2212.03175v1 [cs.LG] 5 Dec 2022

arxiv

Learning Representations that Enable
Generalization in Assistive Tasks

Jerry Zhi-Yang Hel, Aditi Raghunathan?, Daniel S. Brown3,
Zackory Erickson?, and Anca D. Dragan?

LUniversity of California Berkeley, 2Carnegie Mellon University, 3University of Utah,
{hzyjerry,anca}@berkeley.edu, dsbrown@cs.utah.edu, {raditi,zerickso}@cmu.edu

Abstract: Recent work in sim2real has successfully enabled robots to act in

physical environments by training in simulation with a diverse “population” of

environments (i.e. domain randomization). In this work, we focus on enabling

generalization in assistive tasks: tasks in which the robot is acting to assist a user (e.g.
helping someone with motor impairments with bathing or with scratching an itch).
Such tasks are particularly interesting relative to prior sim2real successes because

the environment now contains a human who is also acting. This complicates

the problem because the diversity of human users (instead of merely physical

environment parameters) is more difficult to capture in a population, thus increasing

the likelihood of encountering out-of-distribution (OOD) human policies at test

time. We advocate that generalization to such OOD policies benefits from (1)

learning a good latent representation for human policies that test-time humans

can accurately be mapped to, and (2) making that representation adaptable with

test-time interaction data, instead of relying on it to perfectly capture the space of

human policies based on the simulated population only. We study how to best learn

such a representation by evaluating on purposefully constructed OOD test policies.

We find that sim2real methods that encode environment (or population) parameters
and work well in tasks that robots do in isolation, do not work well in assistance.
In assistance, it seems crucial to train the representation based on the history of

interaction directly, because that is what the robot will have access to at test time.

Further, training these representations to then predict human actions not only gives

them better structure, but also enables them to be fine-tuned at test-time, when the

robot observes the partner act. https://adaptive-caregiver.github.io.

Keywords: assistive robots, representation learning, OOD generalization

1 Introduction

Our ultimate goal is to enable robots to assist people with day to day tasks. In the context of patients
with motor impairments, this might mean assistance with scratching an itch, bathing, or dressing
[1, 2, 3]. These are tasks in which doing reinforcement learning from scratch in the real world is not
feasible, and so sim2real transfer is an appealing avenue of research. Sim2real methods for physical
robot tasks in isolation typically work by constructing a diverse "population" of environments and
training policies that can work with any member of the population (e.g. a range of parameters of a
physics simulator or a range of lighting and textures) [4, 5, 6, 7, 8,9, 10, 11].

Similarly, population-based (self-play) training has proven successful in zero-sum games against
humans [12, 13, 14]. But unlike tasks the robot does in isolation, assistance requires coordinating
with a human who is also acting. And unlike competitive settings, assuming the human to be optimal
when they are not, can result in dramatically poor performance [15]. Thus, in sim2real for assistance,
we have to design a population of potential users and strategies to train with, akin to the physical
environment parameters in typical sim2real tasks, rather than the standard population-based training
approaches used in competitive settings. But designing a population that is diverse and useful
enough to enable generalization to test-time humans, each with their own preferences, strategies, and
capabilities, remains very challenging, making it likely that test-time partners might lie outside of the

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://adaptive-caregiver.github.io

{ @ Oeraln) (0 -)

|

Encoder

Decoder

|

all Policy

[v ° I Test-time
est , (op_n afin) - (0p -) Adaptationa

Figure 1: The framework for jointly learning the Personalized Latent Embedding Space and the robot policy.
During training time, we train all components end-to-end to optimize for action prediction (orange) and the robot
policy (green). At test time, we can further optimize for this objective to perform test-time adaptation (red). The
resulting latent space captures the underlying structure of the preferences and strategies of the training humans.

distribution the population was drawn from. Therefore, sim2real methods for assistance will need to
be ready to generalize to out-of-distribution partner policies.

In this work, we identify two principles as key to enabling better generalization. First is that we
benefit from learning a latent space of partners that distills their policies down to a structure that is
useful for the robot’s policy and that makes it easy to identify partners at test time. Second is that we
need to be prepared for this space to not perfectly capture the space of real human policies, and
design it so that it is adaptable with real test-time interaction data.

We thus propose a framework that learns a latent space directly from history of interaction by
predicting the partner’s actions. Our framework allows a robot to capture the relevant information
about the human partner that the robot can actually identify when starting to interact, and also enables
test-time adaptation of the latent space itself when observing the partner’s actions. When evaluated
with partner policies we purposefully design to be out-of-distribution, we find that our approach leads
to better generalization than prior methods which either do not learn a latent space at all [16], do not
learn a latent space directly based on interaction history [7], or train a latent space based on other
observables, like states or rewards [17, 18]. Our contributions are four-fold:

1. We introduce an assistive problem setting where the focus is explicitly on generalization to
out-of-distribution partner policies.

