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Abstract. Solar flares not only pose risks to outer space technologies
and astronauts’ well being, but also cause disruptions on earth to our
high-tech, interconnected infrastructure our lives highly depend on. While
a number of machine-learning methods have been proposed to improve
flare prediction, none of them, to the best of our knowledge, have inves-
tigated the impact of outliers on the reliability and robustness of those
models’ performance. In this study, we investigate the impact of outliers
in a multivariate time series benchmark dataset, namely SWAN-SF, on
flare prediction models, and test our hypothesis. That is, there exist out-
liers in SWAN-SF, removal of which enhances the performance of the
prediction models on unseen datasets. We employ Isolation Forest to de-
tect the outliers among the weaker flare instances. Several experiments
are carried out using a large range of contamination rates which deter-
mine the percentage of present outliers. We assess the quality of each
dataset in terms of its actual contamination using TimeSeriesSVC. In
our best findings, we achieve a 279% increase in True Skill Statistic and
68% increase in Heidke Skill Score. The results show that overall a sig-
nificant improvement can be achieved for flare prediction if outliers are
detected and removed properly.

Keywords: Solar Flare Prediction · Time Series Classification · Outlier
Detection · Multivariate Time Series · Isolation Forest

1 Introduction

Solar flares are abrupt bursts of energy from the Sun that emit large amounts of
electromagnetic radiation. They are frequently accompanied by a coronal mass
ejection (CME), which is a huge bubble of radiation from the Sun. While most
of the radiation and particles from a solar flare are filtered by the earth’s at-
mosphere, intense solar flares still can release radiation that may penetrate and
interfere with the radio communications, cause power outages, and pose irre-
versible health risks to astronauts engaging in extravehicular activities. Based
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on the peak flux of soft X-ray with a range of wavelengths from 0.1 to 0.8 nanome-
ters detected by National Oceanic and Atmospheric Administration (NOAA)’s
GOES satellites, solar flares are logarithmically classified into five classes as fol-
lows, namely A, B, C, M, and X, from weakest to strongest. An X-class flare
is ten times stronger than an M-class flare, a hundred times stronger than a
C-class flares, and so on. Among the five classes, M- and X-class flares are often
targeted in space-weather prediction because they are much more likely to cause
adverse effects to the earth.

Due to the potential threats that solar flares pose to human society, flare
prediction has been receiving a lot of attention during the past two decades. As
machine learning techniques have achieved remarkable success in multiple fields
over the recent years, they have been employed to predict flares as well [21].
Since solar flares are a spatiotemporal phenomenon with a pre-flare phase [20],
it has been suggested that to achieve a higher and more robust performance,
time series of predictive parameters for flare forecasting should be used rather
than point-in-time values. While a number of machine learning methods using
time series have been introduced to improve flaring prediction [1,10,17], none
of them, to our best knowledge, has systematically investigated the impact of
outliers in time series data for flare prediction.

Outlier detection is an important task for many data mining and machine
learning applications, and it has been applied broadly in various domains such as
economy, biology, and astronomy [5]. Outliers are the data instances that differ
substantially from the rest of the data. In classification tasks, outliers can mislead
the classifier resulting in poor performance. Therefore, the discovery of outliers is
crucial to better understand the underlying nature of the data and develop more
efficient methods. In this study, we investigate the possibility of improving the
performance of flare prediction algorithms by removing outliers that are detected
by an outlier detection algorithm, named Isolation Forest (iForest) [19], from a
multivariate time series benchmark dataset, Space Weather ANalytics for Solar
Flares (SWAN-SF) [2]. We hypothesize that there exist outliers that negatively
impact flare prediction in SWAN-SF.

The rest of the paper is organized as follows: In Section 2, we introduce
some advanced and popular outlier detection algorithms for time series data. In
Section 3, we briefly describe the SWAN-SF dataset that we use in this study.
In Section 4, we discuss our selection of the outlier detection algorithm. We also
introduce the experiment design, methodology for tackling the class-imbalance
issue, the classifier chosen, and the hyperparameter tuning process, as well as the
metrics for evaluation. In Section 5, we talk about our experiments and discuss
the results. Finally, we conclude and propose future work in Section 6.

