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Abstract

Videos often capture objects, their visible
properties, their motion, and the interactions
between different objects. Objects also have
physical properties such as mass, which the
imaging pipeline is unable to directly capture.
However, these properties can be estimated
by utilizing cues from relative object motion
and the dynamics introduced by collisions. In
this paper, we introduce CRIPP-VQA1, a new
video question answering dataset for reason-
ing about the implicit physical properties of ob-
jects in a scene. CRIPP-VQA contains videos
of objects in motion, annotated with questions
that involve counterfactual reasoning about the
effect of actions, questions about planning in
order to reach a goal, and descriptive ques-
tions about visible properties of objects. The
CRIPP-VQA test set enables evaluation under
several out-of-distribution settings – videos
with objects with masses, coefficients of fric-
tion, and initial velocities that are not observed
in the training distribution. Our experiments
reveal a surprising and significant performance
gap in terms of answering questions about im-
plicit properties (the focus of this paper) and
explicit properties of objects (the focus of prior
work).

1 Introduction

Visual grounding seeks to link images or videos
with natural language. Towards this goal, many
tasks such as referring expressions (Yu et al., 2016),
captioning (Vinyals et al., 2015; Xu et al., 2016),
text-based retrieval (Vo et al., 2019; Rohrbach et al.,
2015), and visual question answering (Antol et al.,
2015; Jang et al., 2017) have been studied for both
images and videos. Videos often contain objects
which can be identified in terms of their visible
properties such as their shapes, sizes, colors, tex-
tures, and categories. These visible properties can
be estimated by using computer vision algorithms

1https://maitreyapatel.com/CRIPP-VQA/

Figure 1: The CRIPP-VQA dataset contains questions
about the future effect of actions (such as removing,
adding, or replacing objects) as well as planning-based
questions. Frames from an example video are shown
above with the red highlighted area depicting the ob-
jects on which actions (remove, replace, add) are per-
formed.

for object recognition, detection, color recognition,
shape estimation, etc. However, objects also have
physical properties such as mass and coefficient of
friction, which are not captured by cameras. For
instance, given a video of a stone rolling down a
hill, cameras can capture the color of the stone and
its trajectory – but can they estimate the mass of the
stone? It is therefore difficult to reason about such
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implicit physical properties, by simply watching
videos.

Collisions between objects, however, do offer
visual cues about mass and friction. When objects
collide, their resulting velocities and directions of
motion depend upon their physical properties, and
are governed by fundamental laws of physics such
as conservation of momentum and energy. By ob-
serving the change in velocities and directions, it is
possible to reason about the relative physical prop-
erties of colliding objects. In many cases, when hu-
mans watch objects in motion and under collision,
we do not accurately know the masses, friction, or
other hidden properties of objects. Yet, when we
interact with these objects, for example in sports
such as billiards, carrom, or curling, we can reason
about the consequences of actions such as hitting
one ball with another, removing an object, replac-
ing an object with a different one, or adding an
object to the scene.

In this paper, we consider the task of reason-
ing about such implicit properties of objects, via
the use of language, without having ground truth
annotations for the true values of mass and fric-
tion of objects. We propose a video question
answering dataset called CRIPP-VQA, short for
Counterfactual Reasoning about Implicit Physical
Properties. Each video contains several objects
with at least one object in motion. The object in
motion causes collisions and changes the spatial
configuration of the scene. The consequences of
these collision are directly impacted by the physical
properties of objects. CRIPP-VQA contains videos
annotated with question-answer pairs, where the
questions are about the consequences of actions
and collisions, as illustrated in Figure 1. These
questions require an understanding of the current
configuration as well as counterfactual situations,
i.e. the effect of actions such as removing, adding,
and replacing objects. The dataset also contains
questions that require the ability to plan in order to
achieve certain configurations, for example produc-
ing or avoiding particular collisions. It is important
to note that both tasks cannot be performed without
an understanding of the relative mass. For example,
the “replace” action can lead to a change in mass
inside the reference video, which can drastically
change the consequences (i.e., set of collisions).

We benchmark existing state-of-the-art video
question-answering models on the new CRIPP-
VQA dataset. Our key finding is that compared

to performance on questions about visible prop-
erties (“descriptive” questions), the performance
on counterfactual and planning questions is sig-
nificantly low. This reveals a large gap in under-
standing the physical properties of objects from
video and language supervision. Detailed analysis
reveals that models can answer questions about the
first collision with higher accuracy compared to
questions about subsequent future collisions.

Aloe (Ding et al., 2021) is a strong baseline for
video QA tasks and has improved the state of the art
on many previous video QA benchmarks such as
CLEVRER (Yi et al., 2020) and CATER (Girdhar
and Ramanan, 2019). However on CRIPP-VQA,
we discovered that the object identification module
from Aloe failed to recognize objects in our videos,
which we believe is due to the presence of complex
textures, reflections, and shadows in our dataset.
To mitigate these failures, we modified Aloe by
adapting the Mask-RCNN (He et al., 2017) as an
object segmentation module. We also found that
using pre-trained BERT-based word embeddings
significantly improves the performance over our
modified Aloe (Aloe*), serving as the strongest
model on CRIPP-VQA.

