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Abstract

Pain is a common occurrence among patients admitted to Intensive Care Units. Pain assessment in ICU
patients still remains a challenge for clinicians and ICU staff, specifically in cases of non-verbal sedated,
mechanically ventilated, and intubated patients. Current manual observation-based pain assessment
tools are limited by the frequency of pain observations administered and are subjective to the observer.
Facial behavior is a major component in observation-based tools. Furthermore, previous literature
shows the feasibility of painful facial expression detection using facial action units (AUs). However,
these approaches are limited to controlled or semi-controlled environments and have never been
validated in clinical settings. In this study, we present our Pain-ICU dataset, the largest dataset available
targeting facial behavior analysis in the dynamic ICU environment. Our dataset comprises 76,388
patient facial image frames annotated with AUs obtained from 49 adult patients admitted to ICUs at
the University of Florida Health Shands hospital. In this work, we evaluated two vision transformer
models, namely ViT and SWIN, for AU detection on our Pain-ICU dataset and also external datasets. We
developed a completely end-to-end AU detection pipeline with the objective of performing real-time
AU detection in the ICU. The SWIN transformer Base variant achieved 0.88 F1-score and 0.85 accuracy
on the held-out test partition of the Pain-ICU dataset.
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Introduction

Patient self-report is the gold standard for pain assessment. Self-reported pain scores are commonly
captured through a numeric rating scale, visual analog scale, and visual descriptor scale. These scales are
subjective to the individual and have a linear representation of pain hence does not address the
multidimensional aspects of pain. Beyond these, in many cases, critically ill patients cannot self-report
pain for many reasons, such as being under mechanical ventilation, an altered mental state caused by the
onset of delirium or dementia, and being under sedatives. In the case of non-verbal patients, ICU nurses
resort to manual observation for pain assessment. Some of the nonverbal pain assessment tools
employed by ICU nurses include the nonverbal pain scale (NVPS) [1], behavioral pain scale (BPS) [2], and
critical care pain observation tool (CPOT) [3]. However, these assessments must be manually
administered, are prone to documentation errors, and suffer significant lag between observation and
documentation.



The human face plays a vital role in nonverbal communication [4, 5]. Facial behavior is a prominent factor
in scoring pain using observation-based pain assessment tools such as NVPS, BPS, and CPOT. Facial
expression is also characterized as a reflexive reaction to a painful stimulus or experience [6]. Most
research works that looked at facial behavior used a facial anatomy-based action system referred to as
the facial action coding system (FACS) [7]. The FACS system breaks down instant changes in facial
expressions into individual facial action units (AUs). An AU is a contraction or relaxation of one or more
facial muscles, which results in a visual appearance change on the face. Prkachin and Solomon discovered
pain-related facial action units and created the Prkachin Solomon Pain Index (PSPI) score based on the
FACS [8]. The PSPI score takes into consideration action units AU-4 (Brow Lowerer), AU-6 (Cheek Raiser),
AU-7 (Lid Tightener), AU-9 (Nose Wrinkler), AU-10 (Upper Lip Raiser), and AU-43 (Eyes Closed), by
accounting for both the presence and severity of the AUs on a (0-5) scale. The combination of AU presence
and intensity results in a 16-point pain scale. The AUs must be manually coded by skilled professionals,
which requires time-consuming and costly training methods and renders this strategy clinically unviable.
An autonomous AU detection system can overcome the limitations of the current manual observations to
document facial behavior and further facilitate real-time painful facial expression detection in the ICU.
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Fig 1: (a) Face image is provided as input to the Openface landmark detection tool to obtain 68 landmark locations. (b) Face
image with facial landmarks (c)image Transformations Input face image and landmarks are provided to the preprocessing
block to perform face alignhment and other image transformations. We use the Memcached data caching system to store the
face alignment parameters to expedite the data preprocessing step. (d) The transformed image is provided as input to the
Deep learning model to train. We used distributed data parallel approach to efficiently train the model on multiple GPUs. (e)
All the annotation data is stored in the Mongo DB database. Labels are queried from the database to compute the loss. (f) A
custom evaluator class is written to compute comprehensive model performance for all the data distributed on multiple GPUs.
Finally, all the model metrics, trained weights, and metadata are uploaded to the MLops tool.