2 Related Work

Generally, outlier detection can be done locally and globally for time series data.
The former means the detection of outliers within time series and the latter
concerns the outliers among a set of time series data. In global outlier detection,
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different algorithms have been proposed based on the requirements in different
fields and they could be supervised or unsupervised depending on the availability
of labels in the data [14].

Unsupervised outlier detection can be achieved by discriminative methods,
which rely on a similarity function that measures the similarity between two
time series sequences. Once the similarity function is defined, a clustering mech-
anism is applied to cluster the data instances such that within-cluster similarity
is maximized and between-cluster similarity is minimized. An outlier score is
then assigned to each testing instance based on the distance to its closest clus-
ter’s centroid (or medoid). SequenceMiner [9] uses longest common subsequence
(LCS) as the similarity measure to handle time series with different lengths, but
the time series has to be discretized, which will cause the loss of information. In
[5], dynamic time warping (DTW) is used to address the distortion in the time
axis and calculate more accurate similarity between two time series. However,
the high computational complexity makes it impossible to train a model on a
large dataset in a reasonable time.

More recently, unsupervised outlier detection methods based on deep learning
have received a lot of attention. The GGM-VAE [13] employs Gated Recurrent
Unit (GRU) cells under a variational autoencoder (VAE) framework to discover
the correlations among multivariate time series data. The Robust Deep Autoen-
coders (RDA) [26] combines deep autoencoders and robust principal component
analysis (RPCA) to isolate noise and outliers in the input data. The Multi-Scale
Convolutional Recursive EncoderDecoder (MSCRED) [25] jointly considers time
dependence, noise robustness, and interpretation of anomaly severity. Although
these methods obtain good results, they do not take into account the training
time (or energy consumption) on large datasets.

Isolation Forest (iForest) [19], different from other outlier detection methods,
is a tree-based algorithm that explicitly isolates outliers. Because of its capability
of running fast on large and high-dimensional datasets, iForest has been utilized
for multivariate time series data in a variety of domains [3,11]. More details
about iForest are explained in Sec. 4.1.

3 SWAN-SF Dataset

Space Weather ANalytics for Solar Flares (SWAN-SF) is a benchmark dataset in-
troduced by [2], which entirely consists of multivariate time series (MVTS) data.
The development of SWAN-SF provides a unified testbed for solar flare predic-
tion algorithms. The dataset contains 4, 075 MVTS data instances from active
regions of 10, 000 flare reports spanning over 8 years of solar active-region data
from Solar Cycle 24 (May 2010 - December 2018). Each MVTS data instance of
SWAN-SF represents a 12-hour observation window of 51 flare-predictive param-
eters. Each time series has 60 records with a 12-minute cadence, and corresponds
to a reported active region.

The data instances in SWAN-SF are collected through a sliding-window
methodology with a 1-hour step size. A MVTS data instance is labeled by the
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Table 1. The sample sizes and imbalance ratios of each partition in SWAN-SF

Partition
Class Imbalance Ratio

X M C B N X:N XM:CBN

Parition 1 165 1089 6416 5692 60130 1:364 1:58

Parition 2 72 1392 8810 4978 73368 1:1019 1:62

Parition 3 136 1288 5639 685 34762 1:256 1:29

Parition 4 153 1012 5956 846 43294 1:283 1:43

Parition 5 19 971 5763 5924 62688 1:3299 1:75

class of the strongest flare reported within a 24-hour prediction window right
after the observation window. If no flare happens or only A-class flares are re-
ported within an observation window, the data instance is labeled as a flare-quiet
instance, denoted by N. In this work, we run a few experiments on a dichotomous
version of SWAN-SF, as well as its original 5-class version. That is, we group the
X- and M-class flares into one group and treat them as flaring instances, and
group the other classes (including the N class) and treat them as non-flaring
instances. The instances of the former group are also denoted by the XM class,
and correspondingly, the instances of the latter group are denoted by the CBN
class.

