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Abstract

High-order interactions between multiple objects

are common in real-world applications. Although

tensor decomposition is a popular framework for

high-order interaction analysis and prediction,

most methods cannot well exploit the valuable

timestamp information in data. The existent meth-

ods either discard the timestamps or convert them

into discrete steps or use over-simplistic decom-

position models. As a result, these methods might

not be capable enough of capturing complex, fine-

grained temporal dynamics or making accurate

predictions for long-term interaction results. To

overcome these limitations, we propose a novel

Temporal High-order Interaction decompoSition

model based on Ordinary Differential Equations

(THIS-ODE). We model the time-varying inter-

action result with a latent ODE. To capture the

complex temporal dynamics, we use a neural net-

work (NN) to learn the time derivative of the ODE

state. We use the representation of the interaction

objects to model the initial value of the ODE and

to constitute a part of the NN input to compute the

state. In this way, the temporal relationships of the

participant objects can be estimated and encoded

into their representations. For tractable and scal-

able inference, we use forward sensitivity analysis

to efficiently compute the gradient of ODE state,

based on which we use integral transform to de-

velop a stochastic mini-batch learning algorithm.

We demonstrate the advantage of our approach in

simulation and four real-world applications.

1. Introduction

Many applications involve interactions between multiple

objects. For example, customers purchase items at differ-

ent grocery stores, and people take outdoor exercises at
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various places. From the results of those interactions, e.g.,

purchase amount and heart rates, an important task is to

learn a representation of the participant objects, i.e., em-

beddings, from which we can discover hidden structures

of the objects, such as communities and outliers, and build

predictive tools or pipelines for downstream applications,

such as recommendation and health counseling.

In practice, interaction data often includes valuable time in-

formation, namely the timestamp at which each interaction

occurred. This information implies rich, complex temporal

dynamics within the observed interactions. While tensor

decomposition (Tucker, 1966; Harshman, 1970; Chu and

Ghahramani, 2009; Choi and Vishwanathan, 2014; Zhe et al.,

2016b) is a popular framework for representation learning

and prediction of high-order interactions, current methods

has yet fully exploited the fine-grained temporal information.

Most methods either simply drop the timestamps (Pan et al.,

2020b; Fang et al., 2021a) or truncate the timestamps to

coarse steps, e.g., weeks or months, and learn a representa-

tion of the time steps (Xiong et al., 2010; Rogers et al., 2013;

Zhe et al., 2016a; Du et al., 2018). The temporal dependen-

cies within each step are therefore ignored. While the most

recent work (Zhang et al., 2021) introduces time-varying

coefficients to support continuous time, the multilinear de-

composition structure and polynomial spline modeling of

the coefficients might be oversimplistic, and restrict the

approach from capturing highly-nonlinear temporal relation-

ships in data. As a result, the existent methods might not

be capable enough of learning complex, fine-grained tempo-

ral dynamics underlying the data and accurately predicting

long-term interaction results. Although recent works (Zhe

and Du, 2018; Pan et al., 2020a; Wang et al., 2020) also use

point processes to estimate the temporal dependencies be-

tween the interaction events (e.g., excitation and inhibition),

they focus on event modeling and ignore the interaction

results. These methods cannot make use of the observed or

predict future interaction results.

To address these issues, we propose THIS-ODE, a novel de-

composition model of temporal high-order interactions. Our

model can fully leverage continuous timestamps, flexibly

capture all kinds of complex temporal dynamics within the

interactions, and encode nonlinear temporal relationships

of the participant objects into their representations. Specifi-

cally, we model the result of each interaction with a latent
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Ordinary Differential Equation (ODE). In order to capture

the complex temporal dynamics, we use a neural network

(NN) to model the time derivative of the ODE state. The

representations of the participant objects are then used to

model the initial value of the ODE and serve as a part of

the input to the NN to calculate the state. In this way, the

ODE is governed by the participants’ representations and

the nonlinear temporal relationship of the participants can

thereby be captured and absorbed into these representations.

For tractable inference, we use sensitivity analysis to solve

an augmented ODE system that simultaneously evolve each

state and its partial derivatives w.r.t. the initialization and

model parameters. In doing so, we can efficiently compute

the total derivative of the state at any time point. We then

embed this computation procedure into a scalable stochastic

optimization framework to maximize the log joint probabil-

ity of the model. To further improve the efficiency, we use

integral transform to align the ending time and jointly solve

all the ODEs in the mini-batch at a single timestamp.

For evaluation, we examined THIS-ODE in both simulation

and real-world applications. The simulation experiments

show that THIS-ODE can accurately capture the underlying

complex dynamics, and the learned representations further

reflected the hidden structures of the objects. We then exam-

ined THIS-ODE in four real-world applications. In terms of

prediction accuracy, THIS-ODE nearly always outperforms

the competing methods by a large margin, in predicting

long-term interaction results where the test time frame do

not overlap with the training time frame.

2. Notations and Background

Suppose our data consists of interaction results between

K types of objects (e.g., customers, products, and stores).

For each type k, there are dk objects. We use integers to

index these objects, and so a particular interaction is in-

dexed by a tuple i = (i1, · · · , iK) where 1 ≤ ik ≤ dk
for each k. We denote the interaction result (e.g., pur-

chase amount) by mi ∈ R. In practice, the timestamp

information is also associated with the observed interaction

results. Hence, we denote by mi(t) the result of interac-

tion i at time t. Assume we have observed N interactions

results and their timestamps. We denote the dataset by

D = {(i1, t1, y1), . . . , (iN , tN , yN )}, where each yn is a

(noisy) observation of min
(tn). Note that the indices of

the interactions {i1, . . . iN} can have duplications. In other

words, a particular interaction might have a sequence of

results at different timestamps. For example, when one

is taking exercise (e.g., yoga or running), their heart rate

can vary along with time. Given the data D, we want to

learn a representation for each participant object, and use

the representations to reconstruct the observed and to pre-

dict future interaction results at different time points, i.e.,

decomposition. We denote by u
k
j ∈ R

rk the representation

of the j-th object of type k, where rk is the dimension of

the representation.

