dcPIM: Near-Optimal Proactive Datacenter Transport

Qizhe Cai

Cornell University

ABSTRACT

Datacenter Parallel Iterative Matching (dcPIM) is a proactive data-
center transport design that simultaneously achieves near-optimal
tail latency for short flows and near-optimal network utilization,
without requiring any specialized network hardware.

dcPIM places its intellectual roots in the classical PIM protocol,
variations of which are used in almost all switch fabrics. The key
technical result in dcPIM is a new theoretical analysis of the PIM
protocol for the datacenter context: we show that, unlike switch
fabrics where PIM requires log(n) rounds of control plane messages
(for an n-port switch fabric) to guarantee near-optimal network
utilization, the datacenter context enables PIM to guarantee near-
optimal utilization with constant number of rounds (independent
of the number of hosts in the datacenter)! dcPIM design builds upon
insights gained from this analysis, and extends the PIM design to
overcome the unique challenges introduced by datacenter networks
(much larger scales and round trip times when compared to switch
fabrics). We demonstrate, both theoretically and empirically, the
near-optimality of dcPIM performance.

CCS CONCEPTS

« Networks — Transport protocols; Network protocol design;
Data center networks;

KEYWORDS

Datacenter networks; Proactive transport; Flow scheduling

ACM Reference Format:

Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit Agarwal. 2022. dcPIM:
Near-Optimal Proactive Datacenter Transport. In ACM SIGCOMM 2022 Con-
ference (SIGCOMM °22), August 22-26, 2022, Amsterdam, Netherlands. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3544216.
3544235

1 INTRODUCTION

Modern datacenter networks bear a striking similarity to switch
fabrics [3, 16, 20, 42]: both of these are organized around Clos-like
topologies using low-port count switches and both of these experi-
ence similar workloads—incast (many input ports having packets
for the same output port), all-to-all (each input port having packets
for each output port), one-to-one, etc. Yet, scheduling mechanisms
in state-of-the-art datacenter transport designs [7, 18, 22, 24, 34, 36]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9420-8/22/08....$15.00
https://doi.org/10.1145/3544216.3544235

Mina Tahmasbi Arashloo

University of Waterloo

Rachit Agarwal

Cornell University

are significantly different from those used in switch fabrics. Bridg-
ing this gap has the potential for datacenter transport designs to
benefit from decades of foundational work on switch scheduling
that has led to near-optimal switch fabric designs [8, 30-32, 41].

Datacenter Parallel Iterative Matching (dcPIM) is a proactive,
receiver-driven, transport design that places its intellectual roots
in classical switch scheduling protocols to simultaneously achieve
near-optimal tail latency for short flows and near-optimal network
utilization, without requiring any specialized network hardware.
dcPIM achieves near-hardware latency for short flows by build-
ing upon ideas from recent transport protocols [7, 18, 22, 28, 34].
In particular, dcPIM is a connectionless protocol, allowing short
flows to start sending at full rate; dcPIM uses per-packet multipath
load balancing, that minimizes congestion within the network core;
dcPIM enables lossless network only for control packets, allowing
fast retransmission of lost short flow data packets in pathological
traffic patterns (e.g., extreme incast); and, dcPIM uses the limited
number of priority queues in network switches to minimize inter-
ference between short flow and long flow data packets. We will
show that, by carefully integrating these ideas into an end-to-end
protocol, dcPIM achieves near theoretically optimal tail latency for
short flows, even at 99 percentiles.

What differentiates dcPIM from prior transport designs is that it
achieves near-hardware tail latency for short flows while simultane-
ously sustaining near theoretically optimal (transient or persistent)
network loads. dcPIM achieves this by placing its intellectual roots
in the classical Parallel Iterative Matching (PIM) [8], a time-tested
protocol variations of which are used in almost all switch fabrics.
Just like PIM, hosts in dcPIM exchange multiple rounds of control
plane messages to “match” senders with receivers to ensure that
senders transmit long flow packets only when proactively admitted
by the receivers. Realizing PIM-style matchings at the datacenter-
scale turns out to be challenging: while PIM was designed for switch
fabrics that have tens of ports and picosecond-scale round trip time
(RTT), dcPIM needs to operate in a much harsher environment:
datacenter networks have much larger scales and much larger RT Ts.
dcPIM resolves these challenges using two properties of datacenter
environments. First, unlike switch fabrics where (at any point of
time) each input port may very well have packets to send to each
output port, it is rarely the case that (at any point of time) each
host in the datacenter will have packets to send to each other host
in the datacenter. That is, traffic matrices in datacenter networks
are typically sparse: several studies from production datacenter
networks show that, when averaged across all hosts, the number
of flows at any point of time is a small constant [9, 17, 19, 37, 38];
furthermore, dcPIM performs matchings only for long flows that
are likely to be even fewer in number. Second, unlike switch fabrics
that are designed to run at full load, datacenter networks rarely run
at an average load of 100%.

dcPIM leverages the first datacenter network property to es-
tablish a new theoretical result: unlike switch fabrics where PIM

https://doi.org/10.1145/3544216.3544235
https://doi.org/10.1145/3544216.3544235
https://doi.org/10.1145/3544216.3544235

Jalo

@
@
01 @®
Request Stage Grant Stage Accept Stage

(a) Round One

Request Stage

Grant Stage Accept Stage

(b) Round Two

Figure 1: An example of Parallel-Iterative Matching (PIM) (see §2 for a detailed discussion of the example.)

achieves near-optimal utilization using log(n) rounds of control
messages (for an n-port switch fabric), traffic matrix sparsity in
datacenter networks allows dcPIM to guarantee near-optimal uti-
lization with constant number of rounds, that is, independent of
the number of hosts in the network!. This result enables a dcPIM
design that scales well, independent of the datacenter network size.
dcPIM leverages the second property that datacenter networks
rarely run at 100% load to pipeline data transmission between cur-
rently matched sender-receiver pairs with control messages for
computing next set of matchings to hide the overheads of longer
RTTs of datacenter networks.

While dcPIM builds upon a strong theoretical foundation, the
final end-to-end design embraces simplicity just like the original
PIM protocol: the number of matching rounds, the timescale for
each matching round, and the number of data packets that can be
sent upon matching are all fixed in advance. Just like PIM, dcPIM
design is also robust to imperfection: it is okay for host clocks to
be asynchronized—some of the control messages may be delayed
within the fixed time used for matching rounds; the randomized
matching algorithm in PIM combined with multiple rounds of con-
trol plane messages ensures that hosts unmatched in one round
will be able to catch up in the remaining rounds (§3.1), and will con-
tinue to request matching until data transmission is complete (§3.2).
The final result is a new proactive datacenter transport design that
requires no specialized hardware, no per-flow state or rate calcula-
tions at switches, no centralized global scheduler, and no explicit
network feedback and yet provides near-optimal performance both
in terms of tail latency and network utilization.

We have implemented dcPIM in Linux hosts, and in simula-
tions. dcPIM evaluation over a small-scale CloudLab testbed and
over simulation demonstrates that dcPIM consistently achieves
near-hardware latency and near-optimal network utilization across
a variety of evaluation settings that mix-and-match three net-
work topologies, three workloads, three traffic patterns, varying
network topology oversubscription, and varying network loads.
dcPIM simulator and implementation, along with all the docu-
mentation needed to reproduce our results, are available at https:
//9ithub.com/Terabit-Ethernet/dcPIM.

I This result may be of independent interest. Getting back to our starting point for
a moment—bridging the gap between scheduling mechanisms in switch fabrics and
datacenter networks—our theoretical analysis reveals several interesting insights about
existing proactive transport designs: (1) the superior performance of protocols like
pHost and Homa on large-scale simulations is rooted in the sparsity of traffic matrices
that they evaluate on; and (2) the poor network utilization of pHost, NDP and Homa
(e.g., as observed in Aeolus [24]) is due to traffic matrices that are transiently denser
than what these protocols can handle. Our theoretical analysis establishes the sparsity
of traffic matrices for which these protocols will observe poor network utilization (and
our simulation results match the theoretical analysis)!

2 PARALLEL ITERATIVE MATCHING (PIM)
OVERVIEW

Most modern switches use multi-stage Clos interconnects [42].
They can simultaneously deliver data from multiple input ports to
multiple output ports, without any internal buffering and with each
port operating at line rate, as long as there is one-to-one mapping
between the input and the output ports: each input port sends data
to at most one output port and each output port receives data from
at most one input port. Thus, scheduling on the switch interconnect
fabric reduces to finding a large number of conflict-free pairings of
input and output ports with outstanding data, that is, the classic
problem of finding matchings on bipartite graphs [25, 27, 29, 43].
PIM [8], and its variations, are one of the most widely deployed
matching protocols in switch fabrics due to their simplicity, effi-
ciency, and near-optimality (in terms of fabric capacity utilization);
see §5. PIM uses multiple rounds of control messages to compute
conflict-free pairings of input and output ports with outstanding
data; each round consists of the following three stages:

e Request Stage: At the beginning of the round, each unmatched
input port sends a request (control message) to each output
port for which it has outstanding data.

e Grant Stage: Each unmatched output port picks one of the re-
ceived requests uniform randomly, and sends a grant message
to corresponding input port.

o Accept Stage: Each unmatched input port picks one of the re-
ceived grants uniform randomly, and sends an accept message
to corresponding output port. Both the input and the output ports
mark themselves as matched.