CRIPP-VQA also allows us to evaluate trained
models on out-of-distribution (OOD) test sets,
where the objects in videos may have previously
unobserved physical properties. There are four
OOD test sets in CRIPP-VQA such that one phys-
ical property varies at test time – objects with a
new mass, zero friction coefficient, increased initial
velocity, and two moving objects at initialization.
This OOD evaluation reveals a further degradation
in performance and a close-to-random accuracy for
most state-of-the-art models. The results indicate
that the scenario with two initially moving objects
is the most difficult of all OOD scenarios.

Contributions and Findings:

• We introduce a new benchmark, CRIPP-VQA,
for video question answering which requires rea-
soning about the implicit physical properties of
objects in videos.

• CRIPP-VQA contains questions about the ef-
fect of actions such as removing, replacing, and
adding objects, as well as a novel planning task,
where the model needs to perform the three hypo-
thetical actions to either stop or make collisions
between two given objects.

• Performance evaluation on both i.i.d. and out-of-
distribution test sets shows the significant chal-



Dataset Video
QA

Physical
Reasoning

Visually Hidden
Properties

Counterfactual Actions Planning Physical
OOD

Implicit
ReasoningAdd Replace Remove

MovieQA (Tapaswi et al., 2016) 3 - - - - - - - -
TGIF-QA (Li et al., 2016) 3 - - - - - - - -
TVQA/TVQA+ (Lei et al., 2020) 3 - - - - - - - -
AGQA (Grunde-McLaughlin et al., 2021) 3 - - - - - - - -
CoPhy (Baradel et al., 2020) - 3 3 - - - - - 3
CLEVR_HYP (Sampat et al., 2021) - - - 3 3 3 - - -
IntPhys (Riochet et al., 2018) 3 3 - - - - 3 - -
ESPRIT (Rajani et al., 2020) 3 3 - - - - 3 - -
CATER (Girdhar and Ramanan, 2019) 3 - - - - - - - -
CRAFT (Ates et al., 2022) 3 3 - - - 3 - - -
CLEVRER (Yi et al., 2020) 3 3 - - - 3 - - -
ComPhy (Chen et al., 2022) 3 3 3 - - - - - -
CRIPP-VQA (this work) 3 3 3 3 3 3 3 3 3

Table 1: A comparison of CRIPP-VQA with prior work on video question answering, in terms of different aspects
of visual reasoning that are tested.

lenge that CRIPP-VQA brings to video under-
standing systems.

2 Related Work

Image Question Answering. The VQA
dataset (Antol et al., 2015) has been exten-
sively used for image-based question answer-
ing. GQA (Hudson and Manning, 2019) and
CLEVR (Johnson et al., 2017a) focus on the
compositional and spatial understanding of visual
question answering models. CLEVR-HYP (Sam-
pat et al., 2021) extends the CLEVR setup with
questions about hypothetical actions performed on
the image. OK-VQA (Marino et al., 2019) deals
with answering questions where external world
knowledge (such as Wikipedia facts) are required
for answering questions, whereas VLQA (Sampat
et al., 2020) studies image question answering
with additional information provided via an input
paragraph.

Video Question Answering. Datasets such as
MovieQA (Tapaswi et al., 2016), TGIF (Li et al.,
2016), TVQA/TVQA+ (Lei et al., 2020), and
AGQA (Grunde-McLaughlin et al., 2021), have
been introduced for real-world video question an-
swering. However, work on video question answer-
ing has largely focused on scenes such as movies
and television shows.

Physical Reasoning. Visual planning has been
explored in Chang et al. (2020) and Gokhale et al.
(2019). IntPhy (Riochet et al., 2018) and ES-
PRIT (Rajani et al., 2020) require reasoning un-
der the influence of gravity. CATER (Girdhar and
Ramanan, 2019) is a video classification dataset,
which proposes the challenge of temporal reason-
ing on actions such as slide, rotate, pick-place,

etc. Recently, the CLEVRER benchmark (Yi et al.,
2020) studied the ability to do counterfactual rea-
soning but only with “remove” action. However,
all objects in CLEVRER have identical physical
properties. CoPhy (Baradel et al., 2020) studied
the problem of predicting consequences in the pres-
ence of mass as a confounding variable. It does
not involve the change in the physical properties
during counterfactual reasoning and only studies
displacement-based counterfactual object trajec-
tory estimation. ComPhy (Chen et al., 2022) is
a work closest to ours, with the task of learning
visually hidden properties in a few-shot setting
and performing counterfactual reasoning with a
question that explicitly describes the changes in
physical properties (“What if object A was heav-
ier?”). In contrast, with three different question
categories (descriptive, counterfactual, and plan-
ning), our benchmark requires physical properties
to be learned from video rather than explicitly ex-
pressed in the question. We position our work in
comparison to previous works in Table 1.

Textual Commonsense Reasoning. PIQA (Bisk
et al., 2020) is a dataset for physical common-
sense reasoning for natural language understanding
(NLU) systems . CommonsenseQA (Talmor et al.,
2019) is a QA dataset that focuses on inferring asso-
ciated relations of each entity. Verb Physics (Forbes
and Choi, 2017) proposes the task of learning rel-
ative physical knowledge (size, weight, strength,
etc.) for NLU systems.

