd ≤ Vi−Vj

Vi+F
where Vj = maxk∈{1,··· ,i−1,i+1,··· ,N} Vk, in

which case, the game’s pure strategy Nash equilibria corre-
spond to both the defender and the attacker choosing to test
and insert, respectively, such a Trojan type i (which would be a
maximally damaging Trojan type). It can be verified that there
does not exist any profitable unilateral deviation for D and
A from such a strategy under the aforementioned conditions.
However, when Pd >

ci
F+Vi

∀i ∈ {1, · · · , N}, if there does
not exist such a maximally damaging Trojan type i as just
described, the game does not have any pure strategy NE. Next,
we characterize the mixed strategy NE in such a scenario.

In the rest of the paper, suppose that, w.l.o.g, V1 ≥ V2 ≥
· · · ≥ VN . Also, suppose that there are M maximally dam-
aging Trojan types, i.e., M = |{i|Vi = maxj∈{1,··· ,N} Vj}|.

A. Presence of multiple maximally damaging Trojan types
We first consider the scenario where M out of the N Trojan

types are maximally damaging in nature, i.e., V1 = V2 = · · · =
VM > VM+1 ≥ VM+2 ≥ · · · ≥ VN under M > 1. In such
a scenario, it can be noted that the strategy of the attacker
inserting Trojan type i ∈ {M + 1, · · · , N} becomes strictly
dominated2. Subsequently, the strategy of the defender testing
the IC against Trojan type i ∈ {M +1, · · · , N} also becomes
strictly dominated. For notational simplicity, let us define V =
V1 = V2 = · · · = VM . In such a scenario, the mixed strategy
NE of the game is provided in the next theorem.
THEOREM 1. Given that, for M > 1, M out of the N Trojan
types are maximally damaging in nature with V = V1 = V2 =
· · · = VM > VM+1 ≥ VM+2 ≥ · · · ≥ VN , at NE,
• the defender tests the IC for the presence of Trojan type
i with a probability pi = 1

M , ∀i ∈ {1, · · · ,M}, and
• the attacker, for any chosen i ∈ {1, · · · ,M}, inserts

Trojan type i into the manufactured IC with a prob.

qi =
1−

∑M
k=1,k 6=i

ck−ci
Pd(F+V )

M and inserts Trojan type j with
a prob. qj = qi +

[ cj−ci
Pd(F+V )

]
,∀j ∈ {1, · · · ,M}, j 6= i.

Proof. The expected utility (say, EiD) of defender D from
testing the IC for the presence of Trojan i ∈ {1, · · · ,M} is

EiD = [PdF − (1− Pd)V ]qi − V
M∑

k=1,k 6= i

qk − ci (1)

At the mixed strategy NE, since D must be indifferent over
its undominated strategy space, for i, j ∈ {1, · · · ,M}, i 6= j,
equating EiD = EjD, after some manipulations yield

qj = qi +

[
cj − ci

Pd(F + V )

]
(2)

2For example, from the payoff matrix shown in Table I for N = 3, if
V1 = V2 > V3, it can be noted that strategy of the attacker inserting Trojan
type 3 becomes strictly dominated (regardless of the strategy adopted by D).



Further, over the undominated strategy space of the attacker,
for any chosen i ∈ {1, · · · ,M}, we have qi+

∑M
k=1,k 6=i qk =

1, which implies, using (2), that

qi +

M∑
k=1,k 6=i

[
qi +

(
ck − ci

Pd(F + V )

)]
= 1 (3)

⇒ qi =
1−

∑M
k=1,k 6=i

ck−ci
Pd(F+V )

M
(4)

Clearly, from the above, if the attacker, for any chosen
i ∈ {1, · · · ,M}, chooses qi as given in (4) and qj , ∀j ∈
{1, · · · ,M}, j 6= i, as given in (2), the defender becomes
indifferent over its undominated strategy space making any
strategy of defender (such that

∑M
i=1 pi = 1) to become a

best response against the attacker’s strategy.
Now, the expected utility (say, EiA) of attacker A from

choosing to insert Trojan type i ∈ {1, · · · ,M} is

EiA = [(1− Pd)V − PdF + ci]pi +

M∑
k=1,k 6= i

(V + ck)pk (5)

