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Abstract. Quantifying the similarity or distance between time series,
processes, signals, and trajectories is a task-specific problem and remains
a challenge for many applications. The simplest measure, meaning the
Euclidean distance, is often dismissed because of its sensitivity to noise
and the curse of dimensionality. Therefore, elastic mappings (such as
DTW, LCSS, ED) are often utilized instead. However, these measures
are not metric functions, and more importantly, they must deal with
the challenges intrinsic to point-to-point mappings, such as patholog-
ical alignment. In this paper, we adopt an object-similarity measure,
namely Multiscale Intersection over Union (MIoU), for measuring the
distance/similarity between time series. We call the new measure TS-
MIoU. Unlike the most popular time series similarity measures, TS-MIoU
does not rely on a point-to-point mapping, and therefore, circumvents all
respective challenges. We show that TS-MIoU is indeed a metric func-
tion, especially that it holds the triangle inequality axiom, and therefore
can take advantage of indexing algorithms without a lower bounding. We
further show that its sensitivity to noise is adjustable, which makes it a
strong alternative to the Euclidean distance while not suffering from the
curse of dimensionality. Our proof-of-concept experiments on over 100
UCR datasets show that TS-MIoU can fill the gap between the unfor-
giving strictness of the `p-norm measures, and the mapping challenges
of elastic measures.
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1 Introduction

Signals, processes, time series, and trajectories are data types which despite
their differences have a lot in common. They all are ordered—and often equally
spaced in time—values of a random variable recorded in time. With the advances
in machine learning algorithms and computational power at our disposal, these
high-dimensional data types have become ubiquitous. Since our primary focus in
this study is on their spatiotemporal similarities, we use the name “time series”
as an umbrella term for all such data types.
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One of the primary challenges in dealing with these data types is in the way
the similarity notion is defined. Similarity is a subjective concept, so much so that
often different applications require very different or even contradictory criteria to
define similarity. For example, two trajectories sampled from the Australian Sign
Language dataset [15] may be considered ‘similar’ despite the absence of any spa-
tial alignment, whereas in the Taxi Service Trajectory dataset [25], a significant
spatial alignment is essential for trips to be considered ‘similar’. Therefore, the
no-free-lunch theorem applies; there is no general-purpose, universal similarity
measure that outperforms all others in all applications. This subjectivity has
given rise to the invention of an array of effective and elegant measures, each
with its own strengths and shortcomings. Because of this diversity, a degree
of expertise is almost always expected for the user to be able to appropriately
utilize them and achieve the optimal gain.

In this paper, we entertain a new idea that claims, in the context of similarity
measures, time series can be treated as objects with unique shapes and struc-
tures, as opposed to spatiotemporal data types. Time series have been treated
as objects before (e.g., as fractals [27]), primarily to extract their complex fea-
tures. But to the best of our knowledge, the similarity notion has almost always
been tied to a mapping function of some sort, which requires time series to be
considered what they actually are; sequences of points.

Although the mapping-based strategies are ideal for a large pool of time se-
ries applications, it should not be generalized as the only way of defining and
quantifying their similarity. Borrowing from the computer vision domain, this is
analogous to the pixel-to-pixel similarity measures (e.g., Mean Square Error), as
opposed to other strategies such as a patch-to-patch comparison or Histogram
of Oriented Gradients (HOG) [21]. We bring this up because it was shown that
the pixel-to-pixel similarity measures, despite their popularity, are not the best
choices for, for example, an objective similarity evaluation [26]. Compared to im-
ages, time series are much less intuitive data points, and therefore, we might not
be able to always perceive the inadequacy of some measures’ mapping strategy.

