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Abstract—This paper aims to understand how to guide
travelers’ routing behavior toward a system optimum, using
a bilevel game in a multi-agent traffic environment. With the
goal to optimize some systematic objective (e.g., overall traffic
condition) of city planners, we formulate a Stackelberg game
with the upper level as the planner and the lower level as
a multi-agent Markov game in which each rational and selfish
traveler aims to minimize her travel cost. We employ a Bayesian
optimization method on the upper level to solve for optimal
controls of city planners and a mean field multi-agent deep
Q learning approach to solve for optimal route choices of
travelers on the lower level. We demonstrate the effect of two
administrative measures, namely tolling and signal control, on
the behavior of travelers on the Braess network and a large-
sized real-world road network, respectively. Braess paradox,
which is usually defined in static user equilibrium, is also
defined and discovered in the context of the multi-agent Markov
game.

Key-words: Stackelberg Game, Bayesian Optimization (BO),
Markov Routing Game

I. INTRODUCTION

With a growing number of agents relying on GoogleMaps
or other navigation tools, dynamic routing games in a multi-
agent system have been proposed to understand travelers’
routing behavior. [1] develops a Markov routing game in
which decentralized dynamic routing behavior of agents is
modeled while accounting for traffic congestion arising from
interactions among one another. In the Markov routing game,
drivers’ routing behavior is non-cooperative and individual
goals could deviate from a system optimum. This raises
one question of interest: with selfish and rational travel-
ers aiming to minimize their individual travel cost, how
would a policymaker (aka the planner) guide the behavior
of traveler toward some desirable outcome via planning
or policy countermeasures? This paper aims to understand
how to guide travelers’ routing behavior toward a system
optimum. We formulate the interaction between travelers
and the planner as a bilevel Stackelberg game and devise
a Bayesian optimization scheme on the upper level to solve
for optimal controls by the planner.

A. Related work

Bilevel network design problems (NDP) has been exten-
sively studied in transportation planning [2]. A Stackelberg
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(or leader-follower) game is formulated in which the upper
level player selects a control that impacts the routing behav-
ior of lower level travelers while the lower level followers
update their routing choice.

In the lower level problem using equilibrium constraints,
static [3]-[5] or dynamic user equilibria (DUE) [6]-[8] are
usually assumed and these equilibria can be directly solved
from model-based optimization. In this paper, we assume
no knowledge of system transition dynamics nor reward
functions and thus, travelers’ dynamic en-route choices are
modeled as a Markov game and solved by multi-agent
reinforcement learning (MARL). In other words, MARL is
model-free and thus, agents need to explore and learn the
environment for optimal driving policies, which is more
challenging to solve for social optima.

MARL is a framework for modeling one’s sequential
decision-making processes while accounting for its inter-
action and competition with other agents. Applying it to
routing a large number of agents on a road network has been
largely understudied. [9] modeled multi-agent interaction
but independent tabular Q-learning is implemented without
considering information of other agents. To account for
traffic congestion and stabilize training, [1] formulated the
dynamic routing of multiple agents as a Markov game and
then applied a mean field deep Q-learning algorithm to solve
an equilibrium. Building on the framework developed in [1],
in this paper, we will develop a bilevel optimization.

For the bilevel optimization, [10] first applied Bayesian
optimization (BO) to MARL in the context of driver repo-
sitioning. However, applying BO to a Markov routing game
(MRG) requires to model every agent’s route choice on a
graph, which is more challenging and is thus the focus of
this paper.

B. Contributions of this paper

This paper aims to solve optimal controls for both the
upper level planner and the lower level self-motivated agents
whose goals differ. Simply increasing transportation infras-
tructure supply may lead to undesirable outcomes due to the
existence of the Braess paradox. Thus, we propose a bilevel
optimization with the upper level as the planner using coun-
termeasures like tolling or traffic signal control to optimize
some systematic objective (i.e., the average travel time of all
agents), while the lower level as a multi-agent reinforcement
learning (MARL) where each agent aims to minimize her
own travel time. Since the bilevel optimization is challenging
to solve, especially with MARL as the lower-level dynamic
equilibrium, we propose a Bayesian optimization embedded
with a multi-agent deep Q learning approach.
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The remainder of the paper is organized as follows.
Section II introduces the Markov routing game. Section III
introduces the bilevel optimization where city planners inter-
act with travellers in the Markov routing game. A case study
about tolling on the Braess network is presented. Section IV
presents optimal traffic signal control over a real-world large-
scale road network. Section V concludes this study.