Visual Commonsense Reasoning. Visual-
COMET (Park et al., 2020) is a dataset for
inferring commonsense concepts such as future
events and their effects from the images and textual
descriptions. Video2Commonsense (Fang et al.,



2020) is a video captioning task that seeks to
include intentions and effects of human actions
in the generated caption. VCR (Zellers et al.,
2019) dataset introduces a VQA task that requires
commonsense and understanding the scene context
in order to answer questions and also to justify
the answer. While, (Sampat et al., 2022) gives the
overview of recent advances in multimodal action
based reasoning.

Robustness of Multimodal Models. Robust-
ness to distribution shift and language bias has
been extensively studied in the VQA domain (Ray
et al., 2019; Gokhale et al., 2020; Selvaraju et al.,
2020; Kervadec et al., 2021; Li et al., 2020; Agar-
wal et al., 2020). Shortcuts and spurious correla-
tions have been observed in visual commonsense
reasoning (Ye and Kovashka, 2021). For V+L en-
tailment tasks, Gokhale et al. (2022) found that
models are not robust to linguistic transformations,
while Thrush et al. (2022) found that models were
unable to distinguish between subject and object
of actions. However most of the work in robust
V+L has focused on biases or distribution shift
in the language domain. CRIPP-VQA introduces
out-of-distribution evaluation in terms of physical
properties of objects in a scene.

3 The CRIPP-VQA Dataset

CRIPP-VQA, short for Counterfactual Reasoning
about Implicit Physical Properties via Video Ques-
tion Answering, focuses on understanding the con-
sequences of different hypothetical actions (i.e.,
remove, replace, and add) in the presence of mass
and friction as visually hidden properties.

3.1 Simulation Setup
Objects and States. Table 2 summarizes the dif-
ferent properties present in CRIPP-VQA. Each ob-
ject in our dataset has four visible properties: shape
(cube or sphere), color (olive, purple, and teal), tex-
ture (aluminum and cardboard), and state (station-
ary, in motion, and under collision). Each object
also has two invisible properties: mass and coeffi-
cient of friction. Three actions can be performed
on each object – “remove”, “replace”, and “add”.

In this work, we focus on mass and friction as in-
trinsic physical properties of objects. Each unique
{SHAPE, COLOR, TEXTURE} combination is pre-
assigned a mass value that is either 2 or 14; for in-
stance, all teal aluminum cubes have mass 2. Note
that these values are not provided as input to the

VQA model and need to be inferred in order to
perform counterfactual and planning tasks. In the
training set and i.i.d. test set, the coefficient of fric-
tion for all objects with the surface is identical and
non-zero. For one of the OOD test sets, we make
the surfaces and objects frictionless. Table 2 shows
the object properties for training videos, i.i.d. test
set and OOD test set.

Video creation. We render videos using
TDW (Gan et al., 2021). In each instance, we
initialize the video with either 5 or 6 randomly
chosen objects, out of which a single object is
initialized with a fixed velocity such that it will col-
lide with other objects. Here, we keep a constant
initial velocity so that the only way to infer mass is
through the impact of subsequent collisions. Each
video is 5 seconds long, with a frame rate of 25 fps.
We provide annotation and metadata for each video
which contains information about object locations,
velocities, orientation, and collision at each frame.
These annotations are further used to generate the
different types of question-answer pairs.

3.2 Question and Answer Generation

CRIPP dataset focuses on three categories of tasks:
1) Descriptive, 2) Counterfactual, and 3) Planning.

Descriptive: These questions involve under-
standing the visual properties of the scene, includ-
ing:
[Type-1] Counting the number of objects with a

certain combination of visible properties,
[Type-2] Yes/No questions about object types
[Type-3] Finding the relationship between two ob-

jects under collision
[Type-4] Counting the number of collisions
[Type-5] Finding the maximum/minimum occur-

ring object properties.
We do not include questions that require reasoning
over mass, to avoid the introduction of spurious
correlation which may influence counterfactual and
planning-based questions.

Counterfactual. These questions focus on
action-based reasoning. We generate a hypothet-
ical situation based on one of these actions, and
the task is to predict which collisions may or may
not happen if we perform the action on an object.

“Remove” action focuses on a counterfactual
scenario where a certain object is removed from
the original video. “Replace” action focuses on
a counterfactual scenario where one object is



Property IID Mass Friction Number of objects Velocity

Shape (sphere, cube) - - - -
Color (purple, teal, olive) - - - -
Texture (cardboard, aluminum) - - - -
Mass (2, 14) (2, 8, 14) - - -
Friction (0.25) - (0.0) - -
# of moving objects 1 - - 2 -
Initial velocity (14) - - - (18)

Table 2: They key difference between the IID and various OOD evaluation settings in CRIPP-VQA. Here, “-”
indicates the no change in particular property from the IID setting.