To decompose high-order interactions, a commonly used

approach is tensor decomposition. We can view each ob-

ject type k as one tensor mode and construct a K-mode

tensorM ∈ R
d1×...×dK , where each entry corresponds to

a particular interaction. The classical Tucker decomposi-

tion (Tucker, 1966) models thatM =W×1U
1×2 . . .×K

U
K whereW ∈ R

r1×...×rK is parametric core tensor, each

U
k consists of the representations of all the objects in mode

k (of size dk × rk)), and ×k is the tensor-matrix multiplica-

tion at mode k (Kolda, 2006). If we set r1 = . . . = rK = r
and W to be diagonal, Tucker decomposition is reduced

to the popular CANDECOMP/PARAFAC (CP) decomposi-

tion (Harshman, 1970),

M =

r∑

j=1

λj ·U
1[:, j] ◦ . . . ◦UK [:, j], (1)

where {λ1, . . . , λr} correspond to the diagonal elements of

W , Uk[:, j] is the j-the column of Uk, and ◦ is the vector

outer-product. The representations can be estimated by

minimizing a loss (e.g., square loss) on the observed entry

values. When the tensor is not fully observed (which is often

the case), we can use the element-wise decomposition form.

In spite of their popularity, CP and Tucker decomposition

only estimate a multilinear relationship between the objects

in terms of their representations. To flexibly estimate all

kinds of relationships, including highly nonlinear ones, (Xu

et al., 2012; Zhe et al., 2015; 2016a) model the value of each

entry mi as an unknown function of the representations of

corresponding objects in each mode and assign a Gaussian

process prior (Rasmussen and Williams, 2006),

mi = g(u1
i1
, . . . ,uK

iK
) ∼ GP (0, κ(·, ·)) (2)

where κ(·, ·) is a kernel function.

To incorporate temporal information, current methods usu-

ally bin the timestamps into L steps according to a speci-

fied interval, e.g., one day or one week, and then augment

the tensor with a time mode (Xiong et al., 2010; Rogers

et al., 2013; Zhe et al., 2015; 2016a; Du et al., 2018),

M ∈ R
d1×...×dK×L, where a representation sj is intro-

duced for each time step j (1 ≤ j ≤ L). Then we can apply

an arbitrary tensor decomposition approach to estimate all

the representations. To better capture the temporal depen-

dencies, we can further model the dynamics between the

time-step representations, e.g., via a conditional prior over

consecutive steps, p(tj+1|tj) = N (tj+1|tj , vI) (Xiong

et al., 2010) and/or recurrent neural networks.
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Figure 1. A graphical representation of THIS-ODE.

3. Model

Despite the success of existing methods, they are still not

capable enough of capturing complex, fine-grained tem-

poral dynamics and relationships from data. The discrete

time steps actually lose the accurate time point informa-

tion and ignore the temporal dynamics within each step,

which can hurt prediction accuracy of the interaction results

(especially for long-term results). Although the most re-

cent work (Zhang et al., 2021) introduces a continuous-time

coefficients in the CP framework (i.e., {λj} in (1)), its multi-

linear form and polynomial temporal/trend modeling might

be inadequate to estimate complex, highly nonlinear dynam-

ics and relationships between the interaction objects. To

address these issues, we propose THIS-ODE, a continuous-

time decomposition model based on ordinary differential

equations, presented as follows. A graphical illustration is

given by Fig. 1.

Specifically, for each particular interaction i, we model

the evolution of the interaction result mi(t) as the trajec-

tory of an unknown latent ODE system, which is gov-

erned by the representations of the participant objects

vi = {u
1
i1
, . . . ,uK

iK
},

{
dmi(t)

dt = f (mi(t),vi, t)

mi(0) = β(vi)
(3)

where f(·) is the time derivative of the state, and mi(0)
is the initial state. Here β(·) is a function that can be the

element-wise form of any static decomposition model, e.g.,

the CP model in (1). Clearly, the ODE system deals with

continuous time information in a natural way. In order to

flexibly learn all kinds of complex dynamics within the ob-

served sequence, we model f(·) as a neural network (NN)

parameterized by θ. As we can see, the initial state and

the time derivative are both determined by vi — the repre-

sentations of the participant objects. For the latter, vi is a

part of the input to the derivative function f(·) and hence

influences the evolution of the state. In this way, both the

static and nonlinear temporal relationships can be captured

and encoded into the learned representations.

Given the system, the state at an arbitrary time point t is

computed by mi(t) = mi(0) +
∫ t

0
fθ(mi(s),vi, s)ds. Al-

though in general this integration is analytically intractable

(note mi is also an input to f ), we can use numerical ODE

solvers to solve it. There are many general-purpose solvers,

such as those based on Runge-Kutta methods (Dormand and

Prince, 1980). Being developed for decades by the numeri-

cal computation community, these solvers are mature and

reliable, allowing a flexible trade-off between the efficiency

and numerical precision.

Given the dataset D = {(i1, t1, y1), . . . , (iN , tN , yN )}, we

use the Gaussian likelihood for each observed interaction

result yn (1 ≤ n ≤ N),

p(yn|min
(tn)) = N

(
yn|min

(tn), ν
−1

)
(4)

where ν is the inverse variance of the Gaussian noise. We

further assign a Gamma prior distribution over ν and a

standard Gaussian prior over the representations. The joint

probability of our model is then given by

p(U , ν,D|θ) =
∏K

k=1

∏dk

j=1
N (uk

j |0, I) · Gam(ν|a0, b0)

·
∏N

n=1
N (yn|min

(tn), ν
−1) (5)

where U = {uk
j }1≤k≤K,1≤j≤dk

is the collection of all the

representations, and a0 and b0 are the shape and rate param-

eters of the Gamma prior. We can set a0 and b0 to small
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values to make the Gamma prior weakly informative or

uninformative (e.g., a0 = b0 = 10−3).

4. Algorithm

Now we present the model estimation algorithm. Given

the joint probability (5), we conduct maximum-a-posterior

(MAP) estimation to learn the representations U , NN pa-

rameters θ, and the other parameters (e.g., those for β(·)).
However, a critical challenge here is to compute the gradient

of the log-likelihood for each data point yn,

J(min
(tn)) = log p(yn|min

(tn)). (6)

Since the state min
(tn) is obtained from an integration of

the nonlinear dynamics, its gradient w.r.t the related model

parameters, e.g., vi and θ, is analytically intractable. To

tackle this challenge, we use forward sensitivity analysis to

evolve an augmented ODE system that includes the partial

derivative of the state w.r.t to the model parameters and the

initialization, based on which, we can efficiently calculate

the total derivative of the state at any time point. We then

develop an efficient stochastic min-batch learning algorithm.

