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Abstract The gap between research in academia and industry is narrowing as collaboration between the two becomes
critical. Topology optimization has the potential to reduce the carbon footprint by minimizing material usage within the
design space based on given loading conditions. While being a useful tool in the design phase of the engineering process, its
complexity has hindered its progression and integration in actual design. As a result, the advantages of topology optimization
have yet to be implemented into common engineering practice. To facilitate the implementation and promote the usage of
topology optimization, San Francisco State University and the University of South Carolina collaborated with ARUP, a world
leader in structural designs, to develop an Automated Topology Optimization Platform (ATOP) to synchronize commonly
used industry software programs and provide a user-friendly and automated solution to perform topology optimization.
ATOP allows for users to form a conceptual understanding of a structure’s ideal shape and design in terms of ideal material
placement by iterating various parameters such as volume fraction, and minimum and maximum member size at the start of a
project. With developed platform, a high-rise building design from the literature was first adopted to validate the results from
ATOP, after which an actual design project from ARUP was utilized to fully explore its functionality and versatility. Results
show that ATOP has the potential to create aesthetic and structurally sound designs through an automated and intelligent
process.
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32.1 Introduction

Structural optimization has been attracting increasing attention in the design of structures to achieve efficient, lightweight,
and thus economical designs [1]. Generally, structural optimization is classified into three categories, i.e. sizing optimization,
shape optimization, and topology optimization. Sizing optimization treats the sizes of structural members as the design
variables while shape optimization tries to find better shapes to satisfy the desired objectives. Topology optimization aims
to find the optimal perimeter layout of a structure within a defined design domain [2]. In the design industry, the shape of
the building is often pre-defined to achieve a desired aesthetic. The optimization of the structural member sizes could be
done at a later stage after the determination of the structural system without changing much of the global behavior of the
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structure. In contrast, the choice of the topology of a structure in the conceptual phase is generally the most decisive factor
for the efficiency of a novel design [3]. Therefore, the focus of the optimization of structures in practice is typically placed
on topology optimization.

Topology optimization is an important tool for designing an economical structure by allocating the materials to places
that can efficiently transfer the loading acting on the structure. Beginning with Bendsge and Kikuchi [4], the most common
methods for topology optimization involve finite element analysis (FEA). Through FEA, the design space is divided into a
series of small elements and each element is determined to either be part of the design or can be removed from the design.
Topology optimization is useful for a wide range of fields, as techniques can be applied to large-scale structures as well as at
micro- and nano-levels [5]. There is a significant gap between the engineering science with fundamental research in academia
and engineering practice with potential implementation in the industry. Extensive research on topology optimization has been
performed in academia [4, 6-17]. Although topology optimization techniques have been implemented in structural design in
industry, it is not universally applied by all designers mainly due to the lack of integration with current design software and
the tedious iteration process.

32.2 Proposed Solution

Through the opportunity provided by an NSF funded Research Experience for Undergraduates (REU) program established
by San Francisco State University and the University of South Carolina, the REU participants were working together with
faculty advisors in academia and industrial mentors in Arup North America LTD, an industrial leader in structural design, to
develop an automated topology optimization platform (ATOP). The platform leverages the advantages of several commercial
software platforms, including Rhinoceros 3D [18] and Altair HyperMesh/OptiStruct [19], to provide a user-friendly and
automated process for topology optimization. Rhinoceros is a commonly used 3D modeling software which offers high
accuracy, great compatibility with other software, and is highly accessible. Altair HyperMesh is a multi-disciplinary
finite element pre-processor with advanced meshing capabilities. OptiStruct is an accurate and comprehensive structural
solver that also provides innovative optimization technology. Figure 32.1 details the processes behind ATOP. The topology
optimization process in ATOP is comprised of three main phases: modeling, pre-processing, and optimization. ATOP uses
two programming languages, Python and tool command language (Tcl), to facilitate communication between Rhino and
HyperMesh/ OptiStruct. Python is a commonly used and highly versatile programming language and is used to communicate
between the different components. Tcl is a high-level general-purpose programming language and is the default application
program interface (API) for HyperMesh and OptiStruct. In the modeling phase, users will create geometry through the user-
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friendly interface in Rhino and assign metadata (e.g., material properties, loading, and restraints conditions) to the model.
During the pre-processing phase, the Main Python script will drive HyperMesh to import the stored model information and
metadata from Rhino and create the corresponding model in HyperMesh. By doing so, the tedious model creating process
in HyperMesh is avoided. In the optimization phase, Tcl scripts call the OptiStruct solver to perform topology optimization
on the HyperMesh model that was set up in the pre-processing phase. Once that particular model has been optimized. ATOP
returns to the pre-processing phase to set up a new load case, or optimization constraint. OptiStruct is then called again
to carry out optimization on the next iteration HyperMesh model. This iterative process continues until all user specified
combinations of load cases and optimization constraints have been achieved. Results of all user-specified combinations are
then exported back to Rhino so that they may be easily viewed and compared.