An example. Consider the example in Figure 1. Output ports are
numbered 1 to 4, and each input port has a unique color. In the first
round (Figure 1(a)), all input ports are unmatched and will send
requests to outputs ports for which they have outstanding data
(shown as edges). For instance, the blue input port sends requests
to output ports 1, 3, and 4. Next, each output port randomly selects
a request to grant. In our example, output ports 1 and 3 send grants
to the blue input port while the other two send grants to the red
input port. Finally, each input port randomly picks a grant to accept
and marks itself as matched. In our example, the blue input port
accepts output port 1 and the red input port accepts output port 2.
The red and blue input ports, and output ports 1 and 2 will mark
themselves as matched (creating a matching of size 2) while the
rest stay unmatched.

In the second round (Figure 1(b)), only the green and yellow
input ports are unmatched, and thus, only output ports 1 and 3
receive requests. Out of the two, only output port 3 is unmatched. It
sends a grant to the yellow input port, which the yellow input port

https://github.com/Terabit-Ethernet/dcPIM
https://github.com/Terabit-Ethernet/dcPIM

accepts. Thus, output port 3 and the yellow input port are matched,
creating a matching of size 3. This is a maximal matching, that
is, no more input-output port pairs will be added to the matching
in subsequent rounds. Once the matching rounds are over, the
matched input ports send data to their matched output ports.

PIM properties. PIM has several properties that have led to its
widespread adoption in today’s switch fabrics. First, it computes a
near-optimal matching in ~ log n rounds, where n is the number of
switch ports. Since switch fabrics have only tens of ports (small n),
6-8 rounds are enough to converge to a near-optimal matching.
Second, PIM embraces simplicity: the number of matching
rounds, and the timescale of each stage and each round is fixed
independent of the workload. For instance, fixing the number of
rounds to 8 and fixing the timescale of each stage to 1.5X of the
round trip time (RTT) between input and output ports (to account
for queueing of requests and grants as in Figure 1), the entire
computation of matching takes 12 RTTs worth of time. In switch
fabrics, the RTT between input and output ports is of the order of
picoseconds; thus, matchings can be computed in a few picosec-
onds, a tiny fraction of the time it takes to transmit a packet. As a
result, switch fabrics can simply execute matching and data trans-
mission sequentially without harming latency or utilization. Note
that randomized choices made at input and output ports, along with
multiple rounds of matchings, allows PIM to be robust against the
imperfection due to fixed timescales of each stage—delayed control
packets are simply discarded since ports unmatched after a round
get to participate in the matching protocol in subsequent rounds.
Finally, PIM computes matchings on per-packet granularity; in
fact, to account for varying packet sizes, many switches schedule
packets over the fabric at the granularity of fixed-sized cells. Once
the input ports send one packet to their matched output ports,
the matching is recomputed. Thus, it can effectively be used to
maximize switch fabric utilization independent of the workload.

2.1 Challenges in realizing PIM for datacenters

Efficiently realizing PIM at the datacenter-scale requires resolving
several challenges introduced by the datacenter environment. First,
naively using PIM on datacenters can lead to high latency due to
datacenter networks having much larger scales than switch fabrics:
using ~ log n rounds on a datacenter network means that a flow
may have to wait for tens of RTTs (which can typically amount
to hundreds of microseconds) for its sender and receiver to match
before it can be transmitted. To be able to efficiently realize PIM for
datacenters, we need a better tradeoff between number of rounds
and utilization guarantees.

Naively using PIM on datacenters can also lead to low network
utilization. Even if we run PIM for fewer than ~ log n rounds, just
computing matchings will still take tens of microseconds; thus,
performing PIM-style sequential matching and data transmission
(that is, compute a matching, transmit data between the matched
hosts, and compute a new matching again) will result in network
being idle during matching computations. This will waste tens of
microseconds of data transmission time, harming utilization for
modern high-bandwidth networks. In addition, computing match-
ings at per-packet granularity as in PIM could lead to even more
underutilization since computing matchings will take much longer

than packet transmission times. Thus, we need to perform match-
ings in a manner that the time taken to compute matchings perfectly
matches the time taken to transmit the data upon matching.

Finally, unlike switch fabrics that typically operate in a failure-
free manner and are designed to have full-bisection bandwidth,
failures and oversubscription are a norm in datacenter networks.
Thus, an efficient datacenter-scale realization of PIM requires addi-
tional mechanisms to handle failures and oversubscription.

3 dcPIM DESIGN

dcPIM design, as in the original PIM protocol, comprises of two
phases: a matching phase and a data transmission phase. However,
to overcome the aforementioned challenges of adapting PIM to
datacenters, dcPIM design uses four key ideas. First, using a new
theoretical analysis, dcPIM demonstrates that for the special case of
datacenter networks, it is possible to achieve near-optimal network
utilization with a small number of rounds in the matching phase
(§3.1). Second, dcPIM uses a receiver-driven per-packet admission
control mechanism to efficiently handle oversubscription and to
enable fast data retransmission during failures (§3.2). Third, to hide
the long datacenter RTTs, dcPIM carefully pipelines the matching
and data transmission phases (§3.3). Finally, to ensure that the time
taken to compute matchings perfectly matches the time taken to
transmit the data between matched hosts, dcPIM extends PIM’s
original matching algorithm to match each sender with multiple
receivers and vice versa (§3.4).

Several basic aspects of dcPIM design are borrowed from recent
work on proactive receiver-driven transport designs [18, 34]. In
particular, upon arrival of a new flow, the sender sends to the corre-
sponding receiver a notification packet that may contain infor-
mation for the receiver to make matching decisions (e.g., flow size
and deadline, tenant information, etc.), if such information is avail-
able. Switches perform randomized load balancing at a per-packet
granularity (e.g., using packet spraying [14]). All control packets
in dcPIM are sent at the highest priority—as argued in [18, 22, 34],
sending control packets at the highest priority, combined with
buffer sizes in modern switches, ensures that loss of control pack-
ets is extremely rare in failure-free scenarios; dcPIM can thus use
lightweight mechanisms to efficiently handle packet loss. Finally,
for latency-sensitive short flows, the sender transmits the flow im-
mediately with second highest priority; this mechanism, similar
to [18, 22, 34]2, allows minimizing short flow completion times. For
longer flows, dcPIM’s mechanism kicks in: the flow is transmitted
once the sender is matched with the corresponding receiver, and
once the receiver admits packets for the flow. If additional priority
levels are available, dcPIM uses the remaining priority levels for
these flows, using a mechanism described in §3.2.

3.1 The Matching Phase

At its core, dcPIM matching phase is the same as PIM: senders
and receivers exchange control messages over multiple rounds to
match with each other using the protocol outlined in §2. A minor
difference is that in dcPIM, receivers start the round by sending

2There is a subtle difference, though: while [18, 22, 34] transmit first few packets of
all flows immediately, dcPIM does so only for short latency-sensitive flows. Network
operators can configure which flows are considered short.

requests since they already get notified about, and keep track of,
senders with outstanding data. The core difference between dcPIM
and PIM is a new tradeoff between number of rounds and matching
size based on a new theoretical analysis, which we outline next.

Exploiting traffic matrix sparsity for improved theoretical
guarantees. Our analysis exploits the sparsity of traffic matrices in
datacenter networks: several studies from production datacenters [9,
17, 19, 37, 38] show that the average incast/outcast degree in the
network, or alternative the number of concurrent flows—averaged
over all senders/receivers—is far less than the total possible number
of flows (quadratic in number of hosts). For instance, [9] shows
that, across seven different datacenters, the number of concurrent
flows across a sample of 2000 servers is less than 10000 (that is, the
average number of concurrent flows is less than 5); furthermore,
recall that dcPIM performs matchings only for long flows; these are
likely to even fewer in number at any given point of time. dcPIM
design exploits such sparse traffic matrices. In particular, we prove
the following theorem:

Theorem 1. Let G be a connected bipartite graph with n nodes, and
let 5 be the average degree. If PIM computes a matching of expected
sizeM* = n/a, forsome1 < a < n, using O(log n) rounds, then after
r rounds, dcPIM computes a matching of expected size (1 — %)M*‘

This is a powerful result for two reasons. First, it shows that, for
small constant values of §, dcPIM computes a matching of roughly
the same quality as PIM, but using only constant number of rounds—
independent of the network size; thus, dcPIM’s matching mecha-
nism can scale independent of datacenter network size. For instance,
in a one-million server datacenter with an average incast/outcast
degree of 5, if 80% of the senders/receivers are matched by PIM,
the above theorem guarantees that dcPIM will match > 78% of
the senders/receivers using just 4 rounds of matching (unlike PIM,
that will take ~ log n = 20 rounds). The second reason the above
result is powerful is because it explains why recent proactive trans-
port protocols like pHost, NDP and Homa (that essentially do one
round of matching) seem to perform so well over large-scale simu-
lations: workloads over which these protocols are evaluated usually
generate extremely sparse traffic matrices. The result also explains
the recently observed poor throughput of NDP and Homa proto-
cols [24]: when traffic matrices are transiently dense, single-round
matching protocols like NDP and Homa result in extreme network
underutilization since they are unable to sustain the load due to
poor matching sizes; as we will show, our simulations confirm
precisely this intuition and result.