At the mixed strategy NE, since the attacker must also
become indifferent over its undominated strategy space, for
i, j ∈ {1, · · · ,M}, i 6= j, equating EiA = EjA, after some
manipulations yield pi = pj . Further, over the undominated
strategy space of the defender, for any i ∈ {1, · · · ,M}, we
have pi +

∑M
k=1,k 6= i pk = 1, which implies, using the fact

that, for i 6= j, EiA = EjA when pi = pj , that

pi =
1

M
∀i ∈ {1, · · · ,M} (6)

Clearly, ∀i ∈ {1, · · · ,M}, if the defender chooses pi
as given in (6), the attacker would become indifferent over
its undominated strategy space making any strategy of the
attacker (such that

∑M
i=1 qi = 1) to become a best response

against the defender’s strategy.
Thus, if the attacker A, for any chosen i ∈ {1, · · · ,M},

chooses qi as given in (4) and qj , ∀j ∈ {1, · · · ,M}, j 6= i, as
given in (2), and if the defender D, ∀i ∈ {1, · · · ,M}, chooses
pi as given in (6), both D and A would be playing their best
responses against each other. This proves the theorem.

B. Presence of a unique maximally damaging Trojan type
We now consider M = 1, i.e., there exists a unique

maximally damaging Trojan type with L Trojan types having
the second-highest damaging factor. Thus, we have V1 > V2 =
V3 = · · · = VL+1 > VL+2 ≥ VL+3 ≥ · · · ≥ VN . In such a
case, the strategy of the attacker and the defender inserting
and testing, respectively, a Trojan type i ∈ {L + 2, · · · , N}
become strictly dominated. For notational simplicity, define
V = V2 = · · · = VL+1. In the following theorem, we
characterize the mixed strategy NE of the defender and the
attacker over their undominated strategy spaces.
THEOREM 2. Given that M = 1, i.e., there exists a unique
maximally damaging Trojan type, and that L Trojan types have
the second-highest damaging factor, with V = V2 = · · · =
VL+1, at NE,
• the defender chooses p1 =

1−L
[

V−V1
Pd(F+V )

]
1+L
(

F+V1
F+V

) and pi =

p1
(
V1+F
V+F

)
+ V−V1

Pd(F+V ) , ∀i ∈ {2, 3, · · · , L+ 1}, and

• the attacker chooses q1 =
1− 1

Pd(F+V )

∑L+1
k=2 (ck−c1)

1+L
(

F+V1
F+V

) and

qi = q1
(F+V1)
(F+V ) + ci−c1

Pd(F+V ) , ∀i ∈ {2, 3, · · · , L+ 1}.

Proof. The expected utility (say, E1
D) of defender D from

testing the IC to check for the presence of Trojan type 1 is

E1
D = [PdF − (1− Pd)V1]q1 − V

L+1∑
k=2

qk − c1 (7)

Further, the expected utility (say, EiD) of D from testing the
IC against Trojan type i ∈ {2, 3, · · · , L+ 1} is

EiD = [PdF − (1− Pd)V ]qi − V
L+1∑

k=2,k 6=i

qk − V1q1 − ci (8)

Equating (7) and (8) to make the defender indifferent between
testing against Trojan type 1 and type i ∈ {2, 3, · · · , L+ 1},
as required at the mixed strategy NE, we get

qi = q1
(F + V1)

(F + V )
+

ci − c1
Pd(F + V )

(9)

Now, since the strategy of the attacker inserting Trojan type
i ∈ {1, 2, · · · , L + 1} remains undominated, we have q1 +∑L+1
k=2 qk = 1, which implies, using (9), that

q1 +

L+1∑
k=2

[
q1

(F + V1)

(F + V )
+

ck − c1
Pd(F + V )

]
= 1 (10)

⇒ q1 =
1− 1

Pd(F+V )

∑L+1
k=2 (ck − c1)

1 + L
(
F+V1

F+V

) (11)

Now, the expected utility (say, E1
A) of attacker A from

choosing to insert Trojan type 1 is

E1
A = [(1− Pd)V1 − PdF + c1]p1 +

L+1∑
k=2

(V1 + ck)pk (12)

Further, the expected utility of A from inserting Trojan type
i ∈ {2, 3, · · · , L+ 1} is