32.3 Platform Validation

To validate the developed platform, a case study of a high-rise structure from literature [20] was adopted and the effects
of several parameters, including volume fraction, and minimum and maximum member sizes were investigated. In the case
study, Beghini et al. proposed a topology optimization framework to bridge the gap between architectural and structural
engineering communities and performed topology optimization to maximize the stiffness of a tall high-rise building in
Australia to serve as an example. In this particular example, the authors demonstrated the results without disclosing much
detail on the parameters selection of the topology optimization, as it was not the focus of the study. With that, it is almost
impossible to duplicate the results for the given design space without an automatic platform, as it might need an unlimited
number of trials to find the unique combination of the parameters to produce the same results. Through the proposed ATOP
platform, an attempt was made to iterate on multiple optimization parameters, including volume fraction, and maximum
and minimum member size to obtain the same topology optimization results. A high-rise building model with a shell as
shown in Fig. 32.2 was set up in this study. The model is constrained at the base both laterally and rotationally (in the X,
y, and z directions). As was done in the literature, point loads P spanning multiple floors of the building with P/2 acting at
its top were applied to represent wind loads. The optimization objective for this study is set to minimize the compliance.
The compliance is defined as the inverse of stiffness. By default, OptiStruct performs optimization iterations until either the
maximum number of 30 iterations is reached, or two consecutive iterations have a change in the objective function below the
objective tolerance of 5%, the percent change in the objective function of two iterations. If a minimum member constraint is
specified, the maximum number of iterations is increased to 80.
The following section discussed the selection process of the parameters and their effects on the optimization results.
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Fig. 32.3 High-rise structure case study showing the effects of different volume fractions: (from left to right) 0.1, 0.2, 0.3

1. Volume fraction is the percentage of the initial design volume that will be maintained in the optimized solid. This
parameter guides the amount of material that may be placed within the design space of the final optimized shape. It
limits the amount of overall material and is typically within the range of 10-30% of the original design material. Figure
32.3 shows the results of applying a volume fraction of 0.1, 0.2, and 0.3 (10%, 20%, and 30% of the original design
volume) to demonstrate the effects that volume fraction has on the optimized results. As volume fraction increases, the
amount of material allowed within the optimization continued to increase. The figures include a scale on the left side,
which shows the density of material in the design space. The dark blue indicates an element density close to 0, while the
red indicates an element density of 100%. Results can be further refined to only show material above a certain density
threshold. In the figures of the optimized structures in this paper, a density threshold of 0.3 or 30% is used. This means
that any element with a density less than 30% is not shown (becomes transparent) in the design space. Notably, because
there are no other constraints on the optimization, as more material was added, a higher concentration was placed towards
the bottom corners. This directly coincides with the objective of minimizing the compliance as these locations provide
the highest amount of structural stiffness to the model.

2. Minimum Member Size is the lower limit for the diameter of elements in the final optimization. The minimum member
size parameter narrows the scope of the topology optimization by assigning a factor that penalizes the formation of
members smaller than the minimum member size. It is defined specifically to be a factor times the average element size
within the model. A inherent function of the program exists that calculates the average size of the member within the
optimization by comparing the sizes of the individually shaped elements that make up the finite element mesh. This
parameter helps guide the program by ensuring that members of a reasonable size are created within the optimization.
In HyperMesh, by default, the minimum member size must be at least 3 times the average element size but no greater
than 12 times the average element size. Figure 32.4 shows the effects of applying a minimum member size of 3, 6, and
9 times the average element size. As the minimum member size increases, so does the size of the members. HyperMesh
does take into consideration the necessity for members outside of the specified range. There may exist members whose
sizes are smaller than the specific member size if these members are integral to the structural integrity of the model. As
the minimum member size increases within the optimization, the number of members typically decreases as it takes more
material to create each larger member.

3. Maximum Member Size, as the name indicated, is the opposite to the minimum member size parameter. It is defined
as being 2 times the minimum member size within an optimization. While this parameter is not necessarily required
in an optimization, it helps to further clean up the results. Figure 32.5 shows the effects of applying the maximum
member size with the minimum member size. A small maximum member size creates members that may be deemed
intangible. The maximum member size of 24 produced clear and legible members within the optimization which has
better constructability in a real-life implementation.