To prove the above theorem, we have to employ a new proof
strategy since merely replacing the total number of edges in PIM
analysis (= n?) by & - n will not lead to a better bound (O(log($ - n))
is asymptotically O(log n)). In the original PIM proof, the core chal-
lenge was to prove the number of rounds in which the matching
algorithm converges; once converged, the bound on matching size
was quite trivial. On the other hand, we are already fixing the num-
ber of rounds, and the core challenge is to prove that the resulting
matching size is close to optimal.

Proof of Theorem 1. Let us call a sender active if the sender is
unmatched, and has at least one unmatched receiver to which it
has an outstanding flow. A request (an edge in the graph) is said to

be unresolved if both the sender and the receiver for the request
are currently unmatched, and resolved otherwise.

Similar to the original analysis of PIM, we can show that after
each matching round, the expected number of unresolved requests
for a sender are 1/4 of the unresolved requests after the last round.
Let Qy,r be a random variable representing the number of unre-
solved requests for sender u after r rounds. In round r, u receives q
unresolved requests from different receivers. These receivers can
be divided into two groups:

(1) Receivers that will not receive grants from any other senders.
These receivers will be unmatched if u does not send a grant
to them. Suppose there are k such receivers.

(2) Receivers that will receive at least one grant from other
senders. These receivers will be matched anyway. There are
q — k receivers in this group.

If u sends a grant to areceiver in the first group, then u will definitely
be matched. In that case, all of the g requests u has received in this
round will be resolved in round r (note that, by definition, a request
is resolved if its sender is matched even if the request itself is not
granted). If u sends the grant to a receiver in the second group, u
may not be matched, but receivers in group 2 will all be matched as
they receive at least one other grant from other senders. Thus, in
this case, at least g — k requests becomes resolved. Combining these
-k
qT .
resolved. Thus, the expected number of unresolved requests after r

two, in expectation, at least % -q+ (g — k) requests will be

round at any sender u is at most k - % which is less than or equal

to % for any k when g > 0. That is, E[Qy, |Qu,r-1 = q] < %.
Using Bayes rule and linearity of expectation, we have:

E[Qu,r] = 2;:()P’”(Qu,r—l =q)- IE'[Qu,r|Qu,r—1 =q]

<30 PrQur1 =)

_E[Qu,r—l]
==]
Therefore:
E[Qu,r- E[Qu.r- B[O,
0,1 < 2Qural (BHlural ElOu)

Thus, after r rounds, the expected number of unresolved requests
for a sender u is at most E[Qy;,0]/4". The number of unresolved
requests in round 0 (before we start) is fixed and equal to deg(u) (in
the original PIM analysis, deg(u) = n for each sender). Therefore
210,) < B

From here on, our proof differs from PIM analysis. Let I, , be
an indicator random variable that is one if Q, , > 1 and zero
otherwise. That is, E[I,] = Pr(ly,r = 1) = Pr(Qu,r > 1). Markov
inequality says for a nonnegative random variable X and a > 0,
Pr(X = a) < @. That is, the probability that X is at least a
is at most the expectation of X divided by a. As a result, for the
nonnegative random variable Q, , and a = 1, we have

Pr(Qu,r 2 1) < E[Qu,r] < deg(u)/4",

and therefore:

ElLu,r] = Pr(Qu,r 2 1) < deg(u)/4".

Let U be the set of all senders and let A be the set of senders that
are active after r rounds. That is, A is the set of senders u with
Qu,r = 1.Intuitively, the rest of the proof builds upon following two
observations. First, based on the above result, senders with degree
less than 4" will have their requests resolved after r rounds and
will become inactive. Second, since senders in A have degree more
than 47 (since they are active), and since the average degree of the
graph is bounded, the size of A cannot be very large. Specifically,
the expected number of active senders after r rounds is

E[JAl] = ZuevElly,] < Zyeudeg(u)/4” < §-n/4"

where § is the average degree. The expression above follows from
the fact that, since the graph is bipartite, sum of the degrees of
senders is equal to that of receivers (that is, Z,cyy deg(u) = & - n).
If we let dcPIM run for additional rounds, in the best case, all
senders in A will be added to the matching. Thus, the gap between
matching computed by dcPIM after r rounds and the matching com-
puted by PIM (after it converges in, say, log(n) rounds) is bounded
by size of A. Specifically, Let Mpyps be the size of the matching com-
puted by PIM after log(n) rounds, and let M* = E[Mpyp(] = n/a.
Then, the size of matching computed by dcPIM after r rounds is:

E[Mgcprm] = M* — E[|A]]

n é-n
Z__

o 47

n (5~a)
=—.|1-

o 47
:M*'(l_S-a)

4r

This completes the proof O

Matching size versus utilization guarantees. Our discussion so
far has focused on size of the matching computed by dcPIM, and
how this matching is near-optimal. However, once a receiver is
matched to a sender, it admits packets only from that sender. Thus,
matchings correspond to network utilization only if the sender has
enough packets to be admitted by the receiver to “fill up” the entire
data transmission phase. We will show, in §3.4, that by extend-
ing the matching algorithm to match each receiver with multiple
senders and vice versa, dcPIM can ensure there are enough packets
for the receivers to admit for almost the entire data transmission
phase, hence providing network utilization guarantees same as the
matching size guarantees.

3.2 The Data Transmission Phase

At a high-level, dcPIM data transmission phase uses a simple proto-
col: every MTU transmission time, the sender checks if it has a short
flow for which packets can be transmitted without matching; if so,
the sender transmits a packet from a short flow using the second
highest priority. If the sender has no short flows, it must wait to
match with the receiver before transmitting packets. Each receiver
admits packets from the matched sender using a per-packet “token”
that specifies the flow ID and the sequence number of the admitted
packet. We provide details on the protocol below.

dcPIM uses four kinds of control packets in data transmission
phase: notification, finish, ack and tokens; all control pack-
ets are transmitted at the highest priority. Upon a flow arrival, the

sender sends a notification control packet to the corresponding
receiver; the notification contains the flowID and may contain
additional information about the flow (e.g., flow size and deadline,
tenant information, etc.), if available. Once the sender has finished
transmitting all data packets for a flow, it sends a finish control
packet to the corresponding receiver; the £inish packet contains
the flowID and information about the number of packets transmit-
ted by the sender for that flow. Upon receiving a notification,
the receiver immediately responds with an ack control packet; upon
receiving a finish packet, the receiver immediately responds with
a finish control packet if and only if it has received all the packets
for that flow (which can be checked since sender’s finish packet
contains that information). Control packets being transmitted at
the highest priority, combined with buffer sizes in modern switches,
means that the datacenter network behaves like a lossless fabric
for control packets in failure-free scenarios [18, 22]. To handle con-
trol packet drops (e.g., due to failures), dcPIM uses a lightweight
mechanism described in §3.5.

dcPIM token clocking mechanism for handling in-network
congestion. Each receiver admits long flow packets from the
matched sender at a per-packet granularity using tokens, where
each token allows the sender to transmit one packet. To efficiently
react to congestion in oversubscribed topologies, and to efficiently
handle transient congestion due to high-priority short flows be-
ing transmitted without explicit matching, dcPIM receivers use a
token clocking mechanism similar to TCP and pHost [18]. Each
receiver maintains a per-flow sliding token window of a default
size of 1 BDP, created upon receiving a notification. Tokens
specify the flow ID, the admitted data packet sequence number,
and cumulative acknowledgements (the smallest packet sequence
number for which the token has been sent but the data packet has
not yet been received). Thus, the receiver can keep track of tokens
for which it has received the data packet (removing them from
the window) and tokens for which it has not yet received the data
packet (used for requesting packet retransmission). The start of
the window points to the token with the smallest packet sequence
number for which the token has been sent but the data packet has
not yet been received. Until the window is full, the receiver sends
out one token per MTU transmission time. If the admitted packets
from the matched sender are delayed (e.g., due to oversubscription
or high-priority short flows), the window may fill up. The receiver
then sends one new token for every data packet received from the
matched sender.

dcPIM’s token clocking mechanism, combined with its matching-
based design, efficiently handles congestion due to oversubscription
or high-priority short flows: since the number of tokens for which a
data packet has not been received is bounded by the token window
size, once the window fills up, the rate at which any receiver sends
out tokens perfectly matches the rate at which data packets are
received by the receiver. This has a desirable effect similar to many
other window-based mechanisms: if data packets are delayed due
to congestion in the core, the receiver will also delay sending out
additional tokens; as the congestion alleviates, more data packets
are received resulting in more tokens being sent out by the receiver.