In this study, we collected data from an uncontrolled ICU environment to create Pain-ICU dataset with
data compiled from critically ill adult patients. To our knowledge, the Pain-ICU dataset is the first and the
largest dataset available with annotated facial AUs on videos of patients captured in a real-world ICU
environment. The AUs we considered for annotating were chosen based on PSPI score and the facial
features used in non-verbal pain scales.



The main contributions of this work are:

1. To the best of our knowledge, this work is the first end-to-end machine-learning pipeline (Fig 1)
for AU detection in ICU environments. Our framework can be used for real-time monitoring of
patients' pain levels in ICUs, which has the potential to improve the quality of patient care and
reduce the burden of nurses in monitoring the patients.

2. We compare the performance of different transformer architectures and their variants on two
standardized datasets for AU recognition and our Pain-ICU dataset. We demonstrate that
transformer models showed on-par performance with established convolution neural networks
architecture baseline with better model training and inference speed.

3. Thiswork s the first to measure the association of different AUs with the self-reported pain scores
of the patients.

Methods
Study Participants

The data used in this study were [T pia1 Patient Characteristics Table

collected from adult patients admitted [Tp5icipants (n = 49, number of frames =76388)

to surgical ICUs at the University of Age, median (IQR) 55 (45,64)

Florida  Shands  Health  Hospital, Gender, number (%) Male 29 (59)
Gainesville, Florida. The study was Female 20 (41)
reviewed and approved by the University Race, number (%) White, 39 (80)

of Florida Institutional Review Board African American, 4 (8)
(UFIRB). We obtained informed consent Other, 6 (12)

from all the participants and performed Length of hospital stay in | 25 (12.7,54.7)

data collection adhering to the || days, median (IQR)

regulations and guidelines of UFIRB. Table 1 shows the cohort characteristics of participants recruited for
this study.

Data Collection

We used a standalone cart with a camera mounted on the top to collect videos of patient's faces in the
ICU. The cart is portable and can be wheeled into and out of the ICU. It is positioned in the ICU so that it
does not interfere with and disrupt routine patient care in the ICU. The camera is zoomed on to the patient
face to ensure we do not collect the faces of people from whom we do not have consent to record. The
cart is also equipped with a computer and monitor to control the camera. We developed a graphical
interface for the ICU staff and clinical coordinators to start, pause, and stop recording upon patient
request or during a medical procedure.

Data Transfer and Curation

All sensor data locally stored is encrypted, then automatically uploaded to a secured server through a
secured VPN connection. Several data pipelines were developed to automate the data transfer, curation,
and data preparation for annotation and model training. Docker containers were utilized to manage
services and pipelines running on the server in an isolated manner. The data curation and post-processing
are performed on the server. The data curation process involves removing protected health information
of the patient and ensuring each patient's data is organized in the patient-specific folders on the server.
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Fig 2. Data processing pipeline to extract face images for annotation. a) Sampled videos around patient
reported pain score timestamp. b) Frame extraction. c) Face detection and crop. d) AU annotation.

Data Processing

We developed a data processing pipeline to extract patient faces for AU annotation shown in fig 2. We
extracted fifteen-minute videos within 1-hour proximity of patient-reported pain score timestamps.
Individual Image frames are extracted from the videos using FFmpeg [11] multimedia processing tool. We
used multitask cascaded convolutional network (MTCNN) [12] to detect faces in the image frame and crop
them. Cropped faces were further annotated for facial AUs.

Data Annotation

Table 2. Facial AUs present in BP4D, DISFAPIus, and Pain-ICU Datasets

We developed an in-house secured — 5PaD[o] | Disfapius10]] Pamicy
annotation tool to annotate facial AUs in AU [ Description (ours)
patient faces. We recruited four annotators 1 'F;‘a';se;BrOW v 4
and trained them on FACS and evaluated their 3 Outer Brow 7 7
performance on sample face images before Raiser
they started annotating patient faces. All the | [ 4 Brow Lowerer v v v
annotation is performed individually by the > Upper Lid Raiser v
annotators. The annotation tool is connected 6 Cheek Raiser v v v
to a MongoDB database. In total, our Pain-ICU 7 Lid Tightener v v
dataset contains 76,388 annotated frames 9 Nose wrinkler v v
obtained from 49 unique patients. 10 Upper Lip Raiser v v