II. MARKOV ROUTING GAME AND MULTI-AGENT
REINFORCEMENT LEARNING ALGORITHM

In this section, we will briefly introduce the Markov
routing game (MRG) developed in [1]. The MRG is a
partially observable Markov decision process represented by
(N,S,0,A, P,R,y). Each component is specified below:

o N. The total number of controllable agents;

« s € S. Environmental state s represents the distribution
of travellers on road networks. s is not fully observable
to agents.

e 0 € O. Each agent i € {1,2,---,N} draws a private
observation, denoted as o; = (n,t). n is the node and ¢
is the time step.

o a € A. The action set consists of all route choices at
each node on road networks.

o P. The joint action among agents triggers a state transi-
tion s — s’ based on the transition probability P(s’|s, a).

o 7 € R. The reward can be negative travel cost such as
travel time and distance in the context of route choice.

o v. The discount factor of the future reward.

Note that in MARL, the high dimension of joint action
space among agents would make the Q-value function in-
feasible to evaluate. To tackle this challenge, [1] applies
the mean field approximation [11] to evaluate the Q-value
function, which is formulated as: Q; = Q(0;,a;,a;). a; is
defined as a mean action, representing the traffic flow on the
link that is chosen by agent i. The mean field multi-agent
deep Q-learning (MF-MA-DQL) algorithm to solve MRG is
summarized in Algorithm (1).

Algorithm 1 MF-MA-DQL

1: Input: exploration parameter € = ¢, learning rate = 1
2: Initialize a DQN Q(o, a, al0), a target network Q(o,a,al6™)
3: for episode «— 1 to T do

4 while s is not terminal do

5 Each agent selects action using e-greedy policy
6: Update state s — s’ and observe mean action a;
7 Store (0;,a;,0j,ri,d;) into replay buffer

8: end while

9: Sample a batch from replay buffer

10: Update parameter 6 and optimal policy of agents
11: Decay € and

12: Update parameter 6~ every 7 periods, i.e., 6~ < 0
13: end for

III. BILEVEL OPTIMIZATION FOR MULTI-AGENT ROUTE
CHOICE

In this section, we propose a leader-follower (Stackelberg)
game between city planners and travelers in order to under-
stand how to guide routing behaviors of travellers. On the

upper level, city planners (i.e., the leader) impact traveller’
routing behavior through operational measures. The lower
level is the MRG among travellers (i.e., the follower). We
also develop an algorithm based on Bayesian optimization
and MF-MA-DQL to solve the bilevel game.

We first aim to investigate the effect of tolling a critical
link on the overall traffic network. Note that from the per-
spective of travelers, the overall travel cost is the summation
of their travel time and the toll charge paid out of their
pocket. Without loss of generality, we assume that the travel
time and toll charge could directly be added without unit
conversion. In other words, we assume travelers value their
time and monetary cost equally. We study the effect of tolling
a link on the Braess network, as presented in Figure (1).
Travelers move from origin node ng to terminal node n3,
and the travel time on link Iy, i.e., A1 = a. We regard
a as the toll charge on link /5. A larger @ means that the
toll is higher, indicating that there might be fewer travelers
choosing the link; while a smaller @ means that the toll is
lower, indicating that more travelers may choose this link. We
aim to find an optimal value of @ with which some overall
systematic performance, denoted as f, is optimized.

Atyz3 =kqyz-x

Aty =koz - x

Fig. 1: Braess network

City planners

max,f(a)

|

f(@) a

!