Sender-side data transmission logic. dcPIM sender-side data
transmission logic is also simple. Every MTU transmission time,

the sender checks if it has an outstanding short flow; if so, the
sender transmits a packet from a short flow using the second highest
priority. Otherwise, the sender checks if it has a token from the
receiver it is currently matched with, if any, and transmits the
data packet corresponding to that token. If the remaining flow size
information for flows is available, it can be used by the sender
to choose (among concurrently active flows) the next packet to
transmit, and to set in-network priorities similar to [18, 34].
dcPIM senders use cumulative acknowledgements in tokens to
clear up sender-side buffer; importantly, duplicate cumulative ac-
knowledgements do not trigger data retransmission in dcPIM. The
senders discard unused tokens at the end of the current data trans-
mission phase, after a grace period of half of the control packet RTT
(this grace period allows senders to efficiently use tokens which
are sent by the receiver at the end of data transmission phase). Dis-
carding unused tokens is important to avoid senders sending data
packets for stale tokens; packets corresponding to discarded tokens
will be sent when the sender is next matched with the receiver.

Fast retransmission mechanism upon data packet loss.
dcPIM can experience data packet drops due to several reasons—
contention between short flows (that are transmitted without ex-
plicit admission control), e.g., in extreme incast traffic scenarios;
contention between high-priority short flows and long flows; con-
tention between long flows, e.g., in oversubscribed topologies; and
inevitable failures. dcPIM receivers detect data packet loss either
using the notification packet (for short flows, this packet in-
forms the receivers that packets are en route) or using the token
window mechanism (that allows receivers to keep track of data
packets for which tokens have been sent but the data has not been
received). If packets from long flows are dropped, dcPIM simply re-
transmits the tokens at the start of the window upon subsequently
matching with the sender. If packets from short flows are dropped,
dcPIM requires the outstanding packets in the flow to be explic-
itly admitted (similar to [24])—the flow will participate in the next
matching phase and packets need to be admitted by the receiver
after matching. Intuitively, data packet drops in dcPIM indicate
high congestion due to short flow incast and/or failures; thus, this
is the right course of action. Since dcPIM prioritizes short(er) flows
during the matching phase, the flows will not need to wait for too
long before matching and subsequent retransmissions. dcPIM can
be easily integrated with drop notification mechanisms [11, 45] for
even faster short flow packet retransmissions, if datacenter network
hardware supports such functionality.

3.3 Pipelining Phases

Datacenter networks have significantly larger RTTs when com-
pared to switch fabrics. dcPIM hides these long RTTs by exploiting
the fact that datacenter networks are rarely run at an average load
of 100%, thus providing enough bandwidth to simultaneously send
data and control packets. Specifically, dcPIM pipelines the current
data transmission phase with the matching phase for the next data
transmission phase (Figure 2). This way, data transmission contin-
ues without any disruption: the next data transmission phase can
start right after the current data transmission phase ends.
Pipelining of matching and data transmission phases means that
ideally the two phases would be completely aligned, that is, they

Time

Matching Phase Data Transmission Phase

Phase i

Phase i + 1

' '
Round 1 Requesti Grant E Accept

' '
Round 2 Requesti Grant E Accept

Figure 2: An illustration of dcPIM’s pipelining (§3.3)

will have the same lengths. How should dcPIM choose the length
of each phase? A longer length would allow more matching rounds,
potentially increasing the matching size (thus, potentially higher
utilization). However, if the length is too long, flows would not have
enough packets to transmit during the data transmission phase,
potentially resulting in lower utilization. dcPIM finds a sweet spot
between the two extremes using two ideas:

Embracing PIM’s simplicity: fixing the time for each stage.
Recall from §2 that each round of matching uses three stages—
request, grant and accept. The length of each stage determines the
amount of time hosts wait to receive requests, grants and accept
control packets, depending on the stage. dcPIM sending control
packets at the highest priority and the network performing packet
spraying means minimal queueing delay for control packets. Thus,
in the common case, each stage would take half of the control packet
RTT, or cRTT/2. However, to account for multiple control packets
contending at the receiver downlink, dcPIM uses a small “slack”
similar to PIM: it sets the length of each stage to be X CR; T where
B allows accounting for control packet queuing delays. Similar to
PIM, it is okay for control packets to be delayed beyond this fixed
time for two reasons: first, all control packets carry a round number,
and straggler control packets can be ignored; and second, similar to
PIM, randomized and multi-round nature of dcPIM naturally handle
control packets being delayed beyond the fixed time since hosts
unmatched in one round will be able to catch up in subsequent
rounds. Thus, dcPIM recommends using a small value of f (in
our evaluation, we set § = 1.3). Our sensitivity analysis in §4
suggests that any value larger than 1.1 has minimal impact on
overall performance. Note that, for topologies where different pairs
of hosts have different cRTTs, dcPIM decides the length of each
stage based on the longest cRTT in the network.

Pipelining stages across multiple rounds. Each matching
round requiring three stages (request, grant, accept) means that r
rounds of matchings require executing 3 - r stages; with each stage
taking f X @ time, the total length of the matching and conse-
quently the data transmission phases turns out to be 3rfx @ We
observe that it is possible to further reduce this length by pipelining
the accept stage at the end of each round with the request stage
at the beginning of the next round. Specifically, hosts that partic-
ipate in accept and in request stages are completely different: in

the former, only matched receivers send accept packets and in
the latter, only unmatched receivers send request packets. Thus,
dcPIM aligns the accept stage of each round with the request stage
of the next round, hence starting the next round earlier (Figure 2).
When an unmatched sender receives an accept packet, it discards
all other requests from the overlapping request stage of the next
round and marks itself as matched. With such pipelining, it is easy
to see that dcPIM needs to execute 2r + 1 stages for the matching
phase thus requiring the matching phase length to be (2r +1)8 @.

3.4 Sustaining Higher Loads

In dcPIM design described so far, once a receiver is matched to a
sender, it admits packets only from that sender. That means match-
ings correspond to network utilization only if the sender has enough
packets to be admitted by the receiver to fill up the entire data trans-
mission phase. Consider, for instance, one of the topologies used
in our evaluation: a leaf-spine datacenter network topology with
100Gbps links, unloaded RTT for data packets being 5.8us, unloaded
RTT for control packets being cRTT = 5.2us, and bandwidth-delay
product of 72.5KB. Consider dcPIM uses r = 4 rounds and slack
value of f = 1.3; then, the length of the data transmission phase
will be (2r + 1),6@ = 30.4ps. Thus, if the sender has a flow of size
73KB (this is smallest size for a flow to require matching in dcPIM),
it will transmit the entire flow within roughly the first RTT (5.8ys to
be precise) resulting in both the sender and the receiver being idle
for rest of the data transmission phase. As a result, in the worst-case
scenario of flow sizes being just slightly larger than 1 BDP, both
the sender and the receiver may be idle for (1 — (5.8/30.42)) ~ 0.81
fraction of the data transmission phase, potentially missing the
opportunity to send or receive data from other idle hosts.

Instead, to make the most of the available bandwidth in the data
transmission phase, dcPIM allows each receiver to be matched with
more than one sender (and vice versa) in the matching phase, care-
fully regulating how multiple senders share the available bandwidth
to the same receiver during data transmission. Conceptually, each
receiver (or sender) divides its available bandwidth into k channels
and matches with other senders (or receivers) upon a per-channel
basis. Each channel operates using 1/k of the link bandwidth and
1/k of the token window (the problem of designing a near-optimal
matching algorithm that performs non-uniform bandwidth alloca-
tion across channels is explored in [1]). Thus, if a receiver matches
with k senders in each matching round, the flow size required to
fill up the data transmission phase (for each channel) reduces by a
factor of k; this does result in slightly higher latency for medium
and long flows (since, as discussed below, they are transmitted at
1/k of the link bandwidth), but allows dcPIM to fill up the pipes
more efficiently. In our example above, k = 4 allows achieving
~99% utilization even for the worst-case of flows of size 73KB. We
provide details on this extension for dcPIM below.

The matching phase. The matching logic is largely similar to
the case of k = 1 (§3.1) but with some extra book-keeping: the
receiver keeps track of the number of outstanding bytes from each
sender, and uses this information to compute the maximum number
of channels needed to finish transmitting the outstanding bytes.
In the grant stage, each sender picks a subset of the channels it
has received requests for such that the sender’s total number of

matched channels do not exceed k. Similarly, in the accept stage,
each receiver picks a subset of the channels it has received grants
for such that the receiver’s total number of matched channels do not
exceed k. Finally, for each channel that is accepted from a sender,
the receiver updates the number of outstanding bytes from that
sender to account for the number of bytes that will be sent over
the matched channels during the data transmission phase.

The data transmission phase. All k channels of a receiver (or a
sender) share the link bandwidth in the data transmission phase,
each using 1/k of the link bandwidth. To account for this, the
receiver appropriately scales the time at which per-packet tokens
are sent (based on the number of channels matched with each
sender). If flow size information is available, priorities can also be set
intelligently: the receiver can use tokens to communicate priorities
for the packets from matched senders, with senders having flows
with fewer remaining bytes being assigned higher priorities.