. 12 Lip Corner Puller v v v
We use two external datasets to pretrain the -
deep learning models, namely BP4D and 1 D_'mpler Y
DISFAPlus datasets. BP4D dataset [9] 15 E'chrzgsf Y v
comprises 140,000 annotated image frames 17 Chin Raiser v v
with AU labels obtained from 41 participants 20 Lip Stretcher v v
(23 female, 18 male). The participants were 23 Lip Funneler v
asked to perform eight different tasks for 24 Lip Pressor v v
emotion expression elicitation. Each image 25 Lips part v V;
frame is annotated with AUs 26 Jaw Drop v v
(1,2,4,6,7,10,12,14,15,17,23,24) and 49 facial | [57 | wouth swrerch 7
landmarks. DISFAPlus [10] dataset is an 43 Eyes Closed v

extension to the DISFA dataset consisting of
posed facial expressions from 9 subjects. Image frames are labeled for 12 FACS AUs and facial landmarks.
The AUs we detected from different datasets, along with their corresponding description, are shown in
Table 2.



Models

JAA-Net [13], an end-to-end multitask convolutional neural network (CNN) architecture for joint learning
facial AUs and facial landmarks. The JAA-net architecture comprises four different modules starting with
multi-scale shared feature learning followed by face alignment, global feature learning to capture the
structure and texture of the face, and adaptive attention learning for AU detection. The model
performance is evaluated on multiple facial AU dataset benchmarks.

Vision Transformer (VIT) [14] was introduced as a direct application of the transformer [15] model for
image recognition objective. The input image is split into fixed-size patches and transformed into linear
embeddings similar to word embeddings. These patch embeddings added with positional embeddings
were fed to a standard transformer encoder. An additional learnable classification token was added to
the embedding sequence to perform image classification.

Swin Transformer (SWIN) [16] was proposed as a general-purpose backbone for computer vision
applications. Due to the difference in the scale of the number of pixels in an image compared to words in
a sentence, adapting the transformer for vision tasks becomes challenging as the self-attention
mechanism of the transformer has a quadratic computational complexity with respect to the number of
patches in images. To address this, SWIN utilizes shifted window-based attention, which has a linear
computational complexity. Fig 3 shows the SWIN transformer architecture for the tiny variant we used for
AU detection.
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Fig 3. Swin-Transformer architecture

Evaluation Metrics

We report the performance of models we trained and evaluated in this study using accuracy and F1-score.
The model performance is computed individually for all the AUs. Hence, there is a class imbalance for each
AU detection task making F1-score the appropriate measure of performance. To compute Fl-score we
considered True Positive (TP) as ground truth annotation specifies AU present in the image and the model
detects the AU presence. True Negative (TN) when ground truth annotation specifies AU absent in a given
image and the model inference is also AU absent. False Positive (FP) denotes model detects AU presence
and the ground truth annotation marked AU is absent. False Negative (FN) when AU is marked as present
by annotators in ground truth, but the model fails to detect AU presence. We used scikit-learn [17] library
to compute the metrics, a custom evaluator class is developed to compute the aggregate performance of
the model based on all the samples processed by multiple GPUs as shown in Fig 1.



Experimental Setting

In this study, we used three different deep learning models for the objective of AU detection on our Pain-
ICU dataset and external datasets BP4D and DISFAPlus. We used Pytorch [18] implementations for all the
deep learning models utilized in this study. JAA-Net architecture is trained for 12 epochs with an initial
learning rate of 0.01 and multiplied by 0.3 every two epochs. JAA-Net used stochastic gradient descent
optimizer with a Nesterov momentum [19] of 0.9. All the hyperparameters were chosen to be the same
as the original implementation. The transformer models used were trained for ten epochs using Adam
[20] optimizer with a constant learning rate of 1e-5. All the transformer models are trained using PyTorch
efficient multi-GPU distributed data-parallel approach shown in Fig 1 on three NVIDIA 2080 TI GPUS.

In the pipeline of end-to-end AU detection shown in Fig. 1, a raw image of the patient's face is provided
as input to the OpenFace tool to detect the facial landmarks. The 68 facial landmarks are used to align
and obtain a tight face crop. The affine transformation matrices used for facial alignment are stored in an
in-memory database to increase the computational time complexity of the data processing step. We use
random horizontal flip data transform as a data augmentation step. The images are reshaped to size 224
and normalized using the Imagenet [21] mean and standard deviation.