Our non-mapping perspective has two fundamental advantages. Firstly, it cir-
cumvents the real challenges caused by different point-to-point mapping strate-
gies. Secondly, it builds (adjustable) resistance against noise. The latter will be
more clear after we define the measure. Regarding the former, the mapping strat-
egy generally divides the similarity measures into two main groups: those which
do not allow local time shifting, such as the `p norm family, and those which
do, such as the Edit Distance on Real Sequence (EDR) [6], Longest Common
Subsequence (LCSS) [34], and Dynamic Time Warping (DTW) [4,30,17], and
their many variants. The first group of measures are very sensitive to noise, and
moreover, they require time series to be of the same length. Among the measures
in the second group, one of the most prominent issues is the occurrence of patho-
logical alignments, i.e., when a single point is mapped onto a large subsection of
another time series—a known issue of DTW and some of its variants [30]. Several
constraints have been proposed to control for such undesirable mappings, such
as windowing, slope weighting, and step patterns (see [29] and references therein).
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In addition, methods such as feature mapping/segmentation have also been pro-
posed to avoid pathological warpings [22,13]. Another complication that comes
with this approach lies in the mapping of some key points (e.g., peaks or dips
of time series). In addition to the possibility of pathological mappings of these
key points, the detection of peaks and dips is often a challenge of its own, as
peaks and dips are also subjective and task-specific concepts [22]. There are also
assumptions in the mapping functions that may or may not be desirable in some
applications. For example, DTW is restricted by assumptions such as continuity
and/or monotonicity. The continuity assumption forbids ‘jumps’, meaning that
every point on each time series must be mapped onto at least one other point
on the other time series. The monotonicity assumption forbids going back in
time, i.e., connecting a point of one time series to a processed point in another
time series. Because of these restrictions, an optimal mapping may exist well
outside such a confined space. A good example in which discontinuity is allowed
is LCSS, however, its mapping is still monotonic. A similarity measure that does
not require a mapping is entirely free of such challenges—while of course subject
to some other challenges.

2 Background

The literature on the similarity measures for time series is as rich and diverse
as the time series application itself. A thorough review of these measures, even
when limited to a particular application, requires a dedicated study on its own.
Therefore, in the present work, which should not be seen as anything other than
a proof of concept, we do not go beyond a quick review of the most popular sim-
ilarity measures (in Section 2.1). Instead, we review a few other measures which,
at some level, bear some resemblance to our proposed measure (in Section 2.2).

2.1 Popular Distance/Similarity Measures

The simplest approach for measuring the distance between two time series is
by seeing them as high-dimensional data points in the Euclidean space, and
measuring their distance with the Euclidean distance (a.k.a. `2 norm). This
measure, as well as the Manhattan distance (`1 norm) and Chebyshev distance
(`∞ norm), are special cases of a more generalized distance function called the
Minkowski distance (`p norm). Euclidean distance, the most popular of the `p
norm family, is very sensitive to noise. Meaning small variations on the time axis
or any spatial misalignment may significantly impact the distance. Moreover, it
cannot be used for time series of different lengths and sampling rates due to its
static pairwise mapping between the time series elements. For applications such
as GPS tracking, where the spherical coordinates system might be preferred
over a Cartesian coordinate system, Haversine distance can be used instead.
Haversine distance is the angular distance between two points on a surface of
a sphere. Haversine distance is also sensitive to noise, but what makes these
measures popular, in addition to their simplicity and cheap computation (i.e.,
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a linear time complexity), is the fact that they are metric functions. A metric
function holds the triangle inequality axiom, which makes it a natural choice for
indexing and tree-based search algorithms (as discussed in Section 3.5).

The fact that `p norm does not allow local time shifting—it restricts the
mapping of the i-th element of one time series to only the i-th element of the
other time series—gave rise to a number of other distance/similarity measures of
which we only review some of the most popular. Inspired by the Edit Distance
(ED) measure used for string comparisons [19], the ED with Real Penalty (ERP)
was introduced for quantifying the time series similarity with local time shifting
[5]. Although ERP is a metric, it was shown that (like DTW) it is sensitive to
noise [6]. As a remedy, a modified version of it, namely the ED on Real Sequence
(EDR), was proposed [6]. EDR defines the distance between two time series in
terms of the number of modifications (i.e., insertion, deletion, and replacement)
one time series may need to change into the other. EDR reduces the impact
of noise the same way LCSS does; by quantizing pairwise distances to either
0 or 1. This advantage comes at the cost of violating the triangle inequality
which makes EDR a non-metric [5]. Among several ED-based measures, the
Time Warp ED with Stiffness Adjustment (TWED) was tailored to (1) hold the
triangle inequality while being an elastic metric and (2) provide a parameter to
control the elasticity of the mapping function [24]. All these measures have a
quadratic time complexity.