Figure 32.6 provides a summary on the influence trend of the different parameters to the overall structural compliance.
Figure 32.6a shows the correlation between volume fraction and compliance. As the volume fraction increases, the



32 An Automated Topology Optimization Platform Through a Collaborative Project Between Academia and Industry 345

Contour Plot
Element Densities(Density)
Maximum Average

1.000E+00
[ 8.900E-01

7.800E-01
— 6.700€E-01

[ 5.600E-01
4.500E-01

o~ 3400E-01
2.300€-01

[ 1.200€E-01
1.000E-02

Iso >3.000E-01
Max = 1.000E+00
Grids 14923

Min = 1.000E-02
Grids 49

Contour Plot
Element Densities(Density)
Maximum Average

1.000E+00
[ 8.900E-01
7.800E-01
— 6.700E-01
[ 5.600E-01
4.500E-01
3.400E-01
2.300E-01
1.200€E-01
1.000E-02

o

Iso > 3.000E-01
Max = 1.000E+00
Grids 14923

Min = 1.000E-02
Grids 49

Fig. 32.5 High-rise structure case study showing the effects of different maximum member sizes: (from left to right) 6, 24

compliance decreases. The more material that may be used within the structure, the more it can be placed in various areas to
increase stiffness. Figure 32.6b shows that an increase in minimum member size causes an increase in compliance because
the larger members would find themselves more spaced out within the design field, which limits the area that the model
may use to transfer the applied loads. The increase in compliance provides a tradeoff in the design aspect as members that
are too small may not be realistically manufacturable. As shown in Fig. 32.6¢, the maximum member size shares a similar
correlation with compliance to that of the minimum member. As it increases, so does the compliance.

Through the 80 automated iterations using the ATOP platform to vary the parameters mentioned above, a result very
similar to the design in Beghini et al. was achieved as shown in Fig. 32.7, which provided a validation and demonstrated the
functionality of the platform. Without the use of the automated platform, each combination of parameters would have to be
applied individually, which is a tedious and nearly impossible task to accomplish.
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Fig. 32.6 High-rise Structure — (a) volume fraction (b) minimum member size (¢) maximum member size

Fig. 32.7 High-rise structure
case study results - design from
Beghini et al. (left) vs ATOP
results (right)

32.4 Case Study

After the validation of ATOP, the platform was used to perform topology optimization on an actual design project from Arup
to fully explore its functionality and versatility. The design project is known as the Cosmos Sculpture, and its function is
an artistic shade canopy. The cosmos sculpture has a skewed funnel shaped design space as can be seen in Fig. 32.8, with a
height of 24.5 ft. and a 3-inch thick shell throughout the height of the sculpture. The top of the sculpture is an ellipse with
a dimension of 30.5 ft. by 23.9 ft., and the bottom of the structure is circular with a diameter of 6.8 ft. Similar to the high-
rise structure case study, the optimization results for the Cosmos Sculpture were created by iterating over volume fraction,
minimum member sizes, and maximum member sizes. The loading for the Cosmos Sculpture is also shown in Fig. 32.8. In
this study, only wind loads with a magnitude of 30psf were considered. The optimization objective and convergence criteria
were the same as the high-rise case study.

1. Volume Fractions of 0.1, 0.2 and 0.3 were investigated for the Cosmos Sculpture. Results from iterating over volume
fractions are shown in Fig. 32.9. It can be observed that, as the volume fraction increases, the amount of material was
placed throughout the original design space with the concentration at the base of the sculpture. With only applying a
volume fraction constraint, the optimized results did not display an aesthetic shape, nor any bracing pattern.

2. Same as the high-rise case study, the allowable minimum member sizes equal to 3—12 times the average element size
were investigated. Results from applying minimum member size constraints of 3, 8, and 12 are shown in Fig. 32.10. In
these results, the volume fraction remained consistently at 0.3. From Fig. 32.10, as minimum member size increases, the
bracing pattern becomes clearer, and denser material is placed throughout the optimized result. For the Cosmos Sculpture,
increasing minimum member size leads to a clearer conceptual starting point in the design phase. This information may
be hidden without the automated process to explore a large variation of this parameter.
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Fig. 32.9 Cosmos Sculpture case study (side and top view) showing the effects of three different volume fractions: (from left to right) 0.1, 0.2,
0.3

3. The maximum member sizes were investigated in the range of 624 times the average element size of the finite element
model. As maximum member size increases, the size of the members in the optimized shape increases while less dense
material is available to be placed at the base of the structure to balance the increase of material placed at the top. For the
Cosmos Sculpture, a maximum member size within the range of 12—16 times the average element size produces the best
results since the design provides a more constructible brace pattern that covers more of the original design space (Fig.
32.11).