Figure 2: A pie-chart showing the distribution of var-
ious question types in the CRIPP-VQA dataset. Inner
pie chart shows the three broad categories of questions
(counterfactual, descriptive, planning), while the outer
pie-chat shows a fine-grained categorization.

replaced with a different object. A key point to
note is that the replace action not only changes the
object but can also cause a change in an hidden
property. “Add” action-based questions focus on
evaluating the system’s understanding of spatial re-
lationship along with the hidden properties, where
we create a new hypothetical condition by placing
a new object to the LEFT/RIGHT/FRONT/BEHIND

at a fixed distance from the reference object.

Planning. CRIPP also contains planning-based
questions, where the task is predict an action to
perform on objects in the given video to either
create or avoid collisions. Here, the system needs
to predict which action has to be performed and on
which object, to achieve the goal.

3.3 Dataset Statistics

CRIPP contains 4000, 500, and 500 videos for
training, validation, and testing, respectively. Addi-
tionally, it has about 2000 videos focused on eval-
uation for physical out-of-distribution scenarios.
CRIPP training dataset has about 41761 descriptive
questions, 41761 counterfactual questions (9603,
5142, and 27016 questions for remove, replace,
and add actions, respectively), and 10440 planning-
based questions. Figure 2 shows the percentages of
each subcategory within the dataset.

4 Experiments

4.1 Problem Statement

Given an input video (v), and a question (q) the
task is to predict the answer (a). Each video
v contains m number of objects randomly se-
lected from the set O = {o1, o2, ..., on}. Here,
object oi has several associated properties (i.e.,
oi = (mi, ci, si, ti, li, vi)), where color (ci), shape
(si), texture (ti), location (li), and velocity (vi) are
visually observable properties alongside with mass
(mi) as the hidden property. More formally, we
need to learn the probability density function F
such that we maximize the F (a|v, q).

Evaluation Metrics. To evaluate the models, we
use two accuracy metrics – per-option (PO) and
per-question (PQ) accuracy. Each counterfactual
question has multiple options describing the colli-
sions. Per-option accuracy refers to the option-wise
performance and per-question accuracy considers
whether all options are correctly predicted or not.
Each planning task involves performing an action
over objects within a video. Because of this, there
may be more than one way to accomplish the ob-
jective. We use TDW to re-simulate the models’
predictions on the original video to check whether
the given planning goal is achieved or not, leading
to iterative performance evaluation.



Input Object 1 Object 2 Object 3 Object 4 Object 5 Masks

MONet Object Decomposition (Aloe -- unmodified) Mask RCNN (Aloe*)

Figure 3: Illustration of the failure of MONet (the object decomposition module in Aloe (Ding et al., 2021)) on
CRIPP-VQA videos. The intended functionality of MONet is to decompose individual objects into separate masks.
However as shown above, the predicted masks contain areas corresponding to more than one objects. We modified
Aloe by replacing MONet with Mask-RCNN, and this approach (Aloe*) leads to more reliable object detection
which can be used by the downstream question-answering module.

4.2 Benchmark Models

We consider three different state-of-the-art models
for the video question answering task: MAC (Hud-
son and Manning, 2018), HCRN (Le et al., 2020),
and Aloe (Ding et al., 2021). MAC (Memory, At-
tention, and Composition) is designed for composi-
tional VQA. We modify it by performing channel-
wise feature concatenation of each frame, where the
channel will contain temporal information instead
of spatial information allowing MAC to adapt to the
video inputs. HCRN (Hierarchical Conditional Re-
lation Network) uses a hierarchical strategy to learn
the relation between the visual and textual data.
Aloe (Attention over learned embeddings) is one of
the best-performing models on the CLEVRER (Yi
et al., 2020) benchmark. It is a transformer-based
model, designed for object trajectory-based com-
plex reasoning over synthetic datasets. Aloe uses
MONet (Burgess et al., 2019) for obtaining object
features by performing an unsupervised decompo-
sition of each frame into objects. Aloe takes these
frame-wise object features to predict the answers
to the input question, using the [CLS] token and
employs a self-supervised training strategy.

Drawbacks of Aloe. We found that the MONet
module used in Aloe is very unstable and fails
to produce reliable frame-wise features on videos
from CRIPP. MONet is not able to recognize sim-
ple object properties such as color and is not able to

decompose the image into masks corresponding to
individual objects. This drawback hurts the perfor-
mance of Aloe on the CRIPP-VQA dataset, even
though Aloe is one of the best-performing models
on previous video QA benchmarks. An example is
shown in Figure 3, and more details can be found
in Appendix C. We believe that this failure could
be a result of shadows and textures in our dataset
that are not found in previous datasets.

Modifying Aloe. Due to the failures of the
MONet object decomposition module, the Aloe
baseline fails measurably on CRIPP-VQA, ex-
hibiting close-to-random performance. There-
fore, we propose additional modifications to Aloe
to make it more widely applicable beyond prior
datasets that are built using the CLEVR (John-
son et al., 2017a) rendering pipeline. First, we
replace MONet with Mask-RCNN (He et al., 2017)
to perform instance segmentation and then train an
auto-encoder to compress the mask-based object-
specific features to make it compatible with Aloe.
Second, instead of learning the word embedding
from scratch, we further propose to use pre-trained
BERT-based word embeddings as an input to the
Aloe, which leads to a faster and more stable con-
vergence. Further architecture modifications and
hyper-parameter settings are in Appendix A.