EiA = [(1− Pd)V − PdF + ci]pi +

L+1∑
k=1,k 6=i

(V + ck)pk (13)

Equation (12) and (13) to make the attacker indifferent
between inserting Trojan type 1 and type i ∈ {2, 3, · · · , L+1},
as required at the mixed strategy NE, we get

pi = p1

(
V1 + F

V + F

)
+

V − V1
Pd(F + V )

(14)

Now, since the strategy of the defender testing Trojan type
i ∈ {1, 2, · · · , L + 1} remains undominated, we have p1 +∑L+1
i=2 pi = 1, which implies, using (14), that

p1 +

L+1∑
i=2

[
p1

(
V1 + F

V + F

)
+

V − V1
Pd(F + V )

]
= 1 (15)

⇒ p1 =
1− L

[
V−V1

Pd(F+V )

]
1 + L

(
F+V1

F+V

) (16)

In summary, if the attacker A chooses q1 as given in (11),
and qi, ∀i ∈ {2, · · · , L+1}, as given in (9), and if the defender
D chooses p1 as given in (16), and pi, ∀i ∈ {2, · · · , L+1}, as
given in (14), then both D and A would be playing their best
responses against each other. This proves the theorem.



III. TROJAN TESTING UNDER COGNITIVE BIASES

In this section, we consider Trojan testing when the defender
and the attacker, in addition to acting in a strategic manner,
are cognitively biased in nature thereby exhibiting behavioral
irrationalities. To address such a scenario, we have developed
a game and prospect theoretic Trojan insertion-testing model.
We first provide a brief overview of Prospect Theory [13],
which provides a descriptive model of human cognitive biases,
before describing our model.
A. Prospect Theory

In prospect theory [13], humans, due to their cognitive
biases, do not weight outcomes by their objective probabilities,
but rather by transformed distorted probabilities in a subjective
manner. The transformation of probabilities is computed using
a weighting function w(.) whose argument is an objective
probability. In this paper, to model the over-weighting/under-
weighting of objective probabilities, we use the well accepted
Prelec function [14], which is defined as

w(p) = exp(−(− log p)α), 0 < α ≤ 1 (17)
where α is the parameter which models how a human subjec-
tively distorts an objective probability. For illustration, Fig. 1
plots w(p) against p for different values of α.

Based on the subjective distortion of probabilities, a
cognitively biased human agent’s prospect theoretic utility
from a gamble that can lead to outcomes having valuations
x1, x2, · · · , xN with probabilities p1, p2, · · · , pN , respectively,
is
∑N
i=1 xiw(pi), which clearly deviates from norms followed

by conventional expected utility theoretic models. In the
following, we account for such deviations in our analysis of
Trojan insertion-testing under strategic considerations.
B. Prospect Theoretic Trojan Testing

We consider a similar Trojan insertion-testing model as
described in Section II, with the attacker and the defender,
however, considered cognitively biased in nature who subjec-
tively perceive objective probabilities (using (17)) to obtain
prospect theoretic utilities from their chosen strategies. For
illustration, in Table II, we show the prospect theoretic payoff
matrix of the game for N = 3.

As can be noted from Table II, the strategy of the at-
tacker not inserting a Trojan is a strictly dominated strat-
egy. In such scenario, it can be shown that, if there exists
i ∈ {1, · · · , N} such that Vi = maxk∈{1,··· ,N} Vk and
w(Pd)F − w(1 − Pd)Vi ≤ ci − Vi, then the strategy of the
attacker inserting such a Trojan type i (which would be a
maximally damaging Trojan type) with the defender choosing
not to test the IC comprise a pure strategy NE. However, if
w(Pd)F − w(1 − Pd)Vi > ci − Vi ∀i ∈ {1, · · · , N}, a pure
strategy NE exists only if there exists i ∈ {1, · · · , N} such
that Vi = maxk∈{1,··· ,N} Vk and w(1−Pd)Vi−w(Pd)F ≥ Vj
where Vj = maxk∈{1,··· ,i−1,i+1,··· ,N} Vk, in which case pure
strategy Nash equilibria of the game corresponds to both the
defender and the attacker testing and inserting, respectively,
such a Trojan type i (which would be a maximally damaging
Trojan type). In case there does not exist such a Trojan type
i as just described when w(Pd)F − w(1 − Pd)Vi > ci − Vi
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Fig. 1. Behavior of Prelec function

∀i ∈ {1, · · · , N}, then the game does not have a pure strategy
NE. Next, we explore the mixed strategy NE in such a scenario
considering that M out of the N Trojan types are maximally
damaging in nature, i.e., M = |{i|Vi = maxj∈{1,··· ,N} Vj}|.