The LCSS measure can also be seen as a special case of ED. The key difference
for LCSS is that unlike DTW and ED-based measures (which require all elements
of time series to be matched), it allows partial comparisons, i.e., parts of time
series can be left unmatched. This is advantageous because it allows tolerance of
some noise. This unique feature, from a different angle, limits the application of
LCSS, since the unmatched elements are entirely ignored and do not contribute
to the final value of the distance. LCSS is not a metric as it violates the triangle
inequality. It is also worth mentioning that LCSS, as well as DTW and ED-
based measures, cannot be directly used for 2D time series (with time as the
third dimension). Interested readers in multidimensional time series can read
about some proposed approaches in [9].

DTW searches through a 2D space to find an optimal mapping between the
two given time series and then defines the distance as the sum of the Euclidean
distance between all matched elements. In principle, DTW requires quadratic
computation time, it is not a metric [5], and it remains sensitive to noise. That
said, DTW seems to have become the most popular elastic measure for time
series data mining community thanks to the several lower bounding methods
(including the lower bounding based on warping constraints, i.e., 4S), which
significantly sped up its computation time [28].

2.2 Measures with Comparable Ideas

A grid-based approach for measuring the distance between two trajectories was
introduced by Lin et al. [20]. The authors talked about the applications such as
animal migration patterns and city traffic monitoring, in which the similarity
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of interest is primarily determined by the trajectories’ spatial patterns, and the
temporal aspect (e.g., timestamp and velocity) is not seen as critical. Given a
query trajectory Q and an arbitrary trajectory T , their method superimposes a
grid over T and Q, and then computes the one-way distance (OWD) of Q from
T . The OWD is computed by first identifying the so-called “local min points”
on T (one local min point relative to each point on Q) and then summing up
the Euclidean distances between each point on Q and its corresponding local
min point on T . The main purpose of their grid representation is to build an
efficient indexing method that speeds up the similarity search. The authors rec-
ommended building multiple grid representations of trajectories with different
granularity levels to confine the search space. This is done by starting the search
algorithm from the coarsest representation of trajectories and iteratively passing
forward the k-most similar trajectories, as the granularity of the grid increases.
This approach is similar to ours in that they both use a 2-dimensional grid-based
segmentation. However, it is only in our approach that the hierarchical repre-
sentation of time series directly contributes to the measure of similarity. In the
method proposed by Lin et al., the hierarchical representation is part of their
retrieval algorithm and not the similarity measure.

The Complexity-Invariant Distance (CID) is a method for adding a complex-
ity sensitivity to distance measures [3]. CID has a somewhat similar motivation
as ours; without taking into account this new invariance property, similarity
search algorithms may not be able to differentiate between ‘complex’ and ‘sim-
ple’ time series because of their overall similarities, hence ignoring their difference
in ‘complexity’. Although the authors did not define ‘complexity’, they explained
it intuitively, that the complexity of a time series is proportional to the total
sum of its line segments’ length. This is generally how the correction factor is
computed. Their notion of complexity is identical to what is known in fractal
geometry as fractal dimension [23]. Our measure of similarity takes full advan-
tage of the definition of fractal dimension to account for time series’ complexity
(see Section 3).

The Hausdorff distance [2] is another measure that—if carefully examined—
is somewhat similar to our approach. To quantify the distance between two
time series (originally between two shapes), Hausdorff distance finds the smallest
radius of the disk needed that if each point of either of the time series is replaced
with that disk, the union of those disks contains all points of the other time series.
This ‘thickening’ process is in principle similar to the change of resolution in our
proposed measure, as we explain in Section 3.2. Hausdorff distance is a metric,
but unlike our measure, it is sensitive to noise. This is because the computed
distance is always determined by the single farthest point from the other time
series, and therefore, a single outlier can heavily impact the distance.

Although not a distance measure, the indexing technique used in [17] bears
some resemblance to our proposed measure, in that they both treat time series as
shapes. The authors introduced LB_PAA—a modified version of the Piecewise
Aggregate Approximation [35]—for reducing the dimensionality of time series
(from n to 16) and therefore speeding up the indexing process for DTW. Instead
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of comparing a candidate time series T to a query time series Q, they compare a
16-dimensional version of T , denoted as T̄ , to the 16-dimensional lower and upper
bounds of Q. Then, when building the tree structure for indexing, they compute
the distance of Q from a minimum bounding rectangle (MBR) of T̄ instead of
T itself. This is where a time series is treated as a shape and estimated by an
MBR. Our proposed measure uses a similar spatial estimate of time series to
compare them without a mapping.