4.1. Forward Sensitivity Analysis

Specifically, let us denote by η all the model parameters

we want to estimate. For notation convenience, we drop

the subscript n in (6) and consider a general case — for

interaction i we observed y at time t and have the likelihood,

J(mi(t),η) = log p(yi(t)|mi(t)) = logN (y|mi(t), ν
−1).

According to the chain rule, we have

dJ

dη
=

∂J

∂η
+

∂J

∂mi(t)
·
dmi(t)

dη
. (7)

The partial gradients ∂J
∂η

and ∂J
∂mi(t)

are easy to compute

while the bottleneck is the state gradient,
dmi(t)
dη . According

to (3), the state at any time t is determined by both the

initial state and the parameters that control the dynamics,

i.e., mi(t) = mi(m
0
i
,η, t) where m0

i

∆
= mi(0). Note that

only a part of parameters in η, namely, vi and θ, actually

control the dynamics f . For presentation convenience, we

still draw the dependency to the entire η. Since the initial

state is also computed from η (see (3)), the total derivative

of the state w.r.t. the model parameters is given by

dmi(t)

dη
=

∂mi(t)

∂η
+

∂mi(t)

∂m0
i

·
dm0

i

dη
. (8)

While
dm0

i

dη = dβ
dη can be computed analytically, the partial

derivatives [∂mi(t)
∂m0

i

; ∂mi(t)
∂η

] do not have closed forms. These

partial derivatives are called the sensitivity of the system,

which we denote by si(t). Let us define zi = [m0
i
;η], and

then si(t) =
∂mi(t)
∂zi

. To compute the sensitivity, based on

(3), we observe that

d

dt

∂mi(t)

∂zi︸ ︷︷ ︸
ṡi(t)

=
∂

∂zi

dmi(t)

dt
=

∂f

∂mi(t)

∂mi(t)

∂zi︸ ︷︷ ︸
si(t)

+
∂f

∂zi
.

Note that since ∂f

∂m0

i

= 0, we have ∂f
∂zi

= [0; ∂f
∂η

]. Incorpo-

rating the initial condition, we can construct another ODE

system that characterizes how the sensitivity evolves,

{
dsi(t)
dt = ∂f

∂mi(t)
si(t) +

∂f
∂zi

si(0) =
dm0

i

dzi

,
(9)

where
dm0

i

dzi

=
[
1; dβ

dη

]
. Therefore, we can merge (9) and (3)

to obtain an augmented ODE system,

{
dhi(t)
dt = α(hi, t)

hi(0) = h
0
i
,

(10)

where the state hi(t) = [mi(t); si(t)], α(hi, t) =
[dmi

dt ; dsi
dt ] and h

0
i
= [m0

i
; si(0)].

To compute the log-likelihood J and its gradient, we just

solve (10) forward, read out hi(t), and then apply (8) in (7).

4.2. Time Alignment for Efficient Stochastic

Mini-Batch Optimization

Next, to scale to a large number of observations, we

develop a stochastic mini-batch optimization algorithm

based on the sensitivity analysis. Each step, we ran-

domly sample a mini-batch of B observed interactions

B = {(in1
, tn1

, yn1
), . . . , (inB

, tnB
, ynB

)} and update the

parameters with a stochastic gradient, namely the gradient of

an unbiased stochastic estimate of the log joint probability,

L̂ = log (Prior) +
N

B

∑B

j=1
J(minj

(tnj
)). (11)

To compute dL̂
dη , we need to solve B augmented ODE sys-

tems in the form of (10) to compute each state hinj
at

the corresponding timestamp tnj
. While we can sequen-

tially solve these systems, it can be very inefficient be-

cause we cannot fully leverage highly-optimized numer-

ical linear algebra libraries, say for parallel computation

on GPUs. Therefore, we consider merging the B sys-

tems into one ODE system, where the state is h(t) =
[hin1

(t); . . . ;hinB
(t)]. Then we solve one ODE, which

is equivalent to jointly solving the original B systems.

However, this is still inefficient in that it involves too much

additional state computation. Specifically, for the original

B ODE systems, we are interested in their states at different
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timestamps, namely {hinj
(tnj

)|1 ≤ j ≤ B} where tnj

varies across j. When we merge these the states into one

joint state h, we have to solve h at all the B timestamps, i.e.,

{h(tnj
)|1 ≤ j ≤ B} and then read out the corresponding

sub-states at the designated timestamps. This is equiva-

lent to solving every original ODE at all the B timestamps,

which gives B2 states in total, {hinj
(tnk

)|1 ≤ k, j ≤ B}.
However, we only need B states. Therefore, it can waste

too much computational expense. For a concrete example,

consider a commonly used mini-batch size B = 100. With

this method, we have to solve 104 states although we only

need 1% of them.

To tackle this problem, we use an integral transform to align

the ending time for solving the ODEs in the mini-batch

so as to avoid computing unnecessary states. Specifically,

we specify a unified ending time te. For each interaction

il in the mini-batch (l ∈ {n1, . . . , nB}), we modify the

ODE system for hil
such that, the state of the new system,

denoted by h̃il
, satisfies h̃il

(te) = hil
(tl) (note that tl is the

target timestamp and varies across l). To do so, we observe

that, according to (10),

hil
(tl) = hil

(0) +

∫ tl

0

α (hil
(τ), τ) dτ

= hil
(0) +

∫ te

0

tl
te
α

(
hil

(
tl
te
s),

tl
te
s

)
ds, (12)

where the second line is obtained via a transform of the

integration variable, s = te
tl
τ . Accordingly, we can define

h̃il
(s) = hil

( tl
te
s), and the ODE system for h̃il

is given by

{
dh̃il

(s)

ds = tl
te
α(h̃il

, tl
te
s)

h̃il
(0) = hil

(0).
(13)

Obviously, we have h̃il
(te) = hil

(tl). We then merge

the modified ODE system (13) for every interaction in the

mini-batch into one ODE system, where the state h is the

concatenation of {h̃il
|l ∈ {n1, . . . , nB}}. In this way, we

only need to solve h for one timestamp te, which is equiv-

alent to solving B target states {hil
(tl)} simultaneously.

We do not need to solve h for any additional timestamps.

Therefore, the cost can be largely reduced. While the choice

of the ending time te can be arbitrary, for convenience we

simply set te = 1 in our implementation.