Results
Facial AU detection is a challenging task in and of itself. Performing AU detection on patients in a real-
world dynamic setting makes it a further arduous task. To perform AU detection in the ICU, the accuracy
and speed of inference are major factors to consider. Transformer models in recent years have achieved
state-of-the-art results in the computer vision [ Table3. Number of trainable parameters per model

domain. In this study, we used two popular vision Model #Params (million) | Run Duration
transformer models, ViT and SWIN transformer, and (BP4D)
JAA-Net 22.1 ~300 minutes”

trained and evaluated their performance on BP4D

ViT-Base 85.8 ~90 minutes

and DISFAPlus datasets. We compared the
) SWIN-Tiny 27.5 ~80 minutes

performance of models against JAA-Net, a state-of-
SWIN-Base 86.7 ~140 minutes

the-art CNN model for AU detection. Although JAA-

Net tperforms the transformer model n m * JAA-Net implementation does not support multi-GPU training.
et outperiorms € transtorme odels on some For a fair comparison with other models, the reported value is

AUs, on average, transformer models' performance is | adjusted equivalent to training on 3 GPUs.

comparable, if not superior, to that of JAA-Net. Moreover, the run times of the transformer models are at

least twice as faster (see Table 3) despite having 4X the number of trainable parameters. For these

reasons, we choose the SWIN transformer to perform AU detection on our Pain-ICU dataset. We also

report the model's performance on our Pain-ICU dataset when pretrained on BP4D and DISFAPlus

datasets in Tables 7 and 8, respectively.

BP4D dataset with data from 41 participants is split into three folds, similar to Zhao et al. [22]. The models
are trained on two folds and evaluated the performance on the third. We used the same training and test
sets for all the models to compare their performance. Table. 4 shows the performance of JAA-Net, ViT-
Base, SWIN-tiny, and SWIN-BASE in terms of F1-score and accuracy on the test set.



Table 4. F1-Score and accuracy result for 12 AUs on BP4D dataset test partition.
BP4D F1-Score Accuracy
AU JAA-Net ViT-B Swin-T Swin-B | JAA-NET ViT-B Swin-T Swin-B
1 0.48 0.45 0.48 0.55 0.63 0.67 0.70 0.75
2 0.45 0.30 0.51 0.44 0.74 0.65 0.75 0.77
4 0.54 0.46 0.54 0.55 0.76 0.78 0.83 0.78
6 0.81 0.79 0.76 0.79 0.81 0.78 0.78 0.79
7 0.72 0.71 0.75 0.75 0.69 0.69 0.73 0.75
10 0.86 0.81 0.86 0.83 0.80 0.75 0.82 0.80
12 0.91 0.88 0.89 0.90 0.88 0.85 0.86 0.88
14 0.56 0.52 0.60 0.56 0.59 0.57 0.60 0.57
15 0.46 0.32 0.48 0.50 0.84 0.77 0.84 0.84
17 0.63 0.59 0.50 0.55 0.71 0.72 0.67 0.67
23 0.45 0.33 0.42 0.40 0.84 0.81 0.85 0.75
24 0.36 0.27 0.33 0.39 0.85 0.84 0.83 0.82
Avg 0.60 0.54 0.59 0.60 0.76 0.74 0.77 0.76

DISFAPIus dataset is split into train and test splits containing data from 6 and 3 participants, respectively.
Table 4 shows the performance of ViT-Base, SWIN-Tiny, and SWIN-Base models on BP4D datasets. SWIN-
Tiny showed better performance compared to ViT-Base and SWIN-Base variants.

Table 5. F1-Score and accuracy result for 12 AUs on DISFAPIus dataset test partition.
DISFAPlus F1-Score Accuracy
AU ViT-B Swin-T Swin-B ViT-B Swin-T Swin-B
1 0.55 0.72 0.67 0.72 0.86 0.82
2 0.55 0.68 0.66 0.76 0.86 0.84
4 0.63 0.68 0.61 0.82 0.82 0.74
5 0.57 0.67 0.68 0.73 0.83 0.84
6 0.72 0.73 0.77 0.91 0.91 0.93
9 0.69 0.76 0.80 0.96 0.97 0.98
12 0.77 0.76 0.69 0.93 0.91 0.88
15 0.62 0.56 0.43 0.94 0.89 0.79
17 0.48 0.54 0.46 0.88 0.86 0.80
20 0.29 0.37 0.35 0.93 0.93 0.92
25 0.94 0.88 0.91 0.97 0.95 0.96
26 0.72 0.75 0.72 0.94 0.92 0.91
Avg 0.63 0.68 0.65 0.87 0.89 0.87

Results from table 4 and table 5 show that SWIN transformer variants outperformed other models on
BP4D and DISFAPlus datasets, respectively. Therefore, we used the SWIN transformer on our Pain-ICU
dataset. We split the dataset into 70-30 train test split by patients ensuring no patient data is common
between train and test splits. Table 6 shows the performance of SWIN variants on the Pain-ICU dataset.