C. Presence of multiple maximally damaging Trojan types
We first consider M > 1, i.e., V = V1 = V2 = · · · =

VM > VM+1 ≥ VM+2 ≥ · · · ≥ VN . In such a scenario, the
strategy of the defender and the attacker testing and inserting,
respectively, a Trojan type i ∈ {M + 1, · · · , N} become
strictly dominated. In the next theorem, we characterize the
mixed strategy NE of the game over the defender’s and the
attacker’s undominated strategy spaces.
THEOREM 3. When the defender and the attacker are cogni-
tively biased, for M > 1, if M out of the N Trojan types are
maximally damaging in nature with V = V1 = V2 = · · · =
VM > VM+1 ≥ VM+2 ≥ · · · ≥ VN ,
• the defender’s strategy (p1, · · · , pM ) at NE corresponds

to pi = 1
M , ∀i ∈ {1, · · · ,M}, and

• the attacker’s strategy (q1, · · · , qM ) at NE corresponds
to, for any chosen i ∈ {1, · · · ,M}, the roots of the
following M equations solved simultaneously:
F [w(Pdqi)− w(Pdqj)] + V [w((1− Pd)qj)− w((1− Pd)

qi)] + V [w(qi)− w(qj)] + cj − ci = 0 (18a)
∀j ∈ {1, · · · , i− 1, i+ 1, · · · ,M}

qi +

M∑
j=1,j 6=i

qj = 1 (18b)

Proof. The prospect theoretic utility (PT iD) of D from testing
the IC for the presence of Trojan type i ∈ {1, · · · ,M} is

PT iD=[Fw(Pdqi)−V w((1−Pd)qi)]−V
M∑

k=1,k 6=i

w(qk)−ci (19)

At the mixed strategy NE, since the defender must become
indifferent between testing Trojan types i and j, i, j ∈
{1, · · · ,M}, i 6= j, equating PT iD = PT jD yields (18a),
which, for any chosen i ∈ {1, · · · ,M} must hold ∀j ∈
{1, · · · , i− 1, i+1, · · · ,M} to make the defender indifferent
over its entire undominated strategy space while ensuring
(18b) to ensure feasibility of the attacker’s strategy.

Now, the prospect theoretic utility (say, PT iA) of attacker A
from choosing to insert Trojan type i ∈ {1, · · · ,M} is

PT iA=V w((1−Pd)pi)−Fw(Pdpi)+ciw(pi)+
M∑

k=1,k 6=i

(V+ck)w(pk)

(20)



Defender \ Attacker Trojan not inserted Insert Trojan type 1 Insert Trojan type 2 Insert Trojan type 3
IC not tested BS , −BS −V1, V1 −V2, V2 −V3, V3

Test Trojan type 1 BS − c1, c1 −BS w(Pd)F−w(1−Pd)V1−c1,
−w(Pd)F+w(1−Pd)V1+c1

−V2 − c1, V2 + c1 −V3 − c1, V3 + c1

Test Trojan type 2 BS − c2, c2 −BS −V1 − c2, V1 + c2 w(Pd)F−w(1−Pd)V2−c2,
−w(Pd)F+w(1−Pd)V2+c2

−V3 − c2, V3 + c2

Test Trojan type 3 BS − c3, c3 −BS −V1 − c3, V1 + c3 −V2 − c3, V2 + c3 w(Pd)F−w(1−Pd)V3−c3,
−w(Pd)F+w(1−Pd)V3+c3

TABLE II
PROSPECT THEORETIC PAYOFF MATRIX FOR DEFENDER (D) AND ATTACKER (A) WITH THREE TROJAN TYPES (N = 3)

At the mixed strategy NE, since the attacker must become
indifferent between inserting Trojan types i and j, i, j ∈
{1, · · · ,M}, i 6= j, equating PT iA = PT jA yields

F [w(Pdpj)−w(Pdpi)]+V [w((1−Pd)pi)−w((1−Pd)pj)]
+ V [w(pj)− w(pi)] = 0 (21)

which holds when pi = pj . Thus, to make the attacker
indifferent over its entire undominated strategy space, we
must have p1 = p2 = · · · = pM , which implies, since
pi +

∑M
j=1,j 6=i pj = 1, that pi = 1/M , ∀i ∈ {1, · · · ,M}.