3.5 Asynchronous Design & Optimizations

We have already described most of the interesting aspects of dcPIM
design in previous subsections. In this subsection, we outline a
few more implementation details and optimizations incorporated
within dcPIM to optimize latency and to handle control packet
drops during inevitable failures.

Asynchronous design. Our design and implementation of dcPIM
can benefit from but does not necessitate clock synchronization
across hosts. Each host maintains its local view of the clock, and
uses its local view of the stage/round/phase to make matching and
data transmission decisions. Datacenter networks already use time
synchronization protocols (e.g., IEEE1588 Precision Time Protocol
(PTP)) to achieve sub-microsecond network-wide synchronization;
and most modern NICs support PTP. Moreover, as discussed earlier,
the randomization and multi-round nature of PIM ensures that
hosts unmatched in one round (e.g., due to control packet delays)
will be able to catch up in the remaining rounds, and will continue
to request matching until the entire data transmission is complete.

Optimizing for latency. dcPIM analysis shows that it is possible
to achieve near-optimal utilization if senders and receivers select
requests and grants uniform randomly. dcPIM aims to also optimize
the latency of smaller flows while keeping PIM’s high utilization
guarantees. As such, dcPIM allows extremely short flows (< 1 BDP)
to be sent without participating in matching. To further optimize
latency for medium-sized flows, dcPIM adds a simple optimization
to PIM’s matching algorithm: it performs first round of matching
based on flow sizes, if such information is available (if flow sizes
are not known in advance, the matching in the first round boils
down to random choice as in other rounds). Specifically, in the
first round of the matching phase, senders pick the request with
the smallest remaining flow size in the grant stage, and receivers
pick the grant with the smallest remaining flow size in the accept
stage; starting with the second round, senders and receivers pick
request and grant packets uniform randomly, just like PIM. Using
such a FCT-optimizing round allows dcPIM to achieve most of
the benefits of protocols such as pHost [18] and Homa [34] that
approximate the shortest remaining processing time first scheduling
policy to optimize average flow completion times. The subsequent

utilization-optimizing rounds allow dcPIM to increase the matching
size, ensuring high utilization.

Handling control packet loss. Recall that dcPIM sends all con-
trol packets at the highest priority. Thus, even with commodity
switches, the network fabric behaves like a lossless fabric for control
packets in failure-free scenarios. To handle control packet drops in
presence of failures, dcPIM uses the observation that control pack-
ets being sent at the highest priority means that the end-to-end
latency of a control packet in failure-free scenario is roughly equal
to a control packet RTT in an unloaded network (since transmission
and queueing delays for control packets are tiny). dcPIM exploits
this observation as follows: if the sender does not receive an ack for
the notification packet or a receiver-side finish for its own
finish packet, the sender retransmits these control packets within
an RTT and continues doing so until it receives the corresponding
ack or finish packets or a data packet retransmission request.
Dropped token packets are treated as dropped data packets and
dcPIM recovers from their loss using the token clocking mechanism
described in §3.2.

Handling control packet drops for the matching phase is even
easier. As discussed earlier, if grant or request packets are lost
in one round, their corresponding senders and receivers can catch
up in the following rounds. If an accept packet is lost, its cor-
responding sender will consider itself as free while the receiver
considers itself as matched; thus, the sender might match to other
receivers in the following rounds, and receive tokens from multiple
receivers in the data transmission phase. However, this rarely hap-
pens consistently in multiple consequent phases due to the inherent
randomization in dcPIM’s matching protocol.

3.6 dcPIM parameters: r, f and k

dcPIM design has three parameters: r, f and k. We already discussed,
in §3.1, that r should be chosen based on Theorem 1 and desired
network utilization/load. We also discussed in §3.3 that f should be
very small since it is accounting for the rare queueing delay seen
by control packets. The only remaining question is the tradeoff
introduced by k.

Intuitively, a higher k will allow more senders and receivers
to be matched during a matching phase, potentially increasing
utilization. The case for flow completion time (FCT), however, is
more nuanced: if more senders and receivers are matched, more
flows can transmit data during the data transmission phase and can
potentially finish faster. On the other hand, a higher k means that
each channel has to share the available bandwidth with more flows
and send fewer bytes during each data transmission phase, which
can potentially delay the completion of some flows. The sweet spot
is for k to be set equal to r, the number of matching rounds. To
see why, consider the example from §3.4. When k = 1, the flows
that hurt utilization the most are those that are slightly larger than
1 BDP. These flows have to be matched for transmission as they
are larger than the short flow threshold, but will only transmit for
~1 RTT in the transmission phase, which lasts for ~r RTTs. When
k is equal to r, k flows can concurrently transmit for the entire
transmission phase. Thus, k = r is the sweet sport that provides
significant utilization gains without considerably hurting FCT (§4).

4 EVALUATION

We evaluate dcPIM via packet-level simulations and via an end-to-
end implementation running on a 32-node CloudLab testbed. We
will show throughout the evaluation that:

dcPIM consistently achieves good short flow latency and net-
work utilization. Across a variety of settings that mix-and-match
three network topologies, three workloads, three traffic patterns,
and varying network loads, dcPIM consistently achieves average
and tail short flow latency close to hardware latency while sus-
taining significantly higher loads. We will also demonstrate, via
microbenchmarks, that dcPIM’s theoretical foundation allows it to
achieve good utilization even for extreme workloads.

Reasons for dcPIM’s performance. As we will show, state-of-
the-art datacenter transport designs make one of the two design
choices: they either give up on short flow latency by proactively
dropping packets (e.g., Homa Aeolus and NDP) or they give up
on utilization by proactively ensuring that buffers do not fill up
(e.g., Homa and HPCC). dcPIM, using a matching-based design,
breaks this hard tradeof: in the absence of short flows, matching-
based design and per-packet load balancing used in dcPIM ensures
that queueing induced by long flows is negligible. Indeed, when
short flows compete with long flows, dcPIM maintains low latency
by prioritizing short flows, but does so with minimal impact on
utilization—matching-based design ensures that buffers are filled
only when matched flows compete with high-priority short flows,
and token window based design ensures that maximum buffering
is exactly 1BDP, precisely what is needed to keep the downlink
busy for the next RTT. Thus, the main take-away is not that dcPIM
achieves near-optimal average and tail latencies, but rather that
dcPIM does so while achieving near-optimal network utilization.

4.1 dcPIM Simulation Results

We incorporate dcPIM within the pHost simulator [18]. The work-
loads, topologies, performance metrics, and protocols used in our
simulations are summarized in Table 1. For all evaluated proto-
cols, we use their respective simulators but ensure consistency in
topology and workload settings.

Default setup. Unless stated otherwise, we use the standard setup
from prior work [7, 22, 24, 34]: all-to-all traffic pattern generated to
create 0.6 load (maximum load sustainable by all protocols) over the
leaf-spine topology. For dcPIM, we use one FCT-optimizing round,
three utilization-optimizing rounds, k = 4 (number of channels),
B = 1.3, and similar to prior work [18, 22, 24, 34], 1 BDP as short
flow size threshold. For other protocols, we set the parameters
suggested in the respective papers. See Table 1 for details.

dcPIM achieves near-optimal tail latency and network uti-
lization. Figure 3 shows that existing protocols either achieve low
latency for short flows or high utilization, but not both. dcPIM, on
the other hand, is able to simultaneously achieve both. We provide
intuitive reasons for each protocol individually.

Homa Aeolus achieves the best network utilization among ex-
isting protocols, coming closest to dcPIM (Figure 3(a)), and good
average slowdowns across all flows (Figure 3(b)). However, it does

- Two-tier leaf-spine, commonly used in the literature [7, 18, 34]: 4 spines, 9 racks each with 16 end-hosts

Topologies - FatTree: Three-tier 1024 end-hosts
- Oversubscribed: same as two-tier leaf-spine but with 2:1 oversubscription ratio.
Workloads - IMC10 [18], Web Search [7], and Data Mining [7]
- All-to-All: each sender to a random receiver (generated using a Poisson process from the workloads)
Traffic Patterns - Bursty: all-to-all traffic pattern + a 50:1 incast workload [28]

- Dense traffic matrix : 144 X 143 flows with each sender having a flow for each receiver

Evaluated Protocols

- Homa Aeolus [24, 34] and NDP [22]: Receiver-driven transport protocols
- HPCC [5]: Rate-control using precise link load information from the network (through INT)

Evaluated Metrics

- Slowdown: ratio of observed FCT to the optimum FCT (when the flow is the only one in the network)
- Utilization: ratio of the protocol’s achieved throughput and the offered load

- 100Gbps access links for end-hosts, 200ns propagation delay

Link Properties - 400Gbps links between switches in leaf-spine, and 100Gbps in FatTree
- 500KB per port buffer or 16 MB switch buffer (as common in prior work [7, 18])
Switch Properties (for NDP, we use small per-port buffer (8 packets) to enable timely packet trimming for fast retransmission.)

- 450ns processing latency and packet spraying

Table 1: Summary of evaluation scenarios and parameters for simulations.