2. We introduce a framework for training policies for this problem setting, Prediction-based Assistive
Latent eMbedding (PALM). This enables us to study different methods for learning latent
representations on how well they enable generalization.

3. We identify that the design choice of training a latent space by predicting partner actions directly
from history outperforms (1) state-of-the-art sim2real approaches used in non-assistive tasks
that are based on embedding environment parameters [7] as well as (2) human-robot interaction
approaches that train representations by predicting observed states or rewards [17, 18].

4. We propose to adapt the learned latent space at test time, upon observing the partner’s actions, and
show it leads to generalization performance gains.

2 The Assistive Personalization Problem

In this section, we introduce the personalization problem in an assistive context. In particular, our
goal is to learn a robot policy B, that can assist a novel human partner in zero-shot fashion, or with a
small amount of test-time data.

Two-player Dec-POMDP. An assistive task can be modeled as a two-agent, finite horizon decen-
tralized partially-observable Markov decision process (Dec-POMDP) and is defined by a tuple

hE-E-B - -T—Q $Q -B-&i. Here & is the state space andg, are the human’s and the
robot’s action spaces, respectively. The human and the robot share a real-valued reward function @ :
l, R; however, we assume that the reward function is not necessarily observed by the robot,
i.e. its parameters (e.g. the location of the human has an itch) are in the hidden part of the state. T :
I »0-1, is the transition function, which outputs the probability of the next state given
the current state and all agents’ actions. Q and Q are the gets of gbservations for the robot and
human, respectively, and & : I Q Q repgesents the ohservation probabilities. We denote
the horizon of the MDP by [.

Target User. We target users with partial motor functions — a common impairment for individuals
with partial arm functions. This is an impairment that can occur in some people with cervical SCI,
ALS, MS, and some neurodegenerative diseases — leading to the need for robotic assistance. We
model the extent of the impairment as the privileged information in the Dec-POMDP. The robot does not
know this a-priori and thus needs to adapt to individual users’ capabilities.

The Robotic Caregiving Setup. We define the observation space for the robot and the human
following [3]: the robot observes its own joint angles, and the human'’s joint positions in the world
coordinate and contact forces; the human observes their joint angles (proprioception) and the end-
effector position of the robot. When training with simulated humans, the robot gets a reward signal
(which depends on privileged information), and has to use that signal to learn to implicitly identify
enough about the human to be useful; at test time, the robot does not observe reward signal and must
use what it has learned at training time to identify the human’s privileged information and be helpful.

Distributions of Humans. Let function Bz : Q I »0-1... be the human policy that maps from local
histories of observations 0” = —- ee—-@""qverQ _ to actions. We define two distributions
of human policies @, 2D . Inthe assistive itch scratching, D can be a set of humans
raln train
with different itch p05|t|ons on thelr arms, which lead to their different movements. We refer to
them as in-distribution humans. Dtest contains out-of-distribution humans whose itch position differ
from those in the D .in - At training time, the robot has access to Dy ain - Thus, it has ground-truth
knowledge about the training human'’s privileged information, such as each human’s itch position. At
test time, we evaluate the robot policy by sampling humans @ _ D S and directly pairing them with

the robot policy. We evaluate the zero-shot and few-shot adaptation eperformance of the robot policy.

Objective. The main problem we study is how to leverage the training distribution to learn a robot
policy B, : Q ! B such that we achieve the best performance on test humans. Concretely, we
define the perF'ormance of the robot and human as

" #
;;@_" =E /;E'_uo”_ ,,0”" - (1)

B=0

Only given access to Dyrain, our objective is to find the robot policy Bz = argmaxy @ ,,BEz"—Eg Drest.

3 Learning Personalized Embeddings for Assistance with PALM

In this section, we present Prediction-based Assistive Latent eMbedding (PALM). We introduce the
general framework of using a latent space to perform personalization in an assistive context. We then
highlight the advantage of action prediction in contrast to prior works. Finally, we describe how we
can optimize PALM at test time to work with out-of-distribution humans.

3.1 Learning an Assistive Latent Space

Given a training distribution of humans D ., 1, we would like to learn a robot policy that can adapt to
assist new users. To achieve that, a robot must learn to solve the task while efficiently inferring the
hidden component that differs across humans. One natural way to do so is to learn a latent space that
succinctly captures what differs across humans in a way that affects the robot’s policy. When deployed on
a test human, the robot infers this latent embedding and uses it to generate personalized assistance.