Multi-agent system (MAS)

Mean field multi-agent deep Q-learning — uf}

Fig. 2: Bilevel optimization

As aforementioned, behavior of travelers change with the
adjustment in «@. In this study, we assume that agents are
perfectly rational and leave bounded rationality [12] for
future research. Recall that our goal is to find the optimal «,
therefore we formulate this as a bilevel optimization problem,
as presented in Figure (2). The upper level is the planner
aiming to maximize the systematic performance f via the
control parameterized by «. In the lower level MARL, each
agenti € {1,2,---, N} derives her optimal policy u;* by the
developed MF-MA-DQL algorithm presented in the previous
section. Note that we use superscript @ in the notation
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of optimal policy, i.e., uf, to signify the dependency of
optimal policy on the control parameter «. With the optimal
behavior of all agents, the planner observes the systematic
performance f(«a) and adjusts @ until reaching optimum.

Due to the unknown complex structure of f over a,
traditional gradient based methods are not applicable. In
addition, evaluation of f at one value of @ using MARL is
computationally expensive. Therefore, we resort to Bayesian
optimization (BO) [13] that does not require the gradient
information and is especially efficient to optimize some
objective that is expensive to evaluate. The procedure of BO
is as follows. First, BO places a statistical model on the
objective function f, such as a Gaussian process. Second,
BO devises an acquisition function such as upper confidence
bound (UCB) [14] to decide where to evaluate the next, i.e.,
to choose an «a based on the statistical model. Third, BO
updates the statistical model based on the newly evaluated
a, and the process repeats. The pesudo-code of BO is listed
in Algorithm (2) [10].

Algorithm 2 Bayesian Optimization

Initialize a Gaussian process prior on f
Evaluate f at ng different @ according to certain rules
Set computational budget K and n = ng
for n « ng to K do
Update posterior probability distribution on f based on all
evaluated «
Calculate an acquisition function
Locate the a, which maximizes the acquisition function
Evaluate f: use MF-MA-DQL to solve MRG given «a;,
end for
Return @, which maximizes f

A

SOV

—_

A. Numerical example

We now apply the bilevel optimization to the Braess
network presented in Figure (1). The rationale of adopting
the Braess network in this section is as follows. First,
the Braess network is simple, and usually an analytical
solution could be derived, meaning that we could compare
our numerical solution to its analytical counterpart. Second,
recall that our goal is to find an optimal o with which the
overall systematic performance (i.e., average travel time of
all agents in the Braess network) is optimized. The existence
of Braess paradox in the Braess network makes our goal
nontrivial.

1) Lower level: We first validate the developed MF-MA -
DQL algorithm in two cases, a single-batch demand and a
multi-batch demand. In both cases, we initialize a multilayer
perceptron (MLP) with three hidden layers (32, 16, 8) to ap-
proximate the centralized Q function. ReLU is the activation
function used between hidden layers. Learning rate n = 1073,
Exploration parameter € is initially set as 0.1, i.e., ¢y = 0.1,
and linearly decreases to 0.01.

The single-batch demand level initially at origin node ny is
set as 40, and kg = k13 = 1. We further assume a = 100, i.e.,
a very large number, indicating that link /,; is not supposed
to be used by any agent. The convergence of the MF-MA-
DQL algorithm is presented in Figure (3). The y-axis is the

average travel time of all 40 agents from origin node ng to
terminal node n3. The x-axis shows the number of episodes.
The derived optimal policy shows that 20 agents choose route
nyg — n; — n3 and the other 20 choose route ng — ny — nj.

average travel time
[ - - —
o] o o = N w
o o o o o o

~
=)

o
=}

0 50 100 150 200 250
episodes

Fig. 3: Convergence of MF-MA-DQL with single-batch demand

The analytical solution for this case is derived as follows.
Note that the route ng — ni strictly dominates the one ny —
ny — np, because Az + Aty > Atg; always holds. Similarly,
route n, — n3 strictly dominates the route ny — n; — ns.
Therefore, rational agents would not use /5;. Consequently,
there are only two reasonable routes from ng to n3, namely
ng — n; — n3 and ng — ny — n3. Assuming there are y
agents choosing the former and 40 — y agents choosing the
latter, at equilibrium, if both routes are used, the travel time
on both routes should be the same. Mathematically, 45+ k3 -
y = kga-(40—y)+45, where the left hand side is travel time on
the former route and the right hand side is travel time on the