3 Multiscale IoU (MIoU) for Time Series

Since we are borrowing a region-based similarity measure, namely MIoU [1], and
re-purposing it for time series analysis, we first review the original idea, and then
discuss the specific modifications needed for this adoption 3 4.

3.1 MIoU Recap

Intuitively, MIoU [1] is the marriage of two concepts: Intersection over Union
(IoU) [10] and the fractal dimension [23]. IoU (a.k.a. the Jaccard Index [14])
is a widely used object-similarity measure that quantifies the degree of which
a ground-truth object is detected (i.e., intersection) relative to the area occu-
pied by both of the ground-truth and detected objects (i.e., union). The fractal
dimension was originally proposed to quantify the complexity of self-similar ob-
jects, called fractals. Among several methods that compute the fractal dimension
the box-counting method utilizes grids of varying cell sizes in order to capture
the complexity of fractals’ geometry (see [33] and the references therein). Fig. 1
illustrates the general idea behind MIoU for two different proposed objects rep-
resenting a solar filament.

The motivation behind introducing MIoU for measuring objects’ similarity is
to compensate for the limited sensitivity of IoU (as well as other area-based mea-
sures such as f1 score, precision, and recall) to the fine details visible in objects’
structures—a highly informative feature present in many scientific computer
vision applications (see examples in [1]). MIoU achieves this through a multi-
scale approach: for noticeably misaligned objects, either spatially or structurally,
MIoU is able to capture major misalignments early on, at lower resolution levels,
whereas for well-aligned objects, MIoU can identify the subtle misalignments at
higher resolution levels.

Formally, the MIoU measure is formulated using three functions. Let O de-
note a set of all valid objects (represented as binary masks of regions), and
∆ ⊂ N denote a finite set of box sizes. The first function, s : O × ∆ −→ O,
performs a grid-based segmentation on the object o ∈ O, with a given box size
δi ∈ ∆, and downsamples the region. The second function, | · | : O −→ N,
computes the area of a given region by counting the number of pixels (or grid

3 MIoU repository: https://bitbucket.org/gsudmlab/multiscale_iou/
4 TS-MIoU repository: https://bitbucket.org/gsudmlab/ts_miou_ecmlpkdd22/

https://bitbucket.org/gsudmlab/multiscale_iou/
https://bitbucket.org/gsudmlab/ts_miou_ecmlpkdd22/
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Fig. 1: The graphic reviews how MIoU measures the similarity between a fine
(top) and coarse (bottom) region (each of size 512×512 pixels). The box sizes of
the grid varies from 1 pixel (highest resolution) to 512 pixels (lowest resolution).
The line plot shows the intersection ratios, and the area under its curve (0.78)
which defines the similarity between two regions.

cells after it was downsampled by s) o’s boundary spans over. The last function,
r : O2×∆ −→ [0, 1], called intersection ratio, computes the intersection between
the boundaries of a region o and its estimate õ, in terms of the number of δi×δi
boxes they share, and normalizes it by the number of boxes o’s boundary spans
over. More precisely, r(o, õ, δi) = |s(o,δi)∩s(õ,δi)|

|s(o,δi)| .
Having r calculated for all different box sizes in ∆, MIoU is then computed by
measuring the area under the curve formed by r. This curve is shown in Fig. 1,
and can be formulated as follows: MIoU(o, õ) =

∫ 1

0
r(o, õ, δ)dδ, which is the total

area of |∆| − 1 trapezoids. MIoU varies within the interval [0, 1] if dδ = 1
|∆|−1 .

As a similarity measure, greater values indicate greater similarity, 1 means a
perfect alignment, and no overlap is represented by 0. It is worth noting that
although 1 −MIoU can be considered a distance (dissimilarity) measure, it is
not a metric. We will discuss this shortly in Section 3.5.