We also consider a “random” baseline which
randomly selects one answer from a possible set of
answers, and a “frequent” baseline which always



Model Descriptive Remove Replace Add Counterfactual PlanningPQ PO PQ PO PQ PO Avg. PO

Frequency 8.21 0.00 50.18 0.00 50.00 0.00 50.00 50.06 3.49
Random 8.51 7.21 49.58 3.34 49.40 9.39 50.04 49.67 7.39
Blind-BERT 53.82 20.18 54.67 17.57 50.45 15.86 51.55 52.22 8.11

MAC (Hudson and Manning, 2018) 48.72 16.41 50.68 17.31 50.21 16.29 49.83 50.24 6.26
HCRN (Le et al., 2020) 64.98 27.20 59.04 19.87 55.97 20.49 56.06 57.02 21.38
Aloe* 68.94 31.10 62.90 9.91 52.10 18.13 56.55 57.18 31.76
Aloe*+BERT 71.04 33.64 65.46 22.07 56.76 39.71 67.43 63.21 32.61

Table 3: Results on the i.i.d. test set showing performance of models evaluated in terms of per-question (PQ)
accuracy and per-option (PO) accuracy. For descriptive and planning questions, only one of the answer options are
true, therefore per-question and per-option accuracies are identical. Aloe* refers to our modified Aloe, where we
replace the MONet module with a Mask-RCNN object detector.

predicts the most frequent label. To analyze textual
biases, we use a pretrained text-only QA model
(BERT (Devlin et al., 2019)) that takes only ques-
tions as input to predict the answer and ignores the
visual input. We denote it as “Blind-BERT”.

4.3 Results

Table 3 summarizes the performance comparisons
of our baselines on the CRIPP-VQA i.i.d. test set.
On Descriptive questions, the “random” and “fre-
quent” baselines achieve around only 8% accuracy,
while Blind-BERT gets 53.82% which suggests
the existence of language bias associated with cor-
relations between question types and most likely
answers for each. Surprisingly, MAC achieves only
48.72% which is lower than Blind-BERT. This im-
plies that the video feature representations learned
by MAC hurt performance compared to text-only
features. An unmodified version of the Aloe also
achieves only 56% accuracy. HCRN and both
Aloe variants (Aloe* and Aloe*+BERT) improve
performance indicating that visual features are cru-
cial for descriptive questions. Aloe*+BERT is the
best-performing model which implies that our mod-
ification with BERT embeddings helps.

Counterfactual questions involve a total of
three types of actions. Table (3) shows the action-
wise performances. MAC’s performance is once
again comparable to Blind- BERT’s. HCRN per-
forms slightly better than Blind-BERT. This shows
that even though visual features in HCRN are better
than MAC but it is not sufficient enough to perform
such complex reasoning. While, unmodified Aloe
achieves an average accuracy of∼ 52% on counter-
factual questions, which is close-to-random perfor-
mance. Aloe*+BERT achieves much better results
only in terms of remove and add actions. How-
ever, Aloe*+BERT is close to random for questions

with the “replace” action as it directly involves
the change in physical properties (i.e., mass and
shape) of an existing object within the given sce-
nario. This implies that Aloe*+BERT is able to
perform spatial reasoning to some extent, but is not
good at reasoning about changes in physical prop-
erties. As Aloe*+BERT outperforms Aloe* across
all actions, it can be implied that BERT-based em-
beddings enable the model to learn the relationship
between objects and actions.

Planning-based questions can have multiple
possible answers. We observe a similar trend in
results as Aloe*+BERT performs better than the
other baselines. Further analysis on Aloe*+BERT
predictions shows that model predicts “remove”,
“replace”, and “add” actions for planning tasks with
70.52%, 10.6%, and 18.87%, respectively. This
tells us that the model finds it easy to reason when
“remove” hypothetical action is present.

Human evaluations. We conduct a small-scale
human study to gauge an estimate for human-level
performance on the CRIPP-VQA dataset. We had
n = 6 participants in the study. The participants
were habituated to the task by showing them 5
videos and corresponding QA pairs. Then we asked
them to answer 30 questions on different sets of ran-
domly selected videos. The results of the human
study indicate that human participants achieved
90.00%, 78.89%, and 58.87% on descriptive, coun-
terfactual, and planning tasks, respectively.

4.4 Physical out-of-distribution experiments

Most of the previous studies focus on feature-based
OOD cases (like the rotation of the entities within
the image). We propose a new dimension of OOD
evaluation involving physical properties, by consid-
ering four types of OOD scenarios:
1. Mass: the mass of a few objects is changed to 8,



Figure 4: Comparison of performance of models (per-
option accuracy) for “remove” questions when tested
using the IID test set and each OOD test set.

Figure 5: Comparison of performance of models (per-
option accuracy) for “replace” questions when tested
using the IID test set and each OOD test set.