The model is trained for ten epochs. Tables 7 and 8 show the performance of SWIN variants starting with
pretrained weights obtained by training on BP4D and DISFAPIus datasets, respectively.

Table 6. SWIN tiny and base variants performance on our Pain-ICU dataset test partition.

Pain-ICU F1-Score Accuracy
AU SWIN-T SWIN-B SWIN-T SWIN-B
25 0.90 0.91 0.87 0.88
26 0.89 0.89 0.89 0.89
43 0.81 0.85 0.72 0.79
Avg 0.87 0.88 0.83 0.85

Table 7. Performance of SWIN tiny and base variants pretrained on BP4D dataset and fine-tuned on
Pain-ICU dataset test partition.

Pain-ICU(BP4D) F1-Score Accuracy
AU SWIN-T SWIN-B SWIN-T SWIN-B
25 0.88 0.88 0.85 0.85
26 0.84 0.86 0.86 0.87
43 0.75 0.85 0.67 0.79
Avg 0.82 0.86 0.79 0.84

Table 8. Performance of SWIN tiny and base variants pretrained on BP4D dataset and fine-tuned on
Pain-ICU dataset test partition.

Pain-ICU(DISFAPIus) F1-Score Accuracy
AU SWIN-T SWIN-B SWIN-T SWIN-B
25 0.89 0.89 0.85 0.86
26 0.90 0.85 0.90 0.86
43 0.83 0.84 0.76 0.77
Avg 0.87 0.86 0.83 0.83
Discussion

In this paper, we demonstrated the efficacy of attention-based vision transformer models for the facial
AU detection objective. We focused on the models that have achieved state-of-the-art results on general-
purpose image recognition tasks, in particular the ViT and SWIN transformers. In this study we used ViT
base variant and two variants tiny and base of SWIN transformer. The basis for choosing the variants was
the number of trainable parameters. Larger variants for both ViT and SWIN models have parameters on
the order of ~300 million, which could result in overfitting on training data and limit the generalizability
of the model. Larger models also demand more computational resources, which would adversely increase
the cost of required hardware and affect the portable nature of a real-time system.



We evaluated and compared the performance of transformer variants on BP4D and DISFAPlus datasets
shown in Tables 4 and 5. Table 4 also includes the JAA-Net model, a state-of-the-art CNN architecture
serving as a baseline to compare the transformer models. In the case of the BP4D dataset table 4, both
the SWIN-Base variant and JAA-Net achieved the best F1-score performance. SWIN-tiny achieved the best
F1-score performance on the DISFAPlus dataset. In the case of both BP4D and DISFAPIus datasets, SWIN
transformer variants outperformed other models. It is worth noting that the DISFAPlus dataset is of a
smaller size (~57k images) compared to the BP4D dataset (~140k images). The smaller size of the dataset
could be a contributing factor in SWIN tiny variant outperforming the SWIN base variant. Although JAA-
Net achieved the same high performance as SWIN-Base for the BP4D dataset, it has longer training and
inference time compared to transformer variants despite having fewer parameters compared to base
variants of the transformer models (see Table 3). This is due to the sequential nature of JAA-Net. More
specifically, JAA-Net architecture comprises multiple modules where the data is processed in sequence
between some of the modules. Hence, the SWIN transformer model is more suitable for our ultimate
objective, which is to perform real-time facial AU detection where inference speed is critical to achieving
real-time processing speed. SWIN transformer used a unique window-based attention computation to
reduce the computational complexity of attention computation. Moreover, this window-based attention
computation benefited AU detection as AUs occur in localized regions of the face. Thus, the model does
not need the entire context of the human face to detect whether a particular AU is present or absent. The
unique localized attention computation is well-suited for the AU detection objective along with the linear
computational complexity, which results in faster model inference speed than its CNN counterpart.