1 8 T T
0.99 [Homa Aeolus XXX HPCC
008 7 NDP_ezzzem depiM s |
’ \ % c
c 097 \ X z 6
S 096 \ N S
8 o095 \ 3]
5 o0 &
3 ggg Homa Agolus —+— | c 4
: DP —3%— g ;5
0.92 HPCC —8—] =
0.91 dcPly —%— 2
0.9 L L
0.5 0.6 0.7 0.8 0.9 1 ~
Load IMC10 Web Search Data Mining
(a) Maximum Sustained Load (b) Mean Slowdown
32 32 32
lHama Aeolus EXXXI HPCC l_l lHoma Acolus XXX HPCC m lHoma Aeolus XXX HPCC m
NDP e dcPIM_O5= NDP_Eee dcPIM 0= NDP oo dcPIM 5=
16 16 16
S . S . T I [7 S . I
S S]
A Z iy :, |
2 2 wn
2+ 2+ 2+
<1BDP <2BDP <4BDP <8BDP<16BDP infi <1BDP <2BDP <4BDP <8BDP<16BDP _infi
Flow Size (BDP) Flow Size (BDP) Flow Size (BDP)
(c) Slowdown across flow sizes (IMC10) (d) Slowdown across flow sizes (Web Search) (e) Slowdown across flow sizes (Data Mining)

Figure 3: Evaluation results for the default setup. Figure 3(a) demonstrates the maximum load sustained by each protocol for the IMC10
workload. Figure 3(b) shows the mean slowdown across all flows for load 0.6 (maximum load that all protocols can sustain). Figures 3(c) to
3(e) show the mean and 99th-percentile slowdown broken down by flow size (x-axis labels).

so by trading off short flow latency (Figure 3(c), 3(d), 3(e)): we ob-
serve short flow slowdown of 2.5-2.7 on an average, and 3-6.1 at
tail across various workloads. The reason is that Homa Aeolus pri-
oritizes packets scheduled by the receiver; thus, unscheduled short
flows may be dropped even if there is one link along the path that is
transmitting scheduled packets; thus, average and tail latencies suf-
fer. Recall that Homa Aeolus builds upon Homa; the original Homa
evaluation was performed with infinitely large switch buffers, and
uses 10Gbps links. Our own evaluation confirms the observations
made in Homa Aeolus: when realistic buffer sizes are used, Homa
suffers from significant packet drops and low network utilization,
especially for 100Gbps links. Thus, for sustainable loads, Homa will
achieve near-optimal short flow latency (similar to dcPIM, since we
use exactly the same prioritization mechanism for short flows) but
will suffer from degraded network utilization. Homa Aeolus makes

a better tradeoff when compared to Homa: give up a bit on short
flow latency to achieve much better utilization.

NDP suffers from high short flow latency as well as poor net-
work utilization. We observe short flow slowdown of 2.5-4.1 on an
average, and 12.5-22.3 at tail across various workloads. The reason
is two-fold: (1) similar to Homa Aeolus, NDP proactively drops
packets to maintain low queue occupancy; and (2) NDP does not
use prioritization. NDP’s proactive dropping of packets combined
with a lack of mechanism to ensure that retransmitted packets are
not dropped again also results in poor utilization.

HPCC is an interesting case. HPCC performs aggressive rate con-
trol to ensure minimal queue occupancy at each switch. This allows
HPCC to achieve very low latency for short flows—we observe
slowdown of 1.1-1.9 on an average and tail slowdown of 2-5.8
across workloads. This is because senders transmit short flows at

HPCC

Homa Aeolus EXXXI
S o8] 256 L NDP_ ez depiM == | S
=} f=
© - ©
S o6l Horha Aelous —+— | =
Elne NDP —>— s or X% E
¥ o4 :PCC —— 3 2 2
: cPI 5%
§ Tid L . ,: E
) &2
2 02 E _ 3% .
i 4| N |
0 N o
0 200 400 600 800 1000) 5 N B 0 200 400 600 800 1000
Time(us) Mean Slowdown 99 Slowdown Time(us)

(a) dcPIM robustness in bursty workloads

(b) dcPIM worst case: all flows of size BDP+1

(c) dePIM bad case: dense traffic matrix (& = 144)

Figure 4: Microscopic view into dcPIM performance. (left) even under bursty workloads (all-to-all traffic combined with periodic incast), dcPIM
maintains high network utilization. (center) for the hypothetical case of all flows of size BDP+1 (worst-case for dcPIM, §3.4), dcPIM has slightly
higher latency than HPCC; and (right) dcPIM achieves high network utilization even when the traffic matrix is not sparse. Discussion in §4.1.

full rate, and little to no queueing at each switch ensures near-zero
queueing delays. However, such aggressive focus on keeping low
queues also means that HPCC suffers from suboptimal utilization:
temporary queueing caused by short flows results in long flows
reducing their rate and taking one extra RTT to ramp back up.

dcPIM is able to achieve near-optimal average and tail latency
for short flows, while maintaining high network utilization. For ex-
ample, across workloads, we observe average short flow slowdown
of 1.03-1.04 (as much as 2.6X, 4X and 1.8X better than Homa Aeo-
lus, NDP and HPCC, respectively) and tail short flow slowdown of
1.09-1.16 (as much as 5.6, 20.5x and 5% higher than Homa Aeolus,
NDP and HPCC, respectively). The fact that dcPIM achieves lowest
average and tail latency for short flows is not surprising;: it always
prioritizes short flows over long flows; what may be surprising is
that it achieves such low latency without impacting network utiliza-
tion. For instance, Figure 3(a) shows that dcPIM can sustain network
loads as high as 0.84 for the IMC10 and Web Search workloads, and
as high as 0.7 for the Data Mining workload.

How is dcPIM able to maintain high network utilization? We
already summarized the reasons in the beginning of the evalua-
tion section (the second takeaway), but provide a little more detail
here. There are three reasons for this. First and foremost, just like
PIM achieves much better switch fabric utilization than its theoret-
ical bound, dcPIM achieves much better network utilization than
its theoretical bound. Second, dcPIM mostly performs matching
for flows that are at least longer than the short flow threshold;
since extremely short flows are not accounted for in utilization, the
flows transmitted after matching have enough packets to utilize
the entirety of the data transmission phase (after all, most bytes in
datacenter traffic are contained in long flows [9, 19, 37]). Finally, the
core reason is very conceptual: as discussed above, dcPIM buffers
up packets in the queues only when long flow compete with high-
priority short flows; and the amount of buffering is just “right”: the
token clocking mechanism ensures that, at any point of time, one
BDP worth of long flow packets are in flight, exactly the amount
needed to keep the link busy for the next round trip time.

dcPIM maintains low latency for short flows without impact-
ing network utilization by making a specific tradeoff: latency of
medium-sized flows; this is because the time taken to match flows
before they can be transmitted incurs the most overhead for flows
that are not too short and are not too long. We believe this is the
right tradeoff to make for the following reason. It is not too hard to

see that achieving high network utilization requires maintaining
low average latency for long flows: for these flows, throughput is
given by the ratio of flow size and flow completion time. Thus, if
the goal is to achieve low tail latency for short flows and low aver-
age latency for long flows, any datacenter transport design must
tradeoff the flow completion time for medium size flows (other
near-optimal datacenter protocol designs also make a similar trade-
off [2]). If necessary, network operators can explore this tradeoff
space by choosing any desired threshold for short flows and any de-
sired value of number of matching rounds and number of channels
(we perform sensitivity analysis later in the evaluation).

Microscopic view into dcPIM benefits. Large-scale simulations
often hide how protocols handle short-term traffic bursts. In our
next experiment, we setup a microbenchmark: on the same two-
tier leaf-spine topology, we have 16 senders in the same ToR send
an all-to-all traffic to 16 receivers in the other ToR (e.g., a MapRe-
duce application executing a shuffle), and every 100us for the first
600pus, 50 other senders send 128KB flows as an incast traffic to one
of the above receivers (e.g., a parameter-server based application
colocated with the MapReduce application). Figure 4(a) shows that
HPCC stumbles under such a workload due to frequent trigger-
ing of PFC. Homa Aeolus and NDP converge to relatively good
utilization but take 300 — 600us to converge due to poor matching—
multiple receivers repeatedly send grants to the same sender, which
can respond to only one receiver’s grant at a time, thus result-
ing in some receivers being idle and subsequent underutilization.
dcPIM’s matching algorithm operates at tens of ys; thus, it not only
converges quickly but also achieves high network utilization by
computing good matchings?.

Worst-case for dcPIM: understanding dcPIM limitations. We
have tried hard to find a scenario where dcPIM performs worse than
state-of-the-art datacenter protocols. We have found one scenario:
all-to-all traffic with 0.6 load on a 144-node leaf-spine topology
as in the default setup but with one change: rather than using the
Web Search workload, we use a workload that has all flows of size
BDP+1. While unrealistic, this workload helps us demonstrate the
limitations of dcPIM. Intuitively, for this workload, dcPIM will send
each flow only after the sender is matched with the corresponding
receiver, thus incurring latency overhead for each flow. Figure 4(b)

3Since the first matching phase cannot be pipelined by the data transmission phase,
the network utilization of dcPIM is 0 during the first matching phase.