2. Friction: the surface friction is changed to zero,
3. Number of Objects: two objects are moving

instead of one when the scene is initialized,
4. Velocity: initial object velocity is increased to

18 from 14.
Figures 4,5,6,7 show the comparison of

VideoQA models on i.i.d. and different OOD sce-
narios for remove, replace, and add actions, and
planning questions, respectively. It can be seen
that the performance of models becomes close to
random ( 50%). This suggests that models are very
sensitive to such physical variations at test time,
especially for the “remove” action (as shown in
Figure 4). From Figure 6, we observe that the
performance drop is negligible across the OOD
sets for the add action, especially for Aloe*+BERT.
Moreover, Figure 7 shows that the performance
increases on several OOD scenarios for planning
task. At the same time, the performance of bias-
check baselines also improves. This suggests that
the expected behavior of the model changes based
on the given physical properties. In the case of the

Figure 6: Comparison of performance of models (per-
option accuracy) for “add” questions when tested using
the IID test set and each OOD test set.

Figure 7: Comparison of performance of models on
“planning” questions when tested using the IID test set
and each OOD test set.

remove action, Friction and Velocity OOD settings
are the hardest for all models. For the replace ac-
tion, the OOD setting with multiple objects is the
hardest for Aloe*+BERT. Number of initial mov-
ing Objects based OOD setting is also difficult for
models to understand, especially for the add action
based questions.

5 Analysis

In this section, we raise several important questions
and derive the insights accordingly.

Performance for detecting present vs. absent
collision detection. Consider the example with
three objects (A,B,C), where only object A col-
lides with B. In this case, we categorize the colli-
sion between A & B as the actual collision ( i.e.,
prediction label true) and the collision between B
& C and A & C as an absent collision (i.e., pre-
diction label false). Following this rule, we inde-
pendently check the performance of detecting all
occurring collisions and the collisions that never
happened. Table 4 shows the action-based perfor-



mance of Aloe*+BERT on these two categories. It
can be inferred that detecting the actual set of col-
lisions is easy except for the “add” action, where
model mainly predicts that none of the collisions
are present in counterfactual scenario. However, in
the case of the replace action, the model is failing
in both categories.

Performance for First Collision vs Subsequent
Collisions. In the CRIPP-VQA dataset, a colli-
sion between a pair of objects may lead to subse-
quent collisions between other objects. We analyze
the performance of the best model (Aloe*+BERT)
on counterfactual questions, by comparing the accu-
racy on questions about the first collision, with the
accuracy on questions about subsequent collisions.
To correctly predict subsequent collisions, models
need to understand the mass of the objects involved
in the first collision to learn the consequences (i.e.,
sequence of future events). From Table (5), we
observe that for all three actions, there is a drop in
performance on subsequent collisions; the drop is
highest (28.48%) for “remove”.

Importance of mass as intrinsic property.
There are many hidden factors (i.e., mass, friction,
object shape, velocity) that play a role in determin-
ing object trajectories and collisions. To under-
stand these dynamics, we analyze the number of
collisions in different counterfactual scenarios and
collisions between two different types of objects
(in terms of mass). Table 6 shows that if the first
collision is between two light or two heavy objects
then it leads to almost similar number of collisions.
If the first collision is between light and heavy ob-
jects then the number of collisions either decreases
or increases. On average there are 3.00, 2.06, 3.31,
and 4.15 collisions in vanilla, “remove”, “replace”,
and “add” counterfactual settings, respectively.

To summarize, these analyses show that each of
our counterfactual scenarios presents unique chal-
lenges. This also strengthens our argument that
models fail to learn various reasoning capabilities
including but not limited to intrinsic physical prop-
erties and consequences of the actions.

6 Conclusion

In this work, we present a new video question an-
swering benchmark: CRIPP-VQA, for reasoning
about the implicit physical properties of objects.
It contains novel tasks that require counterfactual
reasoning and planning, over three hypothetical ac-

Action Present collisions Absent collisions

Remove 78.27 52.81
Replace 65.74 60.23
Add 46.41 79.47

Table 4: Per-option accuracy of Aloe*+BERT for de-
tecting present vs absent collisions.

Action First
Collision

Subesequent
Collisions Difference

Remove 90.52 62.45 28.07
Replace 75.38 66.03 9.35
Add 55.45 41.01 14.44

Table 5: Per-option accuracy of Aloe*+BERT for de-
tecting first collision vs. subsequent collisions from the
set of occurring collisions in counterfactual scenario.

First collision type L → L H → H L → H H → L

Remove 3.12 3.23 1.78 4.03

Table 6: Average number of collisions in ground truth
videos (i.e., vanilla) when different types of objects
participate in first collision. “x → y”, where x, y ∈
{Light(L), Heavy(H)}, means that x mass object col-
lides with y mass object.

tions (i.e., remove, replace, and add). We evaluate
state-of-the-art models on this benchmark and ob-
serve a significant performance gap between de-
scriptive questions about visible properties and
counterfactual and planning questions about im-
plicit properties. We also show that models can
learn the initial dynamics of object trajectories but
they fail to detect subsequent collisions, which re-
quires an understanding of relative mass. This re-
sult is positioned as a challenge for the V&L com-
munity for building robust video understanding
systems that can interact with language.