3.2 TS-MIoU: MIoU for Time Series

We claim that MIoU is an effective measure for quantifying time series similar-
ity. In many applications, the implicit or explicit definition of similarity for time
series is indistinguishable from that for objects. In such cases, while we want
similar time series to have similar shapes and patterns, we expect them to gen-
erally stay within a close distance along the time dimension, regardless of their
individual sampling rate. Trajectory of moving objects [20] is just one of such
cases. As we discuss in this section, with some minor changes and appropriate
(task-specific) segmentation strategies, time series can be treated as objects and
shapes. Needless to say that neither this nor any other realization of similarity
can be used universally for all applications.
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To justify our main modifications of MIoU, we first need to highlight the fact
that MIoU is defined under a specific assumption; the given regions of interest
are categorized into either ground truth (annotated by human) or detected (an-
notated by an algorithm) regions. This subtle assumption gives away a priori
knowledge about the intended comparison, and to take advantage of that, when
defining intersection ratio, the authors replaced the area of the union—which is
in the definition of IoU—with the area of the ground-truth. In the absence of this
a priori knowledge (e.g., in unsupervised approaches and information retrieval
systems), it is highly advantageous for us to revert to the original definition
of IoU. Not only is this supported by our empirical study, but also, and per-
haps more importantly, it rewards us with the triangle inequality condition (see
Section 3.5). The reverted definition of the intersection ratio that we used for
TS-MIoU is given in Eq. 1.

r(T1, T2, (δx,i, δy,i)) =
|s(T1, (δx,i, δy,i)) ∩ s(T2, (δx,i, δy,i))|
|s(T1, (δx,i, δy,i)) ∪ s(T2, (δx,i, δy,i))|

(1)

Another minor change is that compared to the intersection ratio in MIoU,
TS-MIoU’s intersection ratio benefits from a tuple, i.e., (δx,i, δy,i), determining
the box sizes, instead of a single value of δ. Consequently, TS-MIoU(T1, T2) =∫ 1

0
r(T1, T2, (δx, δy))dδxδy. This allows us to build segmentations grids with non-

squared cells in order to tackle the ill-definedness of the time series space. We
further discuss these topics in Sections 3.3 and 3.4.

3.3 Ill-definedness of Space

TS-MIoU transforms time series into binary masks. This procedure requires
quantisation (binning) on both of the dimensions. In doing so caution must
be taken in using shape-based similarity metrics on time series. For a time series
to be considered a 2-dimensional object with a well-defined geometry, both di-
mensions must be of the same unit. This incommensurability of the axes of time
series plots makes the geometrical aspect ratio of this artificially-made space
ill-defined. One direct consequence of this ill-definedness is the arbitrariness of
measures such as the fractal dimension. Such measures depend on the arbitrari-
ness of the aspect ratios of time series plots. In fact, time series’ patterns and
motifs might be partially or completely obscured by choosing an inappropriate
aspect ratio of the axes in the binning process.

This is certainly a concern for the box-counting method incorporated in TS-
MIoU. Theoretically, the δ × δ boxes used by the box-counting method do not
represent any meaningful geometric area on time series space. However, similarity
is a relative concept. For example, a retrieval algorithm looks for the most similar
instances relative to a query instance. Therefore, this ill-defined space can still
be explored as long as (1) the sides of the boxes used for segmentation can be
adjusted independently to account for the different resolutions needed for each
dimension of the time series space, and (2) the conditions determining the space
remain constant for all comparisons. We elaborate in these conditions in the
following sections.
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Fig. 2: Segmentation with proportional binning is illustrated for computing TS-
MIoU on two time series (blue and purple). For visibility purposes, only four of
the six representations of time series are shown, corresponding to the bin sizes
in ∆x,y = {(1, 4), (2, 8), (4, 16), (8, 32), (16, 64), (32, 128)}.

3.4 Segmentation with Proportional Binning

As mentioned before, TS-MIoU treats time series like objects through the use
of grid-based segmentation while remaining completely agnostic to the segmen-
tation method used. The simplest approach for segmentation is to set an upper
bound for the number of cells, k, and then carry out hierarchical segmentation
with all integers from 1 to k. The upper bound can be axis-specific as well. A
slightly more dynamic strategy is to define non-square boxes with widths and
heights proportional to the ranges of values on the x and y axes, respectively.
These boxes will then be used to form the segmentation grids representing vary-
ing resolutions. The latter is the strategy we use in our experiments, and we call
it segmentation with proportional binning.

Suppose we have a dataset of N time series, T = {T}Ni=1, each of length n.
Note that this assumption of fixed length is not a requirement for TS-MIoU as it
does not rely on any types of mapping between time series. Let m andM denote
the global minimum and maximum values in T (per variate, for multivariate time
series), respectively. The width and height of the largest (δx × δy)-box used for
segmentation can then be determined by δx = n

cx
and δy = (M−m)

cy
, respectively,

where cx, cy ∈ (0, 1] are user-defined parameters. Appropriate choices of cx and
cy can guarantee that TS-MIoU does not overlook the interesting structures of
the time series. Each of the upper bounds δx and δy determine the rest of the
corresponding box sizes using a linear or logarithmic function, starting from
1, representing the original time series. In Section 4, we use powers of two,
inspired by the original definition of fractal dimension [23]. An example of such
a segmentation strategy is illustrated in Fig. 2.