During the model estimation, except the sensitivity, all the

other partial derivatives, such as ∂J
∂η

and ∂f
∂mi(t)

can be con-

veniently and efficiently computed by automatic differential

libraries, such as PyTorch (Paszke et al., 2019). Moreover,

each data point only associates with a part of the model

parameters and so many elements of the partial derivatives

and sensitivities are zero. For example, the data point yl
is a noisy observation of the interaction il’s result at times-

tamp tl, namely mil
(t). This interaction result is calculated

Algorithm 1 THIS-ODE

Input: D = {(i1, t1, y1), · · · , (iN , tN , yN )}
Initialize: U , θ and other parameters

repeat

Randomly sample a mini-batch B from D.

For each interaction il ∈ B, construct an augmented

ODE system (13) that includes both the state and sen-

sitivity.

Merge all the ODEs into one and solve the joint state

h to ending time te.

Read out the sub-states {hil
(tl) = h̃il

(te)|il ∈ B}

from h(te) and compute the stochastic gradient ∂L̂
∂η

according to (11), (7), and (8).

η ← η + γ · ∂L̂
∂η

until the maximum number of epcohes has been finished

or other stopping criteria are met

based on vil
= {u1

il1
, . . . ,uK

ilK
}— the representations of

the participant objects in il, and is irrelevant to the represen-

tations of other objects, i.e., U \ vil
; see (3). For the latter,

the corresponding elements in the partial derivatives and

sensitivity related to mil
are therefore zero. To further save

the memory usage and computational cost, we use sparse

matrices during the ODE solving and optimization. The

model estimation is summarized in Algorithm 1.

4.3. Algorithm Complexity

Our algorithm conducts stochastic mini-batch optimization

to learn the representations of interaction objects U , ODE

parameters θ, and the other parameters. To do so, at each

step, our algorithm samples a mini-batch of B observed

interactions, solve a joint ODE system to time te, with

which to compute the stochastic gradient and to update the

model parameters. The joint ODE is obtained by merging

B (augmented) ODE systems in the form of (13), each of

which is for a particular interaction in the mini-batch and

the dimension of state is p + 1, where p is the number of

parameters. Hence, the state dimension of the joint system

is B(p+1). The time complexity is therebyO((p+1)BT ),
where T is the number of integration steps in the ODE solver.

It is linear in the mini-batch size. The space complexity is

O(B(p+ 1)), which is to store the state at each step when

solving the joint ODE.

5. Related Work

A variety of tensor decomposition methods have been pro-

posed, such as (Tucker, 1966; Harshman, 1970; Chu and

Ghahramani, 2009; Sutskever et al., 2009; Hoff, 2011;

Kang et al., 2012; Yang and Dunson, 2013; Choi and Vish-

wanathan, 2014; Du et al., 2018; Fang et al., 2021a). Most
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of these methods are based on a multilinear decomposition

model, such as Tucker (Tucker, 1966) and CP (Harshman,

1970). To grasp complex, nonlinear relationships from data,

recent works have developed nonlinear decomposition mod-

els based on Gaussian processes (GPs) or neural networks,

such as (Xu et al., 2012; Zhe et al., 2016a;b; Liu et al., 2018;

Pan et al., 2020b; Liu et al., 2019; Tillinghast and Zhe, 2021;

Fang et al., 2021b; Tillinghast et al., 2022). To incorporate

time information, existent methods usually use discrete time

steps and augment the tensor with a time mode. e.g., (Xiong

et al., 2010; Rogers et al., 2013; Zhe et al., 2015; 2016b; Wu

et al., 2019; Ahn et al., 2021; Du et al., 2018). To better cap-

ture the temporal dependencies, a dynamic transition model

on the time step representations is often incorporated during

the tensor decomposition. For example, Xiong et al. (2010)

used a conditional Gaussian prior over the successive steps,

Wu et al. (2019) used recurrent neural networks, and Ahn

et al. (2021) used kernel smoothing and regularization. To

support continuous-time decomposition, Zhang et al. (2021)

modeled the coefficients in the CP decomposition ({λj}
r
j=1

in (1)) as a time-trend function, which are parameterized by

polynomial splines.

Another line of research uses point processes to model inter-

action events (Schein et al., 2016; Zhe and Du, 2018; Pan

et al., 2020a; Wang et al., 2020). The temporal dependencies

are learned through the modeling of the event rate function.

For example, Zhe and Du (2018) used Hawkes processes

to estimate the local excitation effects between the events

and Wang et al. (2020) constructed a self-adaptable point

process to estimate both the excitation and inhibition effects.

While valuable, these methods only care about the events.

They do not leverage the observed interaction results nor

can predict their values.

Our method is related to the recent neural ODE work (Chen

et al., 2018), which also uses a neural network to model

the ODE state derivative. However, our work differs in sev-

eral aspects. First, about the motivation, our method aims

to learn from temporal interaction sequences, while neu-

ral ODE is motivated to construct continuous-depth neural

networks (to simplify NN architecture design, enhance the

expressivity, etc.). Second, our method models many ODE

systems altogether, where each ODE is for the sequence of

one interaction and governed by the representations of the in-

teraction objects. In this way, our method decomposes these

sequences while neural ODE usually uses one ODE sys-

tem to model the data and does not conduct decomposition.

Third, our method uses forward sensitivity analysis for gra-

dient computation, while neural ODE uses the adjoint state

method (Pontryagin, 1987), which needs to construct a back-

ward companion ODE and sequentially solve two systems —

first solving the original ODE forward and then solving the

adjoint ODE backward. Note that the adjoint method is effi-

cient for coupled, multi-dimensional states, where evolving

the sensitivity, i.e., state Jacobian, takes the time complexity

O(d2p) where d is the state dimension and p is the number

of parameters, while the adjoint method only takesO(dp) to

compute the gradient. However, since the ODE states in our

method are only scalar interaction results, i.e., d = 1, and

these states are non-coupled, the forward sensitivity enjoys

the same complexity as the adjoint method, yet is more con-

venient to implement. The actual computation is even more

efficient, because we do not need to sequentially solve two

systems. The recent work (Heinonen et al., 2018) uses GPs

and sensitivity analysis to learn ODEs from data; but it does

not perform decomposition or estimate representations.

6. Experiment

6.1. Ablation Study: Spiral Interactions

We first evaluated THIS-ODE on a synthetic task — decom-

posing interactions that form spiral curves. A spiral curve is

controlled by two dynamic parameters: the radius r(t) and

angle θ(t), which were simulated via different interactions.