Thus, if the defender chooses pi = 1
M , ∀i ∈ {1, · · · ,M},

and if the attacker, for any chosen i ∈ {1, · · · ,M}, adopts its
strategy by solving (18a) and (18b) simultaneously, both the
defender and the attacker would be playing their best responses
against each other. This proves the theorem.

It can be noted that Matlab’s fzero tookit [15] can be used
to simultaneous solve (18a) and (18b) in a computationally
efficient manner. In the following remark, we provide a closed
form solution for (18a) and (18b) for a special case.

REMARK 1. Note that, if ci = cj , i, j ∈ {1, · · · ,M}, i 6= j,
(18a) holds when qi = qj . Thus, under uniform testing costs,
i.e., when c1 = c2 = · · · = cM , the attacker’s strategy at NE
when M > 1 (i.e., under the case considered in Theorem 3)
becomes q1 = q2 = · · · = qM , which implies, to satisfy (18b),
that qi = 1

M , ∀i ∈ {1, · · · ,M}.

D. Presence of a unique maximally damaging Trojan type

We now consider M = 1, i.e., there exists a unique
maximally damaging Trojan type. For analytical tractability,
we consider that a single Trojan type has the second-highest
damaging factor, i.e., V1 > V2 > V3 ≥ V4 ≥ · · · ≥ VN . In
such a case, it can be shown that the strategy of the defender
and attacker testing and inserting, respectively, a Trojan type
i ∈ {3, · · · , N} become strictly dominated (i.e., we have
p1 + p2 = 1 and q1 + q2 = 1 at NE). Next, we characterize
the mixed strategy NE of the defender and the attacker over
their undominated strategy spaces.

THEOREM 4. When the defender and the attacker are cogni-
tively biased, given that the Trojan types that have the highest
and the second-highest damaging factors are unique, which
would be Trojan types 1 and 2, respectively, at NE,
• the defender tests against Trojan type 1 with a probability
p1 (with p2 = 1− p1) that corresponds to the root of the
following equation:

F [w(Pd(1−p1))−w(Pdp1)]+V1[w((1−Pd)p1)+w(1−p1)]
− V2[w((1− Pd)(1− p1)) + w(p1)] = 0 (22)

• the attacker inserts Trojan type 1 with a probability q1
(with q2 = 1 − q1) that corresponds to the root of the
following equation:

F [w(Pdq1)−w(Pd(1−q1))]+V1[w(q1)−w((1−Pd)q1)]+
V2[w((1− Pd)(1− q1))− w(1− q1)] + c2 − c1 = 0 (23)

Proof. For i, j ∈ {1, 2}, i 6= j, the prospect theoretic utility
(say, PT iD) of defender D from testing the IC for the presence
of Trojan type i is

PT iD = [Fw(Pdqi)−Viw((1−Pd)qi)]−Vjw(qj)−ci (24)
Since D must be indifferent between testing against Trojan
types 1 and 2 at the mixed strategy NE, equating PT 1

D =
PT 2

D, and simplifying it using q1 + q2 = 1, we get (23).
Now, for i, j ∈ {1, 2}, i 6= j, the prospect theoretic utility
(PT iA) of attacker A from choosing to insert Trojan type i is

PT iA = Viw((1− Pd)pi)− Fw(Pdpi) + ciw(pi)+

(Vi + cj)w(pj) (25)
Since A must be indifferent between inserting Trojan types 1
and 2 at the mixed strategy NE, equating PT 1

A = PT 2
A, and

simplifying it using p1 + p2 = 1, we get (22).
Thus, if the attacker chooses q1 such that it solves (23),

with q2 = 1− q1, and if the defender chooses p1 such that it
solves (22), with p2 = 1−p1, both would be playing their best
responses against each other. This proves the theorem.