7 Limitations

While CRIPP proposes the implicit reasoning about
intrinsic physical properties, it is limited to two
physical properties (mass and friction). However,
even these fundamental properties are a big chal-
lenge for existing systems. While other properties
and complex dynamics can be considered, that is
beyond the scope of this work. Our benchmark is
limited to a synthetic environment in blockworld,
and we believe that future work should extend our
work with real-world objects and backgrounds.
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Appendix

A Training details

We follow the standard training guidelines provided
by the authors of each baseline papers. We train
all systems on Quadro RTX 8000 GPUs. We train
each model with a maximum of 200 epochs. And
select the best model based on an average perfor-
mance accuracy. We follow the below instructions
to support each model which are MAC, HCRN,
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Aloe, and Aloe+BERT. For planning based task,
we add four extra classifier heads on top of all mod-
els which predicts: 1) the type of the action, 2) an
object on which action needs to be performed, 3)
an object which needs to be added through replace
or add action, and 4) relative direction of the object
if we are adding a new object.

MAC: We modify the public implemen-
tation of MAC from https://github.com/
rosinality/mac-network-pytorch to adapt
the video frames as input. We first resize the
each 125 frames leading (125, 3, 224, 224) video
dimension. Later, we use ResNet101 to extract
the features (125, 512, 14, 14). After taking the
channel-wise mean of features, we get the final
video re-presentation of (125, 14, 14) dimension
matrix supportable for the rest of the pipeline. We
also perform the necessary changes described for
the planning task as well.

HCRN: As HCRN is the VideoQA model and
official implementation is available at: https:
//github.com/thaolmk54/hcrn-videoqa, we
use the source code as it is. Except we do important
changes to do planning tasks.

Aloe*/Aloe*+BERT: We first reproduce the
Aloe on PyTorch based on the architecture details
from the research paper by (Ding et al., 2021) and
their publicly available demo at https://github.
com/deepmind/deepmind-research/tree/
master/object_attention_for_reasoning.
However, we use the code base from transformers2

library (as it is well tested and used across
the industry and academia) and modify it to
support the VideoQA in the same way as Aloe
does. Our initial experiments on CLEVRER
showed that Aloe cannot reproduce the results on
CLEVRER with the specified set of architecture
details and hyper-parameters from the original
paper. Therefore, we do extensive experiments
on Aloe architecture and hyper-parameter to
reproduce similar results. After achieving a similar
performance from the paper, we use this new
reproducible Aloe architecture in our experiments.
Table (7) shows the hyper-parameter details to
reproduce the results. The Aloe* source code
from our experiments is available at https:
//github.com/Maitreyapatel/CRIPP-VQA/

Hyper-parameter Value

# of layers 28
# of attention heads 128
embedding size 768
visual feature size 512
text embedding size 768
Batch Size for descriptive 96
Batch Size for Counterfactual 32
Batch Size for Planning 16
Learning rate 0.00005
Optimizer RAdam

Table 7: Aloe*+BERT architecture and hyper-
parameter details.

B Dataset Examples

The demo page contains several examples of the
CRIPP-VQA dataset. Apart from that, Table 8
shows the types of questions asked in different sub-
categories of the QAs.

C MONet failure cases

We discover that MONet-based unsupervised ob-
ject decomposition does not function on compli-
cated realistic visuals and that it is difficult to en-
sure that each object is decomposed on indepen-
dent images/features. Here, we show three failure
cases from the CRIPP-VQA. From the Figure 8,
we can observe that MONet is neither able to de-
compose the objects nor able to learn the color of
the objects. While MONet can learn the texture
(i.e., metal or cardboard). As a result, we can see
that the re-generated images lack greatly in terms
the important features. Hence, we drop the MONet
from the pipeline and adapt Mask R-CNN to work
on our CRIPP dataset.

D Physical out-of-distribution results

In this section, we provide accuracy tables for OOD
evaluations. First, Table (9) shows the performance
of all models when the mass of few objects are
changed (either increased or decreased to 8 from 2
or 14). Second, Table (10) shows the results when
the surface friction is removed. Third, Table (11)
shows the results where we have two objects initial-
ized with fixed velocity creating more collisions.
At last, Table (12) contains the results when we
slightly increase the initial velocity of the object.
Overall, we observe that for both counterfactual
and planning tasks all model performs poorly.

2https://github.com/huggingface/
transformers

https://github.com/rosinality/mac-network-pytorch
https://github.com/rosinality/mac-network-pytorch
https://github.com/thaolmk54/hcrn-videoqa
https://github.com/thaolmk54/hcrn-videoqa
https://github.com/deepmind/deepmind-research/tree/master/object_attention_for_reasoning
https://github.com/deepmind/deepmind-research/tree/master/object_attention_for_reasoning
https://github.com/deepmind/deepmind-research/tree/master/object_attention_for_reasoning
https://github.com/Maitreyapatel/CRIPP-VQA/
https://github.com/Maitreyapatel/CRIPP-VQA/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Figure 8: Example outputs of MONet-based scene decomposition failure cases. Left most images represents
the input image. The Middle six images represent the predicted masks. And right most images represent the
reconstructed input image by MONet.