Specifically, we considered interactions among two types

of objects. Each type consists of 50 objects. We generated

a scalar representation for each object. For the first half of

the objects in type I, their representations {u1
j |1 ≤ j ≤ 25}

were sampled from Unifrom(0.45, 0.65) and the second half

from Uniform(1.0, 1.2). The representations of the first half

of the objects in type II, {u2
j |1 ≤ j ≤ 25}, were sampled

from N (0.5, 0.1) and the remaining from N (−0.5, 0.1).
The trajectory for a specific interaction i = (i1, i2) is gener-

ated by

mi(t) =
(
u1
i1
exp(−0.5t)

)1(i1+i2 mod 2=0)

·
(
u2
i2
+ 2πt

)1(i1+i2 mod 2=1)
, (14)

where 1(·) is the indicator function. When i1 + i2 is even,

the interaction simulates a radius r(t), which is an exponen-

tial decaying function, while when i1 + i2 is odd, the inter-

action simulates the angle θ(t), which is a linear function.

The radius and angle are determined by the corresponding

representations, u1
i1

or u2
i2

. We can combine any radius and

angle pair to form a spiral (x(t) = r(t) cos(θ(t)), y(t) =
r(t) sin(θ(t))), which are parameterized by different repre-

sentations. For each interaction i, we generated the interac-

tion result mi(t) at 50 timestamps uniformly sampled from

[0, 5]. We obtained 125K data points in total.

We then examined THIS-ODE in two settings. One is in-

terpolation, where we used the first 1/3 and last 1/3 times-

tamps for training, and predicted on the 1/3 timestamps in

the middle. The other is extrapolation, where we only used

the first 1/2 timestamps for training, and predicted on the

remaining 1/2 timestamps.

We compared with (1) GPTF-time (Zhe et al., 2016b), a

Gaussian process tensor factorization approach adjusted
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Figure 2. Examples of recovered spirals (a, c) and the learned representations for type II objects (b, d) where colors indicate values.

to continuous time, where the time t is plugged into the

kernel to sample the entry value as a function of both the

representations and time, i.e., mi = g(u1
i1
, . . . ,uK

iK
, t) and

g ∼ GP(0, κ(·, ·)). (2) NTF-time, a neural tensor factoriza-

tion model (Liu et al., 2019) with the time t as an additional

input, and a neural network is used to model g. All these

methods were implemented with PyTorch (Paszke et al.,

2019). For our method THIS-ODE, we used the Torchdiffeq

library1 to solve the ODEs, with the explicit Runge-Kutta

method of order 5 and a fixed step-size 10−4. For the initial

state, we simply used the CP form for β (see (3)). Follow-

ing (Zhe et al., 2016b), we used the Square-Exponential

(SE) kernel for GPTF-time and sparse variational GP ap-

proximation with 50 pseudo inputs for efficient inference.

For both NTF-time and THIS-ODE, we used one layer neu-

ral network with 50 neurons and tanh activation. We ran

all the methods with ADAM optimization (Kingma and Ba,

2014) with learning rate 10−3. We ran 500 epochs, which

is sufficient for convergence.

As shown in Table 1, the prediction error of THIS-ODE

is much smaller than GPTF-time2 and NTF-time in both

1https://github.com/rtqichen/torchdiffeq
2We found that GPTF-time failed when jointly learning the

representations and function g. This might be due to the disrupt
changes of the interaction types across their indices; see (14). To
obtain a reasonable result, we fixed the representations as their
ground-truth values for GPTF-time (but not for the other methods).

Interpolation Extrapolation

GPTF-Time 0.5557 0.9032
NTF-Time 0.1004 0.3656
THIS-ODE 0.0148 0.0746

Table 1. Root Mean Square Error (RMSE) of predicting dynamic

interactions that form spiral curves. The time range is [0, 5].

State Sensitivity

RK5(w/o TA) 1.2± 0.07× 10−4 4.1± 0.3× 10−5

RK5-ADP(w/o TA) 1.0± 0.1× 10−4 4.0± 0.9× 10−5

RK5(w/ TA) 1.1± 0.06× 10−4 4.2± 0.3× 10−5

RK5-ADP(w/ TA) 1.1± 0.1× 10−4 4.3± 0.6× 10−5

Table 2. Relative error of the state and sensitivity. “w/o TA” means

without time alighment and “w/ TA” means with time alignment.

The original time range is [0, 5], and the range after time alignment

is [0, 1]. The results were averaged over ten runs.

the interpolation and extrapolation settings, showing that

our method can much better capture the hidden dynamics

in data. To showcase the prediction result, we examined

the recovered spirals by each method, where the angle is

determined by interaction (1, 2) while the radius interaction

(2, 2). As shown in Fig. 2 a and c, the predicted spiral by

THIS-ODE almost overlaps with the ground-truth, no matter

if the training points are absent in the middle (interpolation)

or in the inner long tail (extrapolation). In the interpolation
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setting, the predictions of GPTF-time and NTF-time deviate

from the ground-truth spiral quite much, exhibiting inferior

accuracy. Although in the extrapolation setting, both GPTF-

time and NTF-time can well predict the spiral in the region

that covers the training points, their predictions do not ex-

tend to more distant regions to recover the inner long tail of

the ground-truth, showing a failure to extrapolate. To give

more details, we show the prediction of each interaction

separately (i.e., radius and angle) in the Appendix (Figure

3, 4). We then examined the representation learning results.

In Fig. 2 b and d, we show the learned representations by

THIS-ODE for the type II objects, i.e., {u2
j |1 ≤ j ≤ 50},

and the original data. For a better contrast, both the learned

representations and the original data were normalized to

[0, 1]. As we can see, these representations accurately re-

flect the hidden clusters of the objects in the original data:

object 1-25 are in the first cluster and 26-50 in the second

cluster. It demonstrates that our method can discover the

structural knowledge underlying the data and encode this

knowledge into the learned representations.