NDP G HPCC mms dcPIM o

T
NDP G HPCC i GcpiM o=

Slowdown

Mean Slowdown

E N W R U O N o®

<1BDP <2BDP <4BDP <8BDP<16BDP infi

Data Mining Flow Size (BDP)

IMC10 Web Search

(a) Oversubscribed Slowdown (b) Oversubscribed Slowdown per Flow Size

Mean Slowdown

HPCC

Homa Aeolus =23 ‘ Homa Aeolus XXX
NDP dePIM_Ce NDP

Slowdown

HF N W R U O N o®

<1BDP <2BDP <4BDP <8BDP<16BDP infi
Flow Size (BDP)

Data Mining

(c) FatTree Slowdown (d) FatTree Slowdown per Flow Size

Figure 5: (left and center left) results for oversubscribed topology demonstrating the effectiveness of dcPIM’s token clocking mechanism in
gracefully responding to potential congestion in the core. (right and center right) results for a 1024-node FatTree topology. * we were unable
compare against Homa Aeolus in oversubscribed topologies. See §4.1 for detailed discussion.

shows the results: we observe that, for this synthetic workload,
HPCC is able to achieve better average latency and slightly better
tail latency than dcPIM; NDP and Homa Aeolus continue to achieve
worse average and tail latency due to proactively dropping packets
when more than one flow compete on any outgoing link. If a net-
work operator expects to run the network over such a workload,
they can easily tune the short flow threshold used in dcPIM to
account for this worst-case scenario.

What if the sparse traffic matrix assumption does not hold?
As discussed earlier, datacenter traffic analysis studies have shown
that the average incast ratios in production datacenters are small.
However, it may happen that incast ratios may be large over a
subset of the datacenter over a short period of time (e.g., in a large-
scale MapReduce deployment executing shuffle). To evaluate dcPIM
performance over such workloads, we create another microbench-
mark where each of the 144 senders have a long flow to send to
each of the 144 receivers (total number of flows = 144 X 144), and
we measure the overall network utilization. Figure 4(c) shows that
existing protocols actually achieve low utilization for this workload.
HPCC suffers from PFC triggering all the time due to congestion
being both in the core and at the receiver (as HPCC paper notes,
it may suffer from poor performance when there are multiple con-
gestion points); NDP suffers from large number of retransmissions
due to aggressive dropping and from not handling in-network con-
gestion; and, Homa Aeolus suffers from convergence time—it con-
verges to the right matching due to prioritizing scheduled flows,
but takes more than 1000us to converge. dcPIM performance de-
grades compared to previous results, but it still achieves ~93.5%
utilization. This is surprising; we found the maximal matching is
often of very large size for this workload (M* ~ 120); thus, with
N =144, = 144,00 = (144/120) = 1.2, r = k = 4, Theorem 1 gives
us an expected matching size and network utilization of 32.9% in
any matching phase. Digging deeper into this result, we found that
dcPIM high performance is due to dcPIM converging to matching
sizes that are larger than what the theoretical bound suggests (as is
seen during the first ~100yus in the figure)—this is not surprising
since our theoretical bound is on expected matching size, where
the randomization is over sequence of grant and accept deci-
sions made by senders and receivers, respectively, and it is hard to
generate the precise bad-case sequences.

Additional topologies and workloads. Figure 5 presents results
for oversubscribed and FatTree topologies. For the former, we use
the same leaf-spine topology as earlier, but decrease the bandwidth

between leaf and core switches from 400 Gbps to 200Gbps to create
an oversubscription ratio of 2:1. We generate all-to-all traffic traces
from all three workloads for a network load of 0.5; we chose load 0.5
because, unfortunately, none of the NDP, HPCC and Homa Aeolus
can sustain any higher loads—NDP continues to drop retransmit-
ted packets, do fast retransmission, and again drop retransmitted
packets; HPCC results in high PFC trigger rates, and Homa Aeo-
lus has no mechanism to handle drops of scheduled packets. For
both oversubscribed and FatTree topologies, the observed results
have the same trend as in Figure 3. This is because, in the over-
subscribed topology, dcPIM’s token clocking mechanism enables
receivers to carefully admit packets in presence of in-network con-
gestion; and, in the FatTree Topology, although dcPIM sets the
length of matching phase based on longest RTT as we discuss in
§3.5, pipelining of matching and data transmission phases hides
large datacenter round trip times. dcPIM evaluation over several
additional workloads, including a mix of all-to-all traffic with bursty
incast traffic [28], consistently exhibits similar performance.

Sensitivity Analysis of dcPIM Parameters. Finally, we evalu-
ate the sensitivity of dcPIM performance to its three parameters—
number of matching rounds (r) and channels (k), and slack (8)—
using our default setup with one change: we use a network load
of 0.54 rather than 0.6 as that is the highest load that dcPIM can
sustain with all combinations of evaluated parameters. Note that for
r = 1, we only have one FCT-optimizing round and no utilization-
optimizing rounds, and therefore our theoretical analysis does not
hold. Figure 6 shows the results. We observe that going from 1 to
2 rounds has the most significant impact since dcPIM’s matching
algorithm kicks in—we observe 18 — 24% higher sustainable load
with two rounds (additional rounds result in diminishing returns);
improved utilization also results in improved tail latency. As ex-
pected, increasing the number of rounds results in slightly higher
sustainable loads, but at the cost of latency increase (since flows
wait longer before they can start data transmission). Using 2-4 chan-
nels gives dcPIM the best tradeoff: we observe higher utilization
because more channels allow dcPIM to do much more fine-grained
matching making it less likely for matched senders and receivers to
become idle during data transmission (§3.4). We observe that f has
no impact beyond 1.1: as discussed in §3.3, § is a safety guard for
rare queueing of control packets; thus, it impacts neither latency
nor utilization for dcPIM.

- 1 20 o 1 9
® [
© 2
S o9 s
° S 15 % 075 47 £
S os —] 3 3 S
< s]
3 A/ | 2 3 Utilization —e— H
a 07 2 10 N S 05 Mean slowdown —%— | > @&
£ k=1 —— N — s]
Z o6 k=2 —3— 3 5 k=2 —%— - 5 025 43 2
= V k=4 —%— k=4 —%— B
2 k=8 —e— k=8 —o— I
0.5 L 0 L L o 0 1
1 2 3 4 5 1 2 3 4 5 1 11 12 13 14 15

Rounds

(a) Maximum Sustained Load (r, k)

Rounds

(b) 99% Slowdown (r, k)

Beta

(c) Sustained Load & Mean Slowdown (f)

Figure 6: dcPIM sensitivity analysis against number of rounds (r) and channels (k), and slack (f). See discussion in §4.1.

T

TCP 73 |
pcTcp
dePIM

256

Slowdown
T

<IBDP <2BDP <4BDP <8BDP <I6BDP infi
Flow Size (BDP)

Figure 7: 32-server CloudLab testbed results for dcPIM, DCTCP and
TCP cubic: mean and tail slowdown (error bars show 99%) across
different flow sizes. y-axis is log-scale. See §4.2.

4.2 dcPIM Implementation Results

We have implemented a dcPIM prototype in Linux using DPDK [15],
using ~3K lines of C code. We use CloudLab to evaluate the current
dcPIM implementation over a 32-server two-tier leaf-spine topology
(10Gbps links and ~8yus RTT).

Before discussing implementation results, we make two impor-
tant notes. First, the current dcPIM implementation is not optimized
for CPU efliciency and requires more work to alleviate network
stack overheads [10]; thus, we focus on measuring latency and net-
work utilization rather than CPU efficiency. Second, as discussed
in §3.5, dcPIM can operate upon loosely synchronized host clocks
(e.g., using time synchronization protocols like PTP [13]); however,
our CloudLab testbed does not support PTP. We expect dcPIM to
perform even better in datacenter networks that typically employ
time synchronization protocols.

Figure 7 shows the average and tail slowdown for dcPIM, DCTCP
and TCP Cubic over CloudLab testbed for the same all-to-all traffic
pattern as earlier, but using load 0.5. The results are as expected:
for short flows, dcPIM achieves 21 — 43X better average slowdown
and 34 — 76X better P99 tail slowdown than DCTCP and TCP,
while sustaining 1.71 — 2.61X higher throughput for long flows
(1.71 — 2.61x lower flow completion time for long flows).

5 RELATED WORK

There is a large and active body of research on datacenter transport
protocols [4-6, 12, 21, 23, 35, 39, 46, 47]; it would be a futile attempt
to compare dcPIM with each and every protocol. In our evalua-
tion, we have already evaluated state-of-the-art rate control and
scheduling based transport designs, and demonstrated that dcPIM
design avoids the fundamental tradeoff between short flow latency
and network utilization in prior designs. One design that we did

not present results for is Fastpass [36]. Fastpass uses a centralized
scheduler to not only match senders and receivers, but also to com-
pute the network paths between them for data transmission. Using
a centralized scheduler allows Fastpass to get good utilization; how-
ever, Fastpass not only suffers from scalability issues for modern
high-bandwidth networks, but also from high short flow latency:
since all short flows need to be scheduled before transmission, their
average and higher tail latency is at least 2x away from optimal;
dcPIM achieves much better short flow tail latency.