Theorem 4 uses (22) and (23) to characterize the strategies
at NE. We now prove that the NE strategies exist by showing
that the equations have solutions in [0,1].
LEMMA 1. The NE strategies characterized in Theorem 4 exist.
Proof. Let us denote (23) as
f(q1)=F [w(Pdq1)−w(Pd(1−q1))]+V1[w(q1)−w((1−Pd)q1)]
+ V2[w((1− Pd)(1− q1))− w(1− q1)] + c2 − c1 = 0 (26)
It can be shown from Table II that, for i, j ∈ {1, 2}, i 6= j,
if ci − cj > Fw(Pd) + Vi[1 − w(1 − Pd)], then the strategy
of the defender testing against Trojan type i becomes strictly
dominated and the defender no longer plays a mixed strategy
at NE. Hence, we explore the existence of q1 ∈ [0, 1] that
solves (26) when the aforementioned condition is not satisfied.
In such a case, it can be shown that df(q1)/dq1 ≥ 0, which
implies that f(q1) is a monotonically increasing function of q1.
Further, we have limq1→0 f(q1) < 0 and limq1→1 f(q1) > 0.
Thus, we can conclude that there exists a value of q1 ∈ [0, 1]
at which f(q1) = 0. This proves the lemma.

In Fig. 2, we show the nature of f(q1) (26) w.r.t. q1
considering c1 = 40, c2 = 30, F = 150, Pd = 0.5, α = 0.3,
V1 = 50, and V2 = 20. The figure verifies the aforementioned
nature of f(q1) (26) w.r.t. q1 and that there exists q1 ∈ [0, 1]
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Fig. 2. Nature of f(q1) in (26).

such that f(q1) = 0. This corroborates Lemma 1. Similarly, a
solution of (22) can be shown to exist.

IV. SIMULATION RESULTS
In this section, we provide simulation results to provide

important insights into our developed techniques. In Fig. 3,
we show the expected utilities of the defender and attacker at
NE versus the probability of detection (Pd). For the figure, we
consider the case studied in Section II-A (where M > 1) with
c1 = c2 = c3 = 10, V = V1 = V2 = V3 = 50, and F = 300. The
NE strategies of the defender and the attacker were calculated
using Theorem 1. As can be seen from the figure, as expected,
for any given M , the expected utility of the defender increases
and that of the attacker decreases with Pd. Moreover, as can
be seen, a lower value of M positively impacts the defender’s
utility (and negatively impacts the attacker’s utility), since a
lower value of M reduces the degree of uncertainty that the
defender has regarding the inserted Trojan type.
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Fig. 3. Expected utilities of the defender and attacker at NE versus Pd

In Fig. 4, we show the defender’s prospect theoretic utility
at NE against Pd for the scenario explored in Section III-D.
For the figure, we consider that c1 = 60, c2 = 50, V1 = 80,
V2 = 60, and F = 500. The NE strategies of the defender
and the attacker were calculated using Theorem 4. As can be
seen from the figure, as expected, for any given probability
distortion parameter α in (17), the prospect theoretic utility of
the defender shows a non-decreasing trend with Pd. Further,
interestingly, as can be seen, when Pd is below a certain
threshold, a lower value of α, which corresponds to being more
cognitively biased (i.e., being more irrational), results in higher
utilities for the defender (i.e., is beneficial for the defender),
while the trend reverses when Pd exceeds the threshold.

V. CONCLUSION

This paper considered the problem of hardware Trojan
testing under considerations of imperfections in the testing
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Fig. 4. Defender’s prospect theoretic utility versus Pd.

process and testing costs incurred. The paper first addressed
the problem from a game theoretic perspective and analytically
characterized NE-based Trojan insertion-testing strategies con-
sidering the defender (buyer of an IC) and the attacker (man-
ufacturer of the IC) to be rational entities. Further, the paper
employed Prospect Theory to model cognitive biases of the
defender and attacker and analytically characterized NE-based
Trojan insertion-testing strategies under the resulting behav-
ioral irrationalities. Our results show that such irrationalities
can lead to enhancement of the defender’s utility depending
on the degree of testing imperfections. Numerous simulation
results were presented to gain important insights.
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