We then verified the accuracy of the proposed time align-

ment method (see Sec. 4.2). We randomly set all the model

parameters, and then used the explicit RK method of order

5 with a fixed step-size 10−4 (RK5), and with the adaptive

step-size (RK5-ADP). We ran each method with the time

alignment and without time alignment, to compute the state

and sensitivity (i.e., state gradient) at the end time. We then

used the explicit, adaptive step-size RK method of order

8, without the time alignment, to compute the result as the

ground-truth. We measured the relative error of the states

and sensitivity. We repeated the test for ten times, and re-

port the average error and standard deviation in Table 2. We

can see that for both solvers, applying the time alignment

method gives almost the same relative error as not applying

that method. This confirms our time alignment method al-

most has no effect on the accuracy of the solvers. But our

method saves much computation (see Sec. 4.2).

6.2. Real-World Applications

Datasets. Next, we examined THIS-ODE in four real-world

applications. (1) Fit Record3, workout logs of EndoMondo

users in outdoor exercises. We extracted three-way (user,

sport-type, altitude-level) interactions among 500 users, 20
sport types, and 50 attitudes. The interaction result is the

user’ heart rate during the exercise, which was measured

for 4000 to 6000 seconds. In total, we collected 50K heart

rates and their timestamps. (2) Beijing Air4, a two-way

interaction dataset that records the concentration of 6 pollu-

3https://cseweb.ucsd.edu/˜jmcauley/

datasets.html#endomondo
4https://archive.ics.uci.edu/ml/datasets/

Beijing+Multi-Site+Air-Quality+Data

tants across 12 districts in Beijing between year 2013 and

2017. The concentration was measures hourly. The original

dataset includes 2.45M measurements. We randomly sam-

pled 15K continuous measurements and their timestamps

for training and testing. (3) Server Room5, temperature data

of Poznan Supercomputing and Networking Center, under

different air-conditional modes (24, 27, and 30 Celsius de-

grees), server power usage levels (50%, 75%, and 100%) at

34 locations. We thereby extracted three way interactions

(air conditional mode, power usage level, location), and

interaction result is the temperature along with time. We

collected 25K temperature records and their timestamps.

(4) Indoor Condition6, house conditions data monitored by

wireless sensor networks. We extracted two-way interac-

tions (room, ambient condition). There are 9 rooms, such

as living room and kitchen area, and 2 ambient conditions:

humidity and temperature. The sensors measured the value

of each interaction pair every 10 minutes. We collected 25K

interaction results and their timestamps.

Methods. We compared with following typical and/or

state-of-the-art temporal decomposition approaches. (1)

GPTF-Time and (2) NTF-time as mentioned in Sec. 6.1,

(3) CP-Time (Zhang et al., 2021) that uses polynomial

splines to estimate time-varying coefficients λ in the CP

decomposition (see (1)), (4) GPTF-DTL, GPTF with dis-

crete time steps and linear dynamics between the time steps.

Specifically, the observed interaction results were organized

by a tensor plus one time mode. For decomposition, we

placed a conditional Gaussian prior over time-step represen-

tations, p(tj+1|tj) = N (tj+1|Atj+b, vI). This is similar

to (Xiong et al., 2010), but more general because their prior

corresponds to A = I and b = 0. (5) GPTF-DTN, GPTF

with discrete time steps and nonlinear dynamics. It is simi-

lar to GPTF-DTL, except that conditional Gaussian prior is

p(tj+1|tj) = N (tj+1|σ(Atj+b), vI) where σ(·) is a non-

linear activation function. Hence it fulfills an RNN-like dy-

namic model. (6) NTF-DTL and (7) NTF-DTN, which are

similar to GPTF-DTL and GPTF-DTN, respectively, except

the decomposition model switches to DTN. (8) CP-DTL

and (9) CP-DTN, similar to GPTF-DTL and GPTF-DTN,

except the decomposition model is CP. (10) PTucker (Oh

et al., 2018), an efficient parallel Tucker decomposition on

the tensor augmented with a discrete time mode.

Settings. All the methods were implemented with PyTorch.

For GP based approaches, i.e., GPTF-{Time, DTL, DTN},
we again followed (Zhe et al., 2016b) to use SE kernel

and sparse variational approximations to address the com-

putation hurdle caused by large kernel matrices. For CP-

Time, the number of knots for the polynomial splines was

5https://zenodo.org/record/3610078#

.YeEHmljMLAx
6https://archive.ics.uci.edu/ml/datasets/

Appliances+energy+prediction
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Interpolation Beijing Air Indoor Condition Server Room Fit Record

CP-Time 0.897± 0.012 0.780± 0.012 0.998± 0.006 1.021± 0.030
CP-DTL 0.898± 0.015 0.842± 0.003 0.754± 0.003 0.721± 0.076
CP-DTN 0.833± 0.003 0.889± 0.005 0.685± 0.007 0.688± 0.044
GPTF-Time 0.711± 0.011 0.849± 0.005 0.505± 0.116 0.794± 0.013
GPTF-DTL 0.686± 0.045 0.852± 0.004 0.592± 0.119 0.640± 0.035
GPTF-DTN 0.670± 0.062 0.713± 0.104 0.373± 0.025 0.642± 0.043
NTF-Time 0.745± 0.095 0.800± 0.009 0.739± 0.007 0.705± 0.014
NTF-DTL 0.757± 0.006 0.777± 0.018 0.733± 0.004 0.725± 0.048
NTF-DTN 0.686± 0.011 0.665± 0.004 0.346± 0.049 0.685± 0.037
PTucker 0.959± 0.015 0.806± 0.027 0.916± 0.008 0.727± 0.037
THIS-ODE 0.624± 0.008 0.618± 0.007 0.246± 0.009 0.615± 0.024

Extrapolation

CP-Time 0.863± 0.022 0.867± 0.010 1.082± 0.005 0.958± 0.061
CP-DTL 0.553± 0.005 0.527± 0.006 0.545± 0.030 0.595± 0.026
CP-DTN 0.557± 0.004 0.584± 0.009 0.340± 0.003 0.637± 0.050
GPTF-Time 0.527± 0.018 0.489± 0.011 0.280± 0.007 0.634± 0.089
GPTF-DTL 0.577± 0.035 0.506± 0.013 0.234± 0.010 0.576± 0.024
GPTF-DTN 0.511± 0.002 0.489± 0.003 0.218± 0.002 0.572± 0.025
NTF-Time 0.537± 0.002 0.510± 0.027 0.275± 0.022 0.621± 0.026
NTF-DTL 0.512± 0.009 0.593± 0.079 0.269± 0.005 0.659± 0.031
NTF-DTN 0.513± 0.003 0.484± 0.011 0.247± 0.010 0.573± 0.030
PTucker 0.522± 0.022 0.749± 0.006 0.600± 0.002 0.722± 0.030
THIS-ODE 0.498± 0.013 0.460± 0.004 0.215± 0.002 0.568± 0.029

Table 3. Root Mean Square error (RMSE) with r = 3. The results were averaged over five runs.