The previous results showed a lack of symmetry in the optimized results, evident by the lack of material in the lower left
quadrant of the original design space. This is due to the fact that the loading is only applied at one side of the structure. To
investigate the effects of possible loading from the other direction on the optimized shape, the Cosmos Sculpture was loaded
with equivalent wind loads on the opposing sides, as seen in the bottom right of Fig. 32.12. When comparing results from
the one side loading conditions, the full design space is used in this loading condition and the overall design is much more
symmetrical.

Figure 32.13 shows the influence of optimization parameters on the structural compliance of the Cosmos Sculpture.
Figure 32.13a demonstrates the effect of volume fraction on compliance. As volume fraction increases, the compliance
decreases. By allowing more material to be placed throughout the design space, especially in critical areas, the optimized
structure becomes stiffer. Figure 32.13b shows the effect of minimum member size on compliance. As minimum member
size increases, compliance increases. As members are forced to become larger, it reduces the amount of area that the loads can
be transferred over. The increase in compliance comes with the tradeoff of more manufacturable and aesthetic designs that
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Fig. 32.10 Cosmos Sculpture case study (side and top views) showing the effects of applying different minimum member sizes: (from left to
right) 3, 8, 12
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Fig. 32.11 Cosmos Sculpture case study (side and top views) showing the effects of different maximum member sizes: (from left to right) 6, 16,
24

could prove to be a more meaningful conceptual design. Figure 32.13c shows the relationship between maximum member
size and compliance, which is similar to the relationship between minimum member size and compliance.

32.5 Conclusion

Structural optimization has been attracting increasing attention in the design of structures to achieve efficient, lightweight,
and thus economical designs. Topology optimization has shown to have large effects on the global behavior of structures
during the conceptual phase and have been intensively studied in academic world. Techniques on Topology optimization have
been applied to structural design in industry, however, it is not universally applied by all designers mainly due to the lack of
integration with current design software and the tedious iteration process. To bridge the gap between the fundamental research
in academia and engineering practice in the industry, an NSF funded Research Experience for Undergraduates (REU)
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Fig. 32.12 Cosmos sculpture case study showing results from asymmetric loading (top) and symmetric loading (bottom)
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Fig. 32.13 Sculpture Structure — (a) volume fraction (b) minimum member size (¢) maximum member size

program, was established by San Francisco State University and the University of South Carolina to provide an opportunity
for the REU participants to experience research in both academic and industry settings and facilitate the knowledge exchange.
In this study, the REU participants worked together with faculty advisors in academia and industry mentors at Arup North
America Limited to develop ATOP, an automated topology optimization platform. The platform leverages the advantages
of several commercial software platforms, including Rhinoceros 3D and Altair HyperMesh/OptiStruct, to provide a user-
friendly and automated process for topology optimization that will incentivize implementation of topology optimization in
structural design. After development, the platform was validated through performing optimizations on a high-rise structure
in recent literature that was subjected to static wind loads. Even with limited information on the topology optimization
parameters, the platform successfully achieved a similar optimized shape as in the literature case study, an almost impossible
task without the help of automation. After the validation, ATOP was used to perform topology optimization on an actual
design project from Arup. The design project was an artistic shade canopy subjected to wind loads and required to be
aesthetically pleasing and have sufficient structural stiffness. ATOP was able to produce multiple optimized shapes by
varying optimization parameters and investigating various loading conditions to provide the design team meaningful options
on conceptual design. In these studies, analysis of the optimization parameters, including volume fraction, minimum member
size and maximum member size, on the structure’s compliance (inverse of stiffness) was investigated. The results of both
studies showed similar trends on the effects of the various optimization parameters. When volume fraction is increased,
compliance decreases as the increase in the allowable amount of material, especially in critical areas, increases the overall
stiffness of the structure. The increase of minimum member size increases the compliance. As members are forced to become
larger, it reduces the amount of area that the loads can be transferred over. The increase in compliance comes with a tradeoff of
more manufacturable and aesthetic designs that could prove to be a more meaningful conceptual design. With the increase of
the maximum member size, the overall compliance also increases. More aesthetically pleasing conceptual designs with well-
defined members were produced when introducing some sort of member size constraint. Future work includes increasing
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capabilities of the platform by providing more options on optimization objectives and optimization constraints, and to use
this platform on different scale design problems to explore the scope of the platform.
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