The use of matching mechanisms has a long history in switch
scheduling [8, 25, 26, 31-33, 40, 41, 44], to name a few. dcPIM places
its intellectual roots in PIM due to two reasons. First, as shown in
a recent theory result, PIM provides the optimal tradeoff between
number of rounds and matching size guarantees [29]; other pro-
tocols (e.g., IRRM [33] and iSLIP [31]) provide better tradeoff by
making assumptions on input workloads, but can perform much
worse when these assumptions do not hold. PIM, on the other
hand, makes no such assumption and has been shown to work well
independent of underlying workload.

6 CONCLUSION

Modern datacenter networks bear a striking similarity to switch
fabrics; yet, scheduling mechanisms in existing datacenter trans-
port designs are significantly different from those used in switch
fabrics. Bridging this gap has the potential for datacenter transport
designs to benefit from decades of foundational work on switch
scheduling that has led to near-optimal switch fabric designs. To
that end, we have presented Datacenter Parallel Iterative Matching
(dcPIM), a proactive receiver-driven transport design that places
its intellectual roots in classical switch scheduling protocols to si-
multaneously achieve near-optimal tail latency for short flows and
near-optimal network utilization, without requiring any specialized
network hardware. We have demonstrated, both theoretically and
empirically, the near-optimality of dcPIM performance.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Zaoxing Liu, and anonymous
SIGCOMM reviewers for insightful feedback. We would like to also
thank Saksham Agarwal, Shijin Rajakrishnan and David Shmoys
for many helpful discussions during the course of this project. This
research was in part supported by NSF grants CNS-2047283 and
CNS-1704742, a Google faculty research award, and a Sloan fellow-
ship. This work does not raise any ethical issues.

REFERENCES

(1]

[2

[

[3

[4

flaa

T =
)

—
—

[12]

[13

[14

[15]
[16

[17]

(18

[19

[20

[21]

[22

[23

Rachit Agarwal, Shijin Rajakrishnan, and David Shmoys. 2022. From Switch
Scheduling to Datacenter Scheduling: Matching-Coordinated Greed Is Good. In
ACM PODC.

Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit Agarwal, David
Shmoys, and Amin Vahdat. 2018. Sincronia: near-optimal network design for
coflows. In ACM SIGCOMM.

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable,
commodity data center network architecture. In ACM SIGCOMM.

Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong
Pan, Navindra Yadav, et al. 2014. CONGA: Distributed congestion-aware load
balancing for datacenters. In ACM SIGCOMM.

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In ACM SIGCOMM.

Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. 2012. Less is More: Trading a Little Bandwidth for Ultra-low
Latency in the Data Center. In USENIX NSDL

Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal Near-optimal Data-
center Transport. In ACM SIGCOMM.

Thomas E Anderson, Susan S Owicki, James B Saxe, and Charles P Thacker. 1993.
High-speed switch scheduling for local-area networks. In ACM TOCS.
Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic
characteristics of data centers in the wild. In ACM IMC.

Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaechyun Hwang, and
Rachit Agarwal. 2021. Understanding Host Network Stack Overheads. In ACM
SIGCOMM.

Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin. 2014. Catch the Whole Lot
in an Action: Rapid Precise Packet Loss Notification in Data Center. In USENIX
NSDL

Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-scheduled delay-bounded
congestion control for datacenters. In ACM SIGCOMM.

Richard Cochran, Cristian Marinescu, and Christian Riesch. 2011. Synchronizing
the Linux system time to a PTP hardware clock. In IEEE ISPCS.

Abhishek Dixit, Pawan Prakash, Yu Charlie Hu, and Ramana Rao Kompella. 2013.
On The Impact Of Packet Spraying In Data Center Networks. In IEEE INFOCOM.
DPDK. 2022. Data Plane Development Kit. http://dpdk.org/. (2022).

Nathan Farrington, Erik Rubow, and Amin Vahdat. 2009. Data center switch ar-
chitecture in the age of merchant silicon. In IEEE Symposium on High Performance
Interconnects.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: Smartnics in the public cloud.
In USENIX NSDIL

Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. 2015. phost: Distributed near-optimal datacenter transport
over commodity network fabric. In ACM CoNEXT.

Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. 2016. Projector: Agile reconfigurable data
center interconnect. In ACM SIGCOMM.

Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: a scalable and flexible data center network. In ACM SIG-
COMM.

Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert NM Watson, An-
drew W Moore, Steven Hand, and Jon Crowcroft. 2015. Queues don’t matter
when you can jump them!. In USENIX NSDIL

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew
Moore, Gianni Antichi, and Marcin Wojcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In ACM SIGCOMM.
Chi-Yao Hong, Matthew Caesar, and P Godfrey. 2012. Finishing flows quickly
with preemptive scheduling. In ACM SIGCOMM.

[24

[25

[26

[27

[28

~
2,

[30

[31

[32

[33

[34

[35

[36

(37]

[38

[39]

=
=

'S
=

[47

Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang, Baochen Qiao, Kai Chen,
Kun Tan, and Yi Wang. 2020. Aeolus: A Building Block for Proactive Transport
in Datacenters. In ACM SIGCOMM.

Amos Israeli and Alon Itai. 1986. A fast and simple randomized parallel algorithm
for maximal matching. In Information Processing Letters.

Tara Javidi, Robert Magill, and Terry Hrabik. 2001. A high-throughput scheduling
algorithm for a buffered crossbar switch fabric. In IEEE ICC.

Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. 1990. An optimal
algorithm for on-line bipartite matching. In ACM STOC.

Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019.

HPCC: High Precision Congestion Control. In ACM SIGCOMM.
Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. 2015. Improved distributed approx-

imate matching. In ACM JACM.

M Ajmone Marsan, Andrea Bianco, Paolo Giaccone, Emilio Leonardi, and Fabio
Neri. 2003. Multicast traffic in input-queued switches: optimal scheduling and
maximum throughput. In IEEE/ACM ToN.

Nick McKeown. 1999. The iSLIP Scheduling Algorithm for Input-queued Switches.
In IEEE/ACM ToN.

Nick McKeown, Adisak Mekkittikul, Venkat Anantharam, and Jean Walrand. 1999.
Achieving 100% throughput in an input-queued switch. In IEEE Transactions on
Communications.

Nick McKeown, Pravin Varaiya, and Jean Walrand. 1993. Scheduling cells in an
input-queued switch. In Electronics Letters.

Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-driven Low-latency Transport Protocol Using Network Priori-
ties. In ACM SIGCOMM.

Ali Munir, Ghufran Baig, Syed M Irteza, Thsan A Qazi, Alex X Liu, and Fahad R
Dogar. 2014. Friends, not foes: synthesizing existing transport strategies for data
center networks. In ACM SIGCOMM.

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2015. Fastpass: A centralized zero-queue datacenter network. In ACM
SIGCOMM.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
2015. Inside the social network’s (datacenter) network. In ACM SIGCOMM.
Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Carlo Contavalli, Amin
Vahdat, et al. 2017. Carousel: Scalable Traffic Shaping at End Hosts. In ACM
SIGCOMM.

Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan, Mostafa
Ammar, Ellen Zegura, Keon Jang, Mohammad Alizadeh, Abdul Kabbani, and
Amin Vahdat. 2020. Annulus: A Dual Congestion Control Loop for Datacenter
and WAN Traffic Aggregates. In ACM SIGCOMM.

Devavrat Shah, Paolo Giaccone, and Balaji Prabhakar. 2002. Efficient randomized
algorithms for input-queued switch scheduling. In IEEE Micro.

Devavrat Shah and Damon Wischik. 2006. Optimal scheduling algorithms for
input-queued switches. In IEEE INFOCOM.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, et al. 2015.
Jupiter rising: A decade of clos topologies and centralized control in google’s
datacenter network. In ACM SIGCOMM.

Robert Endre Tarjan. 1983. Data structures and network algorithms. Vol. 44. Siam.
George Varghese. 2005. Network Algorithmics: an interdisciplinary approach to
designing fast networked devices. Morgan Kaufmann.

David Zats, Anand Padmanabha Iyer, Ganesh Ananthanarayanan, Rachit Agar-
wal, Randy Katz, Ion Stoica, and Amin Vahdat. 2015. FastLane: Making Short
Flows Shorter with Agile Drop Notification. In ACM SoCC.

Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. In
ACM SIGCOMM.

Noa Zilberman, Gabi Bracha, and Golan Schzukin. 2019. Stardust: Divide and
Conquer in the Data Center Network. In USENIX NSDL

http://dpdk.org/

	Abstract
	1 Introduction
	2 Parallel Iterative Matching (PIM) Overview
	2.1 Challenges in realizing PIM for datacenters

	3 dcPIM Design
	3.1 The Matching Phase
	3.2 The Data Transmission Phase
	3.3 Pipelining Phases
	3.4 Sustaining Higher Loads
	3.5 Asynchronous Design & Optimizations
	3.6 dcPIM parameters: r, and k

	4 Evaluation
	4.1 dcPIM Simulation Results
	4.2 dcPIM Implementation Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