100. For nonlinear dynamic models ({GPTF, NTF, CP}-
DTN), we used tanh activation. For all the discrete time

methods, we partitioned the total time span into 50 (equal-

length) steps. Like in Sec. 6.1, we used one-layer NN

for THIS-ODE and NTF based methods, with 50 neurons

and tanh activation. We used ADAM to run stochastic

mini-batch optimization for all the methods, where the mini-

batch size was 100 and the learning rate was selected from

{10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2}. For numerical

stability, we re-scaled the timestamps to [0, 10] for all the

datasets. We ran every method for 500 epochs, which guar-

antees the convergence. We varied the dimension of the

representations r from {1, 2, 3, 5, 7}. Similar to Sec. 6.1,

we evaluated all the methods in two settings, Interpolation

and Extrapolation. For interpolation, We randomly sampled

80% interactions and used their first 1/3 and last 1/3 inter-

action results for training, and then tested on the remaining

interaction results in the middle. For extrapolation, we used

the first 1/2 interaction results for training, and tested on

remaining half. We repeated the experiments for five times,

and computed the average root mean-square error (RMSE)

of each method.

Results. Due to the space limit, here we only list the predic-

tion accuracy of each method for r = 3, as in Table 3. We

list the other results in Appendix (see Table 4-7). In all the

cases, THIS-ODE always outperforms the competing ap-

proaches by a large margin (except when r = 2, GPTF-time

is slightly better than THIS-ODE: 0.521 vs. 0.524, for inter-

polation on Beijing Air dataset; see Table 5 in Appendix).

The improvements obtained by THIS-ODE are large and

significant (p < 0.05). The results together have demon-

strated the advantage of THIS-ODE in predicting long-term

interaction results, which can be important for temporal data

analysis and predictive tasks.

7. Conclusion

We have presented THIS-ODE, an ODE based approach

to decompose high-order interactions sequences. THIS-

ODE is robust and expressive to capture complex unknown

dynamics from data for better representation learning. Com-

pared with the existing methods, it shows significant im-

provement in predicting long-term interaction results, in

both interpolation and extrapolation cases.
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Figure 3. Examples of recovered spirals in the interpolation experiment.
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Figure 4. Examples of recovered spirals in the extrapolation experiment.
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Interpolation Beijing Air Indoor Condition Server Room Fit Record

CP-Time 0.863± 0.021 0.862± 0.008 1.082± 0.005 0.958± 0.062
CP-DTL 0.861± 0.021 0.591± 0.001 0.775± 0.005 0.655± 0.074
CP-DTN 0.847± 0.026 0.595± 0.001 0.771± 0.002 0.655± 0.069
GPTF-Time 0.620± 0.006 0.806± 0.012 0.623± 0.012 0.886± 0.058
GPTF-DTL 0.616± 0.001 0.815± 0.006 0.612± 0.012 0.610± 0.047
GPTF-DTN 0.571± 0.049 0.770± 0.019 0.306± 0.005 0.601± 0.018
NTF-Time 0.615± 0.013 0.659± 0.003 0.610± 0.011 0.583± 0.017
NTF-DTL 0.624± 0.012 0.662± 0.003 0.625± 0.009 0.588± 0.018
NTF-DTN 0.610± 0.013 0.512± 0.006 0.226± 0.004 0.588± 0.016
PTucker 0.656± 0.008 0.643± 0.003 0.859± 0.002 0.769± 0.068
THIS-ODE 0.563± 0.005 0.487± 0.004 0.222± 0.006 0.574± 0.027

Extrapolation

CP-Time 0.896± 0.012 0.890± 0.005 1.006± 0.004 1.021± 0.030
CP-DTL 0.888± 0.012 0.886± 0.005 0.821± 0.002 0.682± 0.048
CP-DTN 0.887± 0.013 0.890± 0.004 0.795± 0.003 0.682± 0.049
GPTF-Time 0.894± 0.011 0.890± 0.004 0.764± 0.004 0.799± 0.031
GPTF-DTL 0.888± 0.012 0.889± 0.003 0.765± 0.010 0.668± 0.022
GPTF-DTN 0.872± 0.004 0.757± 0.007 0.504± 0.009 0.669± 0.020
NTF-Time 0.770± 0.013 0.723± 0.007 0.757± 0.005 0.669± 0.029
NTF-DTL 0.746± 0.006 0.905± 0.016 0.722± 0.083 0.663± 0.021
NTF-DTN 0.737± 0.005 0.694± 0.002 0.542± 0.003 0.695± 0.021
PTucker 1.211± 0.023 0.889± 0.005 0.862± 0.001 0.747± 0.031
THIS-ODE 0.710± 0.017 0.655± 0.021 0.407± 0.029 0.644± 0.019

Table 4. Root Mean Square error (RMSE) with r = 1. The results were averaged over five runs.

Interpolation Beijing Air Indoor Condition Server Room Fit Record

CP-Time 0.860± 0.018 0.867± 0.010 1.082± 0.005 0.989± 0.054
CP-DTL 0.739± 0.005 0.527± 0.005 0.357± 0.002 0.618± 0.037
CP-DTN 0.661± 0.007 0.578± 0.015 0.352± 0.006 0.688± 0.020
GPTF-Time 0.597± 0.010 0.548± 0.009 0.300± 0.071 0.876± 0.046
GPTF-DTL 0.572± 0.024 0.557± 0.016 0.288± 0.005 0.577± 0.043
GPTF-DTN 0.521± 0.025 0.780± 0.014 0.242± 0.005 0.579± 0.045
NTF-Time 0.569± 0.008 0.481± 0.009 0.266± 0.007 0.632± 0.018
NTF-DTL 0.540± 0.008 0.486± 0.005 0.256± 0.005 0.655± 0.011
NTF-DTN 0.531± 0.013 0.485± 0.003 0.212± 0.003 0.597± 0.034
PTucker 0.566± 0.018 0.658± 0.005 0.586± 0.012 0.691± 0.041
THIS-ODE 0.524± 0.006 0.467± 0.004 0.194± 0.001 0.564± 0.036