E Neuro-symbolic methods

Recently, a lot of neuro-symbolic approaches are
proposed for CLEVRER-like settings. For exam-
ple, IEP (Johnson et al., 2017b), NS-DR+ (Mao
et al., 2019), are CPL (Chen et al., 2022) proposed
for physical reasoning. The goal of our study is
to evaluate whether systems can learn the implicit
relationship from counterfactual tasks. Symbolic
approaches either require providing this implicit
information or learning through a physics engine,
which is not feasible for real-life situations. There-
fore, in this study, we only consider neural models
to evaluate their performance where learning im-
plicit information is necessary.



Question Type Examples

Descriptive - Type 1 How many teal cardboard cube objects are there ?
How many cardboard sphere objects are static when video ends ?

Descriptive - Type 2 Do teal cardboard cube objects exist in the video ?
Do purple aluminium cube objects exist in the video ?

Descriptive - Type 3 What is the color of the collidee of purple aluminium cube in collision number 1?
What is the material of the collider of purple cardboard cube in collision number 2?

Descriptive - Type 4 How many collisions are there between teal sphere objects and teal aluminium objects ?
How many collisions are there between purple cardboard cube objects and teal objects ?

Descriptive - Type 5 What is the maximum occurring shape of objects in the video ?
What is the minimum occurring material of objects in the video ?

Counterfactual - Remove
What will happen, if the teal cardboard sphere is removed ?
Choice: purple cardboard sphere would collide with purple cardboard cube
Choice: teal cardboard cube would collide with purple cardboard cube

Counterfactual - Replace
What will happen, if the purple cardboard sphere is replaced by the purple aluminium sphere?
Choice: purple aluminium sphere would collide with olive aluminium sphere
Choice: teal cardboard sphere would collide with purple aluminium sphere

Counterfactual - Add
What will happen, if the purple cardboard sphere is added to the right of teal aluminium sphere?
Choice: teal aluminium sphere would collide with purple cardboard cube
Choice: olive aluminium cube would collide with teal aluminium sphere

Planning Make the collision between olive cardboard cube and olive aluminium sphere.
Make the collision between teal cardboard sphere and olive cardboard sphere .

Table 8: Examples of the CRIPP-VQA questions asked from different types of question categories as shown in
Figure 2.



Model Remove Replace Add Planning QAPQ PO PQ PO PQ PO

Frequency 0.00 50.27 0.00 50.00 0.00 50.00 21.00
Random 9.61 49.95 10.57 49.71 10.29 49.85 21.16
Blind-BERT 13.52 49.67 13.72 48.71 9.44 50.80 16.43

MAC 12.99 48.36 18.89 53.25 12.21 50.00 17.34
HCRN 18.15 55.47 20.08 56.84 14.03 54.58 43.94

Aloe* 20.46 57.00 12.98 52.05 12.90 54.93 46.07
Aloe*+BERT 26.16 60.67 22.42 56.21 20.34 62.62 48.71

Table 9: Performance evaluations when mass dist. is different than the training.

Model Remove Replace Add Planning QAPQ PO PQ PO PQ PO

Frequency 0.00 50.16 0.00 50.00 0.00 50.00 20.46
Random 10.41 50.51 3.92 50.42 6.58 49.93 20.49
Blind-BERT 10.86 49.90 11.90 49.77 13.96 50.80 12.34

MAC 11.6 50.30 14.23 49.82 7.86 50.53 14.07
HCRN 11.74 49.20 13.74 51.54 13.27 61.32 36.73

Aloe* 11.46 48.11 19.58 57.91 16.83 63.67 38.27
Aloe*+BERT 7.21 48.85 24.87 55.93 18.37 64.66 43.67

Table 10: Performance evaluations with zero surface friction.

Model Remove Replace Add Planning QAPQ PO PQ PO PQ PO

Frequency 0.00 50.57 0.00 50.00 0.00 50.00 5.04
Random 5.09 49.92 4.76 50.75 9.00 49.37 8.15
Blind-BERT 12.64 49.70 12.70 49.64 5.82 51.58 7.57

MAC 14.87 50.84 13.78 52.99 12.17 50.33 8.51
HCRN 19.75 55.80 13.78 52.10 13.10 55.03 18.92

Aloe* 17.39 55.73 12.50 50.82 10.61 52.55 27.76
Aloe*+BERT 12.81 55.10 18.37 52.54 21.10 60.86 25.95

Table 11: Performance evaluations with multiple objects moving.

Model Remove Replace Add Planning QAPQ PO PQ PO PQ PO

Frequency 0.00 50.20 0.00 50.00 0.00 50.00 19.20
Random 10.93 49.47 3.66 50.12 6.99 49.83 19.53
Blind-BERT 10.02 50.27 16.06 52.17 5.73 51.82 13.68

MAC 10.76 49.80 15.09 51.44 6.34 48.66 11.54
HCRN 10.89 50.52 17.62 52.89 12.67 60.93 33.48

Aloe* 11.63 48.79 14.51 54.15 15.36 62.82 39.30
Aloe*+BERT 6.43 48.63 29.53 61.37 15.82 65.02 42.10

Table 12: Performance evaluations with higher initial velocity.