We denote the latent space as §l E ;, ;B ", where E;; encodes the trajectory & so far and outputs
latent vector Blz. The robot uses this latent space to compute its actioffs =[R,B; —Bz”. We

train

1we describe how we generate this distribution in Sec. 4.1

the base policy and the latent space encoder E ; jointly as they are interdependent [19] — better
robot policy leads to different trajectories across humans, which in turn leads to distinguishing B.
See Appendix D on training details. Ideally, we would like & to capture sufficient information to
differentiate the humans, similar to performing a “dimensionality reduction” on human policies
. We hereby introduce different objectives for learning such latent space, and how our method —
learning by action prediction — makes a good fit for the assistive personalization problem.

3.2 How to Construct the Latent Space

Prior work and limitations LILI [17] and RILI [18] learn a latent embedding of the humans by
predicting the next observations and rewards. While they have been shown to work in predicting and
influencing human behaviours, both methods assume access to the reward function at test time, which we
do not have access to in the assistive setting — we don’t know a-priori the preference and needs of
a new user. RMA [7] enables fast robot adaptation by learning a latent space of environment
parameters, such as friction, payload, terrain type, etc. While it works for a single robot, it is unclear in
human-robot settings, how we can encode human motions and preferences as environment parameters.

Learning by action prediction. Given history By g5 = 087 -0 "—ees B°-" of @ robot
observation and human action2 pairs, as outlined in Fig. 1, we embed this trajectory to a low-
dimensional manifold and use it to predict . The intuition is that if we are able to predict the next
action by this human, we extract the sufficient information about the human’s policy B, . The latent
vector B is representative of the trajectory so far and indicative of the person’s future actions. We do
this by training a decoder D , parameterized by [to predict the next action from the encoder’s output

Ep,B;Ba”.

Lprea = minjDs,B " B 1ji*, B @ BEs,B;Bha”jiN,B " (2)

The encoder E is a recurrent neural network parameterized by B. Here the second term is a
regularization term motivated by Variational Autoencoder [20, 21], that enforces the latent space to
follow a normal prior distribution. This encourages nearby terms in the latent space to encode similar
semantic meanings. In the context of assistive tasks, this helps us better cluster similar humans closer in
the latent space, and we show a didactic example in Sec. 4.3.

3.3 Latent Space Adaptation at Test Time

At test time, as we work with a new user, we would like our encoding of the new user to match the true
latent information, & of that user. In other words, we would like to minimize jjE B ” &jj%. Because we
do not know about the new users a-priori, we can only optimize for this objective via proxy, which we
refer to as test time adaptation.

Since the PALM latent space is based on action prediction, we can adapt it to a new user by further
optimizing the latent space. Note that because Eq. (2) requires only observation-action data, we do
not need any additional label to perform test time adaptation. More formally, we collect a small
dataset of test-time interaction trajectories, &, and perform a few gradient steps to optimize both the
encoder and decoder for Eq. (2): ,B-B 1 ,B-B ” Br g-p’ Lpred,Eg—Dp—0 "

The idea of test-time optimization has been shown to improve perceptual robustness for grasping in
sim2real research [22]. We follow a similar pipeline, where we can improve the latent encoding by
collecting unsupervised action data from test users. Here the main difference is instead of perceptual
differences, our goal is to reduce the domain gap on test users.

4 Experiments

In this section, we evaluate our method PALM (Prediction-based Assistive Latent eMbedding) in
collaborative human-robot environments of varying tasks and varying populations of human models.
In particular, we focus on the out-of-distribution generalization by constructing different forms of
out-of-distribution populations. We focus on empirically investigating the benefits of learning a latent

2We do not assume access to the person’s sensorimotor action (e.g. joint torques). We define human action as change in
the person’s Cartesian pose, which can be tracked externally.

space, the effect of different kinds of prediction on learning a useful latent space, the properties of
learned latent spaces, and the gains from test-time adaptation to humans.

4.1 Environments

Here we introduce two environments where we

study assistive personalization. In both envi- ',/
ronments, the robot has to infer some hidden ot
information from the human in order to success- ||» \/5 90°

fully solve the task. Note that these are examples \‘cmg,

meant for demonstrating the effectiveness of the . Hidden
algorithm, and we do not claim to solve the full N goal

robotic caregiving problem.

Assistive Reacher (Fig. 2) is 2D collaborative Figure 