Extrapolation

CP-Time 0.899± 0.014 0.802± 0.003 0.998± 0.006 1.021± 0.030
CP-DTL 0.827± 0.011 0.872± 0.007 0.726± 0.005 0.680± 0.017
CP-DTN 0.853± 0.008 0.890± 0.005 0.777± 0.007 0.667± 0.025
GPTF-Time 0.754± 0.019 0.888± 0.004 0.497± 0.217 0.655± 0.029
GPTF-DTL 0.795± 0.055 0.889± 0.016 0.666± 0.065 0.653± 0.034
GPTF-DTN 0.723± 0.041 0.778± 0.036 0.564± 0.007 0.762± 0.042
NTF-Time 0.904± 0.016 0.696± 0.030 0.607± 0.011 0.648± 0.036
NTF-DTL 0.880± 0.011 0.727± 0.016 0.782± 0.014 0.707± 0.032
NTF-DTN 0.697± 0.003 0.684± 0.004 0.567± 0.025 0.688± 0.060
PTucker 0.895± 0.012 1.016± 0.000 0.917± 0.023 0.741± 0.032
THIS-ODE 0.675± 0.010 0.679± 0.002 0.402± 0.013 0.629± 0.003

Table 5. Root Mean Square error (RMSE) with r = 2. The results were averaged over five runs.
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Interpolation Beijing Air Indoor Condition Server Room Fit Record

CP-Time 0.864± 0.022 0.867± 0.010 1.083± 0.005 0.957± 0.061
CP-DTL 0.525± 0.014 0.489± 0.003 0.540± 0.019 0.602± 0.022
CP-DTN 0.559± 0.004 0.638± 0.001 0.259± 0.002 0.687± 0.057
GPTF-Time 0.526± 0.009 0.497± 0.005 0.279± 0.004 0.726± 0.099
GPTF-DTL 0.536± 0.012 0.488± 0.003 0.245± 0.011 0.587± 0.023
GPTF-DTN 0.515± 0.007 0.485± 0.004 0.228± 0.005 0.579± 0.024
NTF-Time 0.514± 0.011 0.473± 0.007 0.264± 0.043 0.631± 0.013
NTF-DTL 0.505± 0.011 0.506± 0.008 0.258± 0.004 0.641± 0.039
NTF-DTN 0.498± 0.026 0.486± 0.003 0.214± 0.006 0.576± 0.013
PTucker 0.549± 0.001 0.654± 0.005 0.703± 0.004 0.838± 0.062
THIS-ODE 0.497± 0.010 0.461± 0.004 0.195± 0.001 0.538± 0.021

Extrapolation

CP-Time 0.897± 0.011 0.679± 0.022 0.998± 0.006 1.020± 0.030
CP-DTL 0.899± 0.013 0.780± 0.097 0.794± 0.012 0.729± 0.053
CP-DTN 0.800± 0.011 0.889± 0.005 0.701± 0.148 0.807± 0.030
GPTF-Time 0.729± 0.052 0.820± 0.000 0.469± 0.073 0.752± 0.053
GPTF-DTL 0.696± 0.026 0.732± 0.015 0.406± 0.074 0.640± 0.031
GPTF-DTN 0.665± 0.010 0.633± 0.007 0.393± 0.016 0.648± 0.028
NTF-Time 0.765± 0.001 0.719± 0.068 0.805± 0.012 0.678± 0.048
NTF-DTL 0.799± 0.029 0.901± 0.004 0.746± 0.022 0.700± 0.036
NTF-DTN 0.666± 0.013 0.642± 0.005 0.399± 0.040 0.693± 0.013
PTucker 0.922± 0.004 0.902± 0.002 1.357± 0.021 0.812± 0.099
THIS-ODE 0.644± 0.015 0.618± 0.002 0.297± 0.052 0.616± 0.032

Table 6. Root Mean Square error (RMSE) with r = 5. The results were averaged over five runs.

Interpolation Beijing Air Indoor Condition Server Room Fit Record

CP-Time 0.862± 0.021 0.866± 0.010 1.083± 0.005 0.959± 0.062
CP-DTL 0.519± 0.012 0.528± 0.009 0.566± 0.110 0.598± 0.021
CP-DTN 0.536± 0.006 0.619± 0.002 0.279± 0.010 0.708± 0.033
GPTF-Time 0.523± 0.001 0.508± 0.005 0.238± 0.004 0.735± 0.094
GPTF-DTL 0.524± 0.010 0.493± 0.016 0.242± 0.013 0.577± 0.016
GPTF-DTN 0.519± 0.015 0.483± 0.003 0.283± 0.004 0.589± 0.011
NTF-Time 0.512± 0.009 0.479± 0.003 0.274± 0.015 0.608± 0.034
NTF-DTL 0.504± 0.016 0.622± 0.111 0.334± 0.008 0.634± 0.027
NTF-DTN 0.510± 0.011 0.466± 0.004 0.209± 0.000 0.578± 0.019
PTucker 0.539± 0.008 0.693± 0.005 0.908± 0.003 1.044± 0.118
THIS-ODE 0.496± 0.014 0.457± 0.003 0.191± 0.002 0.525± 0.026

Extrapolation

CP-Time 0.896± 0.011 0.799± 0.000 0.998± 0.006 1.021± 0.030
CP-DTL 0.898± 0.013 0.665± 0.037 0.774± 0.017 0.696± 0.044
CP-DTN 0.770± 0.049 0.890± 0.005 0.399± 0.027 0.805± 0.006
GPTF-Time 0.730± 0.034 0.812± 0.000 0.650± 0.259 0.759± 0.050
GPTF-DTL 0.739± 0.005 0.703± 0.046 0.536± 0.074 0.635± 0.034
GPTF-DTN 0.656± 0.013 0.689± 0.019 0.352± 0.049 0.638± 0.033
NTF-Time 0.743± 0.055 0.848± 0.025 0.788± 0.016 0.693± 0.032
NTF-DTL 0.801± 0.013 0.765± 0.013 0.783± 0.006 0.695± 0.076
NTF-DTN 0.658± 0.011 0.639± 0.005 0.378± 0.026 0.691± 0.036
PTucker 1.192± 0.020 1.008± 0.018 1.822± 0.014 1.053± 0.112
THIS-ODE 0.620± 0.011 0.609± 0.015 0.240± 0.008 0.605± 0.039

Table 7. Root Mean Square error (RMSE) with r = 7. The results were averaged over five runs.