latter route. We have: y = ‘K)'Tkkoz. Plugging kgp = k13 =1,
y = 20, meaning that at eqolfilibr%am, 20 agents choose the
former route and 20 choose the latter. Travel time for all
agents at equilibrium is 65. Both travel time and optimal
policy from previous numerical solution agree well with their
analytical counterparts from the analytical solution. Thus this
case validates the effectiveness of the developed MF-MA-
DQL algorithm.

The aforementioned scenario is symmetric, because travel
time on both routes is 45+x, where x is the flow (i.e., number
of agents) choosing the route. To further test the effectiveness
of the MF-MA-DQL algorithm in asymmetric scenarios, we
break the link symmetry by keeping kg = 1 and varying
k3. Specifically, we test the MF-MA-DQL algorithm with
10 different values of ki3, namely ki3 € {1,2,---,10}.
Other parameters remain unchanged. When kg = 1, we
have y = lf,(()l}. The travel time for all agents is 45 + ﬂ',fllj.
Note that the analytical solution applies to both integer
and fractional ki3. The comparison of average travel time
between the numerical solution (i.e., using MF-MA-DQL)
and analytical solution is presented in Figure (4). The y-axis
is the average travel time of all agents after convergence
under a given k3. All red dots (i.e., numerical solution)
are on the blue curve (i.e., analytical solution), indicating a
very good agreement between the numerical and analytical
solution. This validates the effectiveness of the developed
MF-MA-DQL algorithm in asymmetric cases.
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Fig. 4: Comparison between numerical solution and analytical
solution with varying k13

In the case of multi-batch demand, the initial travel de-
mand at origin node ng is 40. In addition, another 20 agents
will depart from ng at time ¢ = 10. For notation simplicity, we
call 40 agents who depart from ng at ¢t = O the first 40 agents
and 20 agents who depart from ng the latter 20 agents. In
this case, the route choice of the first 40 agents impacts that
of the latter 20 agents, because the first 40 agents already
occupy some links when the 20 agents enter the network and
thus travel time on those links could be larger. We further
assume « = 1 in this case.

120

801 N e

average travel time
~
o

---the first 40 agents
------ the latter 20 agents
N —— all agents

o
=]
\,
’

0 100 200 300 400 500 600
episodes

Fig. 5: Convergence of MF-MA-DQL with multi-batch demand

Figure (5) presents the average travel time of the first 40
agents, the latter 20 agents, and all 60 agents, respectively,
versus the number of training episodes. The average travel
time of the first 40 agents decreases fast, then bounces back
and forth below 60, and finally increases fast to around 80.
As for the latter 20 agents, their average travel time and
optimal policies are strongly affected by the first 40 agents.
After the average travel time of the first 40 agents converges
after 300 episodes, it takes another 100 episodes for the
average travel time of the latter 20 agents to converge. This
is as expected because the first 40 agents impacts of the latter
20 agents, but not vice versa. After 400 episodes, the average
travel time of the latter 20 agents converges to 95, which is
consistent with the analytical solution.

2) Bilevel network design problem: After validating the
MF-MA-DQL algorithm in the lower level MARL, we now
run bilevel optimization with kgy = k13 = 1 and a as the
control variable of the upper level planner. With a single-
batch demand, we aim to find an optimal @ with which the
average travel time of 40 agents is optimized. To be precise,
the negative average travel time of these 40 agents is taken as
the upper level objective f. The range of « is set as [0,45].

BO is applied to solve the bilevel problem. As for the ini-
tial point of BO, we evaluate f at five randomly sampled a’s.
Figure (6(a)) presents the posterior probability distribution of
f conditioned on these five initially evaluated a’s. We select
UCB as the acquisition function, plotted in Figure (6(b)).