Because of the sliding-window methodology used for the creation of SWAN-
SF, caution must be taken when dealing with the temporal coherence of data
[1], which can be briefly described as follows: since temporally adjacent time
series have over 91% of overlap, random sampling of data in order to create
non-overlapping training, validation, and test sets, will fail. This introduces bias
to the learner and also obscures possible overfitting. To properly deal with the
temporal coherence, we take advantage of the fact that the dataset is already
split into five non-overlapping partitions, and each partition has approximately
the same number of X- and M-class flares. Therefore, the training and testing
datasets in our experiments are selected from different partitions to prevent the
effect of temporal coherence. The details of the sample sizes for each partition
of SWAN-SF are listed in Table 1.

SWAN-SF also exhibits extreme class imbalance. In each partition, the num-
ber of the flaring instances, which are referred to as the minority class, is sig-
nificantly less than the instances of the non-flaring instances, which are referred
to as the majority class. For instance, there is a 1:364 imbalance ratio between
X and N and a 1:58 imbalance ratio between XM and BCN in partition 1. The
imbalance ratio of each partition of SWAN-SF is listed in Table 1.

4 Methodology

4.1 Outlier Detection Algorithm

Isolation Forest (iForest) [19] is a tree-based algorithm that detects outliers
(anomalies) efficiently and effectively. Unlike most existing model-based outlier
detection approaches, which construct a profile of normal instances and then
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identify instances that do not conform to the profile as outliers, iForest explic-
itly isolates outliers by random partitioning [19]. Since anomalies consist of fewer
instances and are assumed to have attribute values that are very different from
normal instances, they are more likely to be isolated earlier during random par-
titioning (i.e., shorter paths in a tree structure).

An iForest consists of a number Isolation Trees (iTrees), and each iTree is
built on a random sample of data by recursively dividing it with a randomly se-
lected attribute and a randomly selected split value until a terminating condition
is satisfied. Each data instance is then passed through the iForest and receives an
outlier score. A pre-defined contamination rate, i.e., the proportion of outliers in
the dataset, is required to provide the iForest algorithm with a halting criterion.
Given a contamination rate r, the first r% of the instances with higher outlier
scores will be flagged as the outliers. Because of the effectiveness of iForest on
large collections of high-dimensional data [19], it fits very well to our outlier
detection investigation on SWAN-SF.

4.2 Experiment Design

The experiments in this study are generally designed to test the hypothesis that
there exist outliers in the SWAN-SF dataset, which can negatively affect flare
prediction. As mentioned in Sec. 3, there are 51 flare-predictive parameters in
SWAN-SF. In this proof-of-concept study, we limit our experiments to a subset of
five flare-predictive parameters only. These parameters are chosen from the top
ranked features previously discovered in [8], namely (as named in the dataset)
TOTUSJH, TOTBSQ, TOTPOT, TOTUSJZ, and ABSNJZH (see [2] for the
list of all parameters and their definitions). To minimize the learning bias, we
use Partition 1 as the training set in all experiments and report the performance
on the remaining partitions.

Using iForest, given a contamination rate, we first detect outliers among the
non-flaring instances in Partition 1. We then remove the detected outliers and
combine the rest of the non-flaring instances with the flaring instances to build
a flare forecasting model. We repeat this by gradually increasing the contamina-
tion rate (from 0.0 to 50.0) and producing new training datasets. In each case,
we apply the climatology-preserving undersampling (as discussed in Sec. 4.3) to
mitigate the effect of the extreme class-imbalance issue on training our classi-
fiers. Min-max normalization is followed to avoid the influence of different scales
between parameters [15]. To show the robustness of the model, we carry out
10-fold cross validation, i.e., we repeat the undersampling and normalization
processes 10 times and report the average and the variance of the performance
of the classifiers trained on those different datasets for each contamination rate.