In this paper, we will not address an optimum binning strategies as it heavily
depends on the data, the time series’ patterns, and structures. An efficient,
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data-driven methodology for determining the optimal set ∆x,y seeks a thorough
investigation of its own, which belongs to our future work.

3.5 TS-MIoU as a Metric

MIoU’s corresponding distance function, dMIoU = 1−MIoU, is not a metric. But
we will show that dTS-MIoU = 1 − TS-MIoU satisfies all conditions of a metric
function. Let us start by reviewing these conditions.

Given a distance function d : X ×X −→ R where X is the universe of all valid
objects (time series in our case), d is called a metric if the following properties
hold for all x, y, z ∈ X : (1) positiveness, d(x, y) ≥ 0; (2) strict positiveness,
x 6= y ⇒ d(x, y) > 0; (3) symmetry, d(x, y) = d(y, x); (4) reflexivity, d(x, x) = 0;
and (5) triangle inequality, d(x, z) ≤ d(x, y) + d(y, z).

dMIoU is by definition asymmetric. Moreover, it does not hold the triangle
inequality. A simple counterexample can be made with any three objects A, B,
and |A| = |C|, A ∩ C = ∅, and A ∪ C = B. This gives us MIoU(A,C) = 0,
MIoU(A,B) = 1, and MIoU(B,C) = 0.5. Consequently, dMIoU of those pairs are
1, 0, and 0.5, respectively. The triangle inequality dMIoU(A,C) ≤ dMIoU(A,B) +
dMIoU(B,C) yields the contradiction 1 ≤ 0+0.5. Therefore, dMIoU is not a metric
function.

It is easy to see that dTS-MIoU satisfies the positiveness condition as the area
under the intersection-ratio curve is non-negative and less than or equal to 1. The
strict positiveness also holds as long as (1, 1) ∈ ∆. This guarantees the inclusion
of the original time series in all comparisons, i.e., by computing r(T1, T2, (1, 1));
If T1 6= T2, no matter how subtle their differences might be, r(T1, T2, (1, 1)) > 0,
and hence dTS-MIoU > 0. The generalization discussed in Section 3.2 propagates
the symmetry property of IoU to dTS-MIoU. The reflexivity condition is trivial.
And lastly, dTS-MIoU’s triangle inequality is inherited from the triangle inequality
of dIoU (see the proofs in [11,18]); since TS-MIoU is the sum of a finite number
of IoUs, it therefore preserves the IoU’s triangle inequality condition. Therefore,
dTS-MIoU is indeed a metric function.

3.6 Time Complexity of TS-MIoU

A pseudo-code of TS-MIoU is given in Algorithm 1. Outside the loop, the area
can be computed in linear time (O(n), n being the number of iterations) using the
Riemann sum. Inside the loop, the segmentize method is responsible for binning
on the axes of a given time series. One possible implementation of this (e.g., see
the digitize method in the NumPy package [12]) can be achieved through a
binary search (with O(log(n)), where n is the number of bins). The logical and
and or operations on 2D arrays require O(r× c), where r and c are the number
of rows and columns of the binary matrices m1 and m2. This is the bottleneck
of TS-MIoU’s time complexity. If the proportional binning strategy discussed in
Section 3.4 is adopted, the number of and (or or) operations at the i-th iteration
will be (r · c)/4i. The overall complexity of the algorithm is then equivalent
to the sum of the geometric series

∑∞
i=0 (r · c)/4i which converges to 4/3(r ·
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Algorithm 1: TS-MIoU Distance Metric
Input : T1, T2, ∆
output: TS-MIoU

1 function ts_miou(t1: array, t2: array, ∆: array) : float
2 ratios = [ ]
3 for δx, δy ∈ ∆ :
4 m1 = segmentize(T1, δx, δy)
5 m2 = segmentize(T2, δx, δy)
6 union = m1 ∨ m2 /* logical or */
7 inters = m1 ∧ m2 /* logical and */
8 ratios.append(sum(inters) / sum(union))
9 tsmiou = 1 - area_under_curve(ratios)

10 return tsmiou
11 end

c). Therefore, the current implementation of TS-MIoU has a quadratic time
complexity. This is similar to the time complexity of the most popular similarity
measures such as DTW, EDR, and LCSS without any additional constraints.