X data
—— mean
standard deviation

—-20

—40

—60

0 10 20 30 40 50
a
(a) Posterior probability distribution of f conditioned on
the initial evaluated five a’s

804 — ucB
----- next a to be evaluated
60 1
40

20 4

ucB

—204
—404
—60 4

-804

0 10 20 30 40 50
a

(b) Acquisition function

Fig. 6: Posterior probability distribution and acquisition function
at the 0'" iteration

The computational budget is set to be 15 iterations. The
posterior probability distribution of f along with the analyti-
cal solution is plotted in Figure (7). We then compare it to its
analytical solution, of which the derivation is detailed below.
From node ng to node n3, there are in total three possible
routes, namely, route nyp — n; — n3, route ng — ny — 1N —
n3, and route ng — np — n3. Assuming there are y; agents
choosing the first route, y, agents choosing the seconds route,
and 40 — y; — y» choosing the last route, at equilibrium,
travel time on these routes is equal, if all used. Therefore,
we have 45+ y1+y2 = y2+ (40— y1 —y2) + (y — 1 +y2) =
yvo+ (40— y; —yy)+45and y; = -5, y, = 50 - 2a.
In addition, the constraints on the agent number choosing a
route are 0 < y; < 40 and 0 < y, < 40. These constraints
yield 5 < @ < 25. Actually, with @ < 5, it can be easily
seen that only route ng — np — n; — n3 is used by agents;
while with a > 25, route ny — np, — n; — n3 is not used
by any agent. Therefore, the objective f versus @ could be
solved as

-(80+a), a<5
fla)=9 -(0—-a), 5<a<25
—65, a > 25.

The analytical solution is plotted as the red dotted line
in Figure (7). The overall good agreement between the
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analytical solution and the numerical solution validates the
bilevel optimization.

=75

-80

X data

—— mean

------ analytical solution
standard deviation

-85

0 10 20 30 40 50
a

Fig. 7: Posterior probability distribution of f

Let us analyze the emergence of Braess paradox. With
a = 0 (i.e., no toll), the optimal route choice, from both
the numerical and analytical solution, for all agents is to use
route ng — n; — np — n3, and the average travel time of all
agents is 80; with @ > 25 (i.e., a large toll), the optimal route
choice is half of agents using route ny — n; — n3 and the
other half using route nyp — np — n3, and the average travel
time of all agents is 65. This indicates that a small toll (i.e., a
shorter travel time) on link /15 actually increases the overall
travel time of all agents, resulting in the emergence of Braess
paradox. In other words, decreasing the travel cost on a link
by either expanding the capacity of the link or reducing the
toll charge on the link may not benefit the overall traffic
condition. In contrast, decreasing the travel cost on a link
may deteriorate the overall traffic condition by attracting too
many travelers to the link. Thus the optimal toll pricing on
link /;, is a travel time greater than or equal to 25, which
yields the optimal systematic objective.

IV. CASE STUDY

We apply the developed bilevel optimization to a real-
world road network with 69 nodes and 166 links, as pre-
sented in Figure (8). Traffic on the road network is simulated
in SUMO. We demonstrate the set-up of the traffic environ-
ment in the bilevel game and present numerical results.

A. Bilevel network design problem

1) Lower level: The traffic environment of the MRG on
the lower level is similar to [1]. Vehicles on the road network
consist of controllable agents and background traffic. Con-
trollable agents learn from interactions with others and adapt
their route choices. Background vehicles are non-strategic
players who follow some prescribed travel pattern. In this
case study, there are four groups of controllable agents: 1)
three agents travel from node 14 to node 60, 2) three agents
from node 15 to node 60, 3) three agents from node 48 to
node 1, and 4) three agents from node 69 to node 1. With
respect to the background traffic, there are in total around
1,600 vehicles in the south-north direction and 500 vehicles
in the east-west direction within the simulation time period
(i.e., 1000 seconds).