The trained models are tested on Partitions 2 through 5 separately. The test
sets are kept unchanged except for normalization; no outlier detection, outlier
removal, or undersampling is applied. This strategy provides a series of unbi-
ased experiments, which is closest to the operational setting. The design of our
experiments is shown in Fig. 1.
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Fig. 1. Experiment Design: the outlier detection operation is only applied to the non-
flaring instances in Partition 1. Only normalization is applied to the test sets. 10-fold
cross validation is applied for a robust evaluation. Note that the flaring instances and
non-flaring instances used in Sec. 5.1 and Sec. 5.2 are different.

4.3 Tackling the Class-Imbalance Issue

The class-imbalance issue can affect the performance of any classifier resulting
in superficially good classification/prediction scores, as thoroughly discussed in
[1]. We use the so-called climatology-preserving undersampling, as suggested in
[1], which achieves a 1:1 ratio between the minority and majority instances while
preserving the distribution of flare classes. Preserving the distribution of flare
classes is important during undersampling because it produces more realistic
data for training the model, which will hence generate a reliable model perfor-
mance on testing data. Although more advanced strategies, like synthetic data
generation, can be used to handle the class-imbalance issue, to avoid confound-
ing variables that we cannot control, climatology-preserving undersampling is
preferred in our study.

4.4 Evaluation Model and Hyperparameter Tuning

To evaluate the performance of our binary classification task, we choose Support
Vector Machines (SVM) as the classifier. However, since we use multivariate time
series data, regular SVM is not appropriate for our experiments. TimeSeriesSVC,
from the tslearn machine learning toolkit [24], is the SVM classifier designed
specifically for time series data and is employed as the classifier in this study.
TimeSeriesSVC operates support vector classification by casting DTW distances
measure as definite kernels for time series [12].

In order to achieve an optimal performance for TimeSeriesSVC on SWAN-SF,
we use the exhaustive grid-search method to tune models’ hyperparameters. Ide-
ally a grid search should be carried out separately using each dataset to find one
optimal model per contamination rate. However, although such an independent
optimization may result in higher classification performance, it may not neces-
sarily bring robustness; in operational settings (i.e., real-time flare forecasting)
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the information about which subset of data works best for a trained model is
unknown. More importantly, note that our objective is to present a fair compar-
ison between all such models with respect to their unique contamination rates.
Data-specific tuning introduces a confounding factor that we cannot control and
therefore, it results in experimentation bias. Because of these reasons, we only
apply grid search on the classifier that is trained on the dataset without remov-
ing any outliers, and use the optimal hyperparameters to train models across all
other datasets obtained by outlier removal using different contamination rates.

4.5 Evaluation Metrics

Many measures have been developed for evaluation of the deterministic perfor-
mance of classifiers using the four quantities of the confusion matrix [23]: true
positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN). In flare prediction studies, the True Skill Statistic (TSS) [16] and the
updated Heidke Skill Score (HSS2) [4] are typically used for performance eval-
uation (e.g., in [6,7,8,18,22]), and they are used in this study as well. Next, we
briefly review these measures and the reasons justifying their appropriateness
for a rare-event classification problem such as flare forecasting.

TSS, as shown in Eq. 1, measures the difference between the probability
of true prediction (i.e., true positive rate) and the probability of false alarm
(i.e., false positive rate). TSS ranges from -1 to 1, where -1 indicates that every
prediction the classifier makes is incorrect, and 1 indicates a perfect performance
meaning the classifier is correct for all of its predictions.

TSS =
TP

TP + FN
− FP

FP + TN
(1)

However, the drawback of TSS is that it equates all models for which the
difference between the true-positive and false-positive rates is the same. This is
not a universally sound assumption (see the numerical examples in [1]). There-
fore, it might be misleading to use TSS alone. This is why it is coupled with
HSS2. As shown in Eq. 2, HSS2 measures the fractional improvement of predic-
tion that the classifier has over a random guess (no-skill) model. Similar to TSS,
HSS2 ranges from -1 to 1, with 1 indicating a perfect performance, -1 indicating
reverse assignment of labels to all instances, and 0 indicating no skill (i.e., as
same as a random guess).