We trained our Pain-ICU dataset using SWIN transformer variants. Table 6 shows the performance of
SWIN tiny and base variants on our Pain-ICU dataset. The base variant has achieved higher performance
in terms of both Fl-score and accuracy. While the base variant showed higher performance, the tiny
variant performance has shown closely similar values of fl-score and accuracy. We also evaluated if
starting with a pretrained model benefits the performance of models on the ICU data. Tables 7 and 8 show
the performance of SWIN variants starting with pretrained weights trained on BP4D and DISFAPIus,
respectively. SWIN tiny variant pretrained on DISFA achieved the same performance as that of the model
without pretraining. In all other cases pretraining did not improve the model performance. There is no AU
overlap between the BP4D dataset and the AUs we considered in this study from our Pain-ICU dataset,
which might have resulted in a slight
decrease in model performance Pain vs AU association
when starting BP4D pretrained
weights. AU 25 and AU 26 are

common between DISFAPlus and 8(53
Pain-ICU datasets. Although 0.4
pretraining DISFAPlus did not 03
increase the performance, '

pretraining did not result in adverse 8?

model performance.

mild(0-4) moderate(5-6) severe(7-10)

Another important goal of our study
is to find the association between

Fig 4. AU presence vs patient reported pain score. Each cell shows normalized score
. . . number of frames in which AU is present to number of frames available for a given pain
patient pain experience and AU score category. Image frames recorded within 1 hour from the collected pain timestamp

presence on the face. Successful [ 2reonly considered.




identification of painful facial expressions can enable early clinical interventions for better health
outcomes for patients. We are the first research group to study pain, and facial behavior association in
critically ill patients admitted to ICU. To understand the association between facial AUs and pain, we used
the patient self-reported pain score. We obtained the self-reported DVPRS pain score, which is measured
on a 0to 10 scale. The DVPRS pain score can be classified into three pain categories mild (0-4), moderate
(5-6), and high (7-10). In Fig 4, we report AU presence against the pain category. The value shown is the
percentage of frames with the AU present to the number of image frames that were collected within the
1-hour time frame of the patient-reported pain time stamp. It can be observed from fig. 4 none of the AUs
are specific to mild, moderate, and high pain classes. For successful identification of painful facial
expressions identifying individual AUs and AUs combination that is specific to pain is important. Although
PSPI [8] score expresses pain as a combination of AUs 4,6 7,9,10, 43, it is not foolproof. In particular, a
PSPl score greater than 0 does not mean pain expression because the AUs considered in PSPl are common
among other facial expressions.

Our study has a few limitations. ICU is a specialized treatment space in hospitals where critically ill patients
are under continuous observation. In order for our camera-mounted cart not to interfere with patient
care in the ICU, it had to be positioned in an unobstructive location, which is often far away from the
patient. The camera distance from the patient has impacted the image resolution in case some images.
Our present work is only limited to AU 25, 26, and 43, as other AUs did not show a strong presence in the
annotated images. Patients in ICU are generally under medication and sleeping, and their faces may be
obstructed due to mechanical ventilation and feeding tubes, which result in no presence of AUs. It is not
practical to annotate all the images during the entire patient stay. Currently, we sample videos within one
hour of the patient-reported pain timestamp. To address the low AU presence problem, we are currently
developing an active learning approach to prioritize the images with low presence AUs to be provided for
annotation.

We have given utmost importance to patient privacy. For the same reason, we did not include any patient
faces in this paper. All the face images shown in this work are from external datasets from which we
obtained the license to use. Moreover, all the data used in this work is stored, processed, and analyzed
on a secure server that is not connected to the internet and can only be accessed through the University
of Florida health VPN. We have followed all the IRB, state, and federal rules and regulations to ensure the
privacy of the patient data enrolled in our study.

Conclusion and Future Work

In this paper, we developed a completely end-to-end deep learning framework to perform AU detection
on patients admitted to ICU. We intend to use this end-to-end architecture to perform real-time facial
behavior analysis in a dynamic ICU setting by deploying the model on edge devices. The top-performing
model, which is the SWIN transformer, has achieved 0.88 F1-score and 0.85 accuracy on the Pain-ICU
dataset test partition. The combination of end-to-end architecture and performance of the SWIN
transformer showed the feasibility of a real-time system and serves as a proof of concept for our real-
time framework. In the future, we intend to evaluate the model performance stratified by race and gender
to ensure that our model will be fair and does not suffer from biases. As we expand our Pain-ICU dataset,
we will increase the samples containing a broader range of AUs and perform a more comprehensive study
of the pain and facial AU association. The successful implementation of our real-time system can improve



the quality of patient care and benefit healthcare institutions in terms of cost savings and increase their
efficiency.
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