2) Upper level - signal control: With the controllable
agents aiming to minimize their travel time and background
traffic following a prescribed traffic profile, city planners
can affect the route choice behavior of adaptive controllable
agents by adjusting the traffic signals at intersections, i.e.,
signal control. The goal of city planners is to develop a
proper signal control scheme so that the average travel time
of all controllable agents is minimized. We assume that
the planner only adjusts traffic signals on Broadway. In
addition, we assume that the duration of green and red phases
is 60 seconds and 30 seconds, respectively. The decision
variable is the offset between green lights of two consecutive
intersections along Broadway.

145" Street

&

Fig. 8: Road network in SUMO

Denoting the negative average travel time of all control-
lable agents as f and the offset as @. With different values of
a (i.e., the offset), controllable agents may experience differ-
ent travel times. For example, with a proper @, controllable
agents may take advantage of “green wave” on Broadway
and thus spend less time reaching their destination, leading to
a larger f. In contrast, with a poorly chosen «, controllable
agents may need to stop frequently and spend more time
on waiting at the intersection, resulting in a smaller f.
The goal is to find an optimal @ that maximizes f, i.e.,
a* = argmax f ().

B. Numerical results

Figure (9) presents the distance between two consecutive
evaluated a’s in the BO algorithm. A smaller distance means
that BO chooses to evaluate similar «@’s, indicating that the
algorithm approaches convergence. The BO algorithm is
stopped when the distance is smaller than a threshold value
of 2.5 for four times in a row. With five randomly selected a’s
as a starting point, BO reaches convergence after 9 additional
iterations.

With the illustrated convergence of both levels, the final
result of the posterior probability distribution of the objec-
tive f (i.e., the negative average travel time) is shown in
Figure (10). The x-axis is the offset @. The y-axis is the
objective f. The mean and the standard deviation of the
Gaussian process fitting based on the data are also plotted.
As one could see, the standard deviation is small around
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evaluated @’s while large when there is no nearby evaluated
a’s. The final result suggests that a* = 4. With the optimal «,
the optimal objective is around —200, meaning that with an
offset of 4, the average travel time of all controllable agents
is 200 seconds.

,_.
N
»

15.01

,_.
N
[}

10.04

NN
0 o

distance between consecutive a's

o
=}

iteration

Fig. 9: Convergence of BO
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X data
—— mean

—2.21 standard deviation

—2.4

—2.6

—2.8

f (negative average travel time)

0 5 10 15 20 25 30
a (offset)

Fig. 10: Posterior probability distribution of f at the 8/ iteration

To provide more insights, we decompose the average travel
time of all controllable agents into two components, namely
average waiting time (at intersections) and average cruising
time, presented in Figure (11). In general, a smaller « (e.g.,
a < 10) yields a smaller average waiting time and a smaller
average cruising time, while a larger a results in a higher
average waiting time and a higher cruising time. This could
be partially explained as follows. With a smaller «, vehicles
could take advantage of the “green wave” and enjoy a smaller
waiting time and better traffic condition. The lowest waiting
time and the lowest cruising time are achieved when the
offset is set as 4 seconds, which is exactly the previously
derived optimal a*.

@ 300
§ Emm Waiting time H |
; 250 ®Z® Cruising time | ||
2 v |
T | BEER
5 200 b / v 7 v | | | |
5 | | | v
=1501 7 7 | | |
c v || ] v
=] v v | v | | v |
‘;U 100 | | | | | |
o |
2 504
@
s ol

0 2 4 6 10 18 22 26 30

a (offset)

Fig. 11: Decomposition of average travel time

V. CONCLUSION

This paper develops a bilevel optimization with the lower
level as MARL and the upper level solved by BO. We

demonstrate the effect of two countermeasures, namely
tolling (see Section III) and signal control (see Section IV),
on the behavior of travelers and show that the systematic
objective of the planner can be optimized by a proper control.

In the future, we would like to explore the following
directions: (1) The existence and uniqueness of an equi-
librium for dynamic routing games is not provided in this
paper, due to its complicated structure. This is a challenging
problem at the intersection of reinforcement learning and
game theory. (2) Learning may lead to many implausible
Nash equilibria if one’s belief about opponents’ play or
information is inaccurate. Under what conditions learning
leads to a desired Nash equilibrium needs to be investigated.
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