4 Experiments and Results

4.1 Experimental Settings

We conducted our experiments on 105 (out of 128) datasets of the UCR Time
Series Archive [7]. We excluded the 11 datasets with varying lengths of time series
because each similarity measure handles the varying length (if at all) differently,
and this would have introduced a confounding factor to our experiments. We
excluded another set of 12 datasets which contain very lengthy time series (> 900
elements). This decision was made primarily because for such long time series,
a full-size comparison of time series has limited application in the real world,
and failure or success of a similarity measure on such time series does not reveal
much about its weaknesses or strengths.

As a proof of concept, we compared TS-MIoU with Euclidean distance (EuD),
DTW, and LCSS. For the time series segmentation of TS-MIoU, we determined
the bin sizes (i.e., δx and δy) as discussed in Section 3.4. Except for 16 datasets,
for all other datasets, we defined the upper bounds of the bin sizes on the x
and y axes by setting cx = 2.5 and cy = 0.025, respectively. This difference
compensates for the difference in the range of the values on the two axes. For
the 16 datasets in which the ratio n/(M−m) was lower than 10, we noticed that
setting cy = 0.025 would make our segmentation method generate significantly
imbalanced bin-size sets (i.e., |δy|− |δx| ≥ 4). For these datasets, we increased cy
to 0.25 to reduce the difference. In all cases, we handled the imbalanced bin-size
sets (of x and y axes) by clipping the head of the longer sets.
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Regarding DTW, for the results shown in Figs. 3 and 4, we used the best val-
ues reported in the UCR official web site [8] (under the column DTW (learned_w)).
For LCSS, we used the tslearn Python package [32] and we set the maximum
matching distance threshold ε to one, i.e., the default value in the package.

4.2 Accuracy Gain of TS-MIoU

To fairly assess the overall quality of TS-MIoU, we use the so-called “Texas
sharpshooter plot”, as suggested in [7,3]. We compute the accuracy of the 1-NN
classifier, using leave-one-out cross-validation, on the training set Dtrain of each
UCR dataset, using an arbitrary distance function µ. We repeat the experiment
but this time we classify time series of the respective test set Dtest. The former
gives us the expected performance, denoted as âccµ, and the latter gives us the
actual performance, denoted as accµ. Using these quantities, we calculate the
expected gain (ĝµ,ref) and the actual gain (gµ,ref) of using the distance function
µ (i.e., TS-MIoU) over another distance function µref (i.e., DTW or EuD), for

each dataset. Precisely, ĝµ,ref =
âccµ(Dtrain)

âccµref(D
train)

and gµ,ref =
accµ(Dtest)

accµref(D
test)

.

The aggregated results illustrated in Fig. 3 show that TS-MIoU (with accTS-MIoU =
0.72±0.19, âccTS-MIoU = 0.73±0.20) can indeed make 1-NN classifier to achieve
a performance similar to that of DTW (with accDTW = 0.76± 0.19, âccDTW =
0.75 ± 0.21) and EuD (with accEuD = 0.71 ± 0.20, âccEuD = 0.73 ± 0.22). Note
that in this comparison, DTW’s parameter, the warping window size, was al-
ready optimized for each dataset, whereas for TS-MIoU a generic set of bin
sizes were used. 1-NN with LCSS performed significantly worse than the oth-
ers, which shows its sensitive dependence on its parameter ε. Because of LCSS’s
significantly lower accuracy values which resulted in outside-the-range accuracy
gain of TS-MIoU, we had to remove its corresponding points from the Texas
sharpshooter plot for better visibility.

There are four partitions in Fig. 4, namely true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). The TP region represents
datasets on which TS-MIoU claimed to make improvements, and it did. In the
TN region, TS-MIoU made no such claims and no improvements were made
either. In the FN region, TS-MIoU improved 1-NN’s performance despite making
no claim about it. The worst cases lie in the FP region, where TS-MIoU falsely
claimed to achieve an improvement. Overall, TS-MIoU wins on 42 datasets (41%
of all datasets) over EuD, on 87 datasets (83%) over LCSS, and on 14 datasets
(13%) over DTW with learned window sizes. Although these numbers paint a
convincing picture of TS-MIoU’s effectiveness in many applications, this is not
the most informative way to analyze the outcome; even a handful of datasets
could be enough to show the unique value of a measure.