HSS2 =
2((TP · TN) − (FN · FP ))

P (FN + TN) +N(TP + FP )
(2)

5 Experiments, Results, and Discussion

5.1 Experiment A: Impact of Outliers on X-N Classification

We start by simplifying the flare prediction problem where only X-class and
N-class instances are used. Since they are the most extreme classes (i.e., X is
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the strongest and N is the weakest), the data points are far apart, and it is
easy for the classifier to distinguish between them. Through this experiment,
we investigate the impact of outliers on the simplest case. Outlier detection is
applied to N-class instances, which are the non-flaring instances used in this case.
Random undersampling is applied in this experiment since there is only one class
in the majority. The hyperparameters tuned to be used for the TimeSeriesSVC
classifier are RBF kernel with the coefficient γ being 0.01 and a soft margin
constant C of 100.

As we can see in Fig. 2, a significant improvement is achieved by the removal
of outliers. Both TSS and HSS2 increase as the contamination rate increases in
the early phase, and the classifier becomes more and more robust (i.e., smaller
variance). After a certain contamination rate which is unique to each partition
of SWAN-SF, HSS2 starts dropping while TSS remains on the same level. Our
empirical investigation shows that because at earlier stages, when the contamina-
tion rate is low, the outliers that confuse the classifier are detected and removed
from the training set, hence resulting in an improvement on TSS and HSS2.
However, after a certain contamination rate, iForest is forced to detect normal
instances as outliers. This makes the decision boundary of the TimeSeriesSVC
classifier move further towards the majority instances, so there are more FP and
fewer TN, hence a smaller HSS2.

5.2 Experiment B: Impact of Outliers on XM-CBN Classification

In this experiment, we have a more complex and realistic case where the data
instances are composed of all five classes of SWAN-SF, as opposed to the X-
versus N-class flares that we investigated before. The non-flaring instances in this
experiment consist of all instances from C, B, and N classes. Outlier detection
is then applied to the group of these three classes. In addition, climatology-
preserving undersampling is applied to preserve the portions of subclasses in
the majority. The hyperparameters used for the TimeSeriesSVC classifier in this
experiment are the same as those in Experiment A.

As Fig. 3 shows, there is a significant improvement of TSS on Partitions
3 and 5 while the same level of HSS2 is preserved. A minor improvement is
also achieved on Partitions 2 and 4. There is a drop in terms of HSS2 at last
several contamination rates on each testing partition, which is expected because
too many normal data instances are forced to be removed, and this makes the
decision boundary move to negative class, causing more FP, hence a smaller
HSS2. Furthermore, the best TSS remains around 0.8 on each testing partition,
and this may be because there also exist some outliers in flaring instances in
our training data. Since, in our experiments, we only apply outlier detection to
non-flaring instances (in order to preserve as many flaring instances as possible),
the outliers in flaring instances are not removed. This causes more FN, hence a
smaller TSS. Nevertheless, we still see that improvement can be achieved even
in this simplified case.
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Fig. 2. Result of Experiment A. The blue bar represents TSS value and the green bar
represents HSS2 value at each contamination rate. The height and the black error bar of
each bar represents the mean value and the variance, respectively, of the corresponding
measure over 10-fold cross validation. The contamination of 0.0% means no outlier
detection applied and is the baseline.
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Fig. 3. Result of Experiment B. The blue bar represents TSS value and the green bar
represents HSS2 value at each contamination rate. The height and the black error bar of
each bar represents the mean value and the variance, respectively, of the corresponding
measure over 10-fold cross validation. The contamination of 0.0% means no outlier
detection applied and is the baseline.
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6 Conclusion and Future Work

In this study, we used the SWAN-SF benchmark dataset to investigate the impact
of outliers in time series data. We designed two experiments to investigate how
outliers affect flare prediction. After removing the outliers detected by iForest,
we observed a significant improvement in the performance of the classifiers based
on TSS and HSS2. This verified our hypothesis, which is there exist outliers that
can negatively affect flare prediction in SWAN-SF. There are several avenues
we can further explore. For example, if we can achieve a larger improvement,
in Experiment B, by doing outlier detection on each individual class of non-
flaring instances. Additionally, a more advanced outlier detection algorithm for
multivariate time series can be utilized.
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