Looking at the distribution of the red and blue points in these regions, we
are interested in a few different angles. One is the magnitude of accuracy gain
1-NN benefits from. By recognizing all the points in the TP region, which are
not close to the center, it is evident that the improvement is not just marginal.
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Fig. 3: The average expected and ac-
tual accuracy values of 1-NN on the
UCR datasets, using four different
distance functions.

Worms

Fig. 4: The Texas sharpshooter plot
showing the accuracy gain of 1-NN
on UCR datasets, using TS-MIoU as
the distance function over Euclidean
distance and DTW.

For example see the Worms dataset (marked in Fig. 4) on which TS-MIoU im-
proved 1-NN’s performance significantly compared to both EuD and DTW, in
both the expected and actual cases. This shows TS-MIoU can in fact make a
significant contribution to the similarity search and retrieval applications. An-
other interesting angle to consider is the reason as to why TS-MIoU significantly
under-performs in several cases, precisely in 51% of datasets compared to DTW
and 40% compared to EuD. Our analysis reveals that in most of these cases
our generic binning strategy resulted in too large or too small bin sizes which
could not capture the discriminatory characteristics of time series. For example,
time series in TwoPatterns dataset have two distinct patterns; a white noise
pattern and a clear min-max binary pattern. Based on the class labels, it seems
that only the second pattern has discriminatory power. DTW did an excellent
job on this dataset (accDTW ' 1.00) which makes it perhaps the most difficult
dataset to compete against DTW on. This nearly perfect performance is owed
to DTW’s learned window size and its success in the mapping of the binary
peaks and dips. The added distance corresponding to the (correct or incorrect)
mapping of the noisy patterns is almost constant across all pairwise comparisons
and does not have a significant impact on the 1-NN’s performance. Regarding
TS-MIoU, our generic binning strategy on the y-axis returns the bin size set
{0.01, 0.02, 0.04, 0.08, 0.16, 0.32} (since we set cy to 0.025). These disproportion-
ately small bin sizes results in accTS-MIoU = 0.57. Upon a quick grid-search on
cy, we found that changing the bin sizes to a much smaller but more effective
set, i.e., {0.5, 1.0} (by setting cy to 1.25), significantly boosts the performance
of 1-NN to 0.94. It might be interesting to note that the range of the noisy pat-
tern of TwoPatterns’s time series lies almost always within the range of 0.5 to
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1.0, the bin sizes corresponding to cy = 1.25. This example is a strong evidence
supporting the power and flexibility of TS-MIoU when appropriate bin sizes are
used.

5 Discussion, Conclusion, and Future Work

We introduced a similarity measure for time series, called Time Series Multiscale
Intersection over Union (TS-MIoU). The novelty of TS-MIoU lies in the fact
that unlike most of the other similarity measures, it does not require a point-to-
point mapping of time series. We discussed that this approach circumvents many
challenges such as pathological warping. TS-MIoU, however, is not intended to be
used for capturing non-co-occurring trends between time series. DTW measure
(with a large window size) and LCSS are more suitable for these applications
where the temporal alignment is of little or no importance. We also showed that
TS-MIoU is a metric function which makes it an excellent choice for indexing
algorithms.

In this proof-of-concept study, we only focused on the feasibility and applica-
bility of TS-MIoU in time series similarity analysis. One avenue that we wish to
explore is its pruning and further indexing potential. Sequential scan algorithms
can be used to illustrate the pruning power, independent of the actual indexing
structure [5]. The next natural step is to investigate the indexing of the TS-MIoU
algorithm in detail. Other than taking advantage of the triangle inequality con-
dition, another method for indexing is to apply the GEMINI framework where
lower-bounding is used. Since the TS-MIoU is based on box-counting, we could
adapt it for lower-bounding, similar to the Piecewise Aggregate Approximation
used in LB_Keogh [16]. Another avenue of our future work is to adapt TS-
MIoU for streaming time series data. We will investigate the various dynamic
normalization methods, such as the ones based on z-normalization and min-max
normalization (e.g., [31] among many). Real-time processing combined with early
abandoning can greatly enhance TS-MIoU in real-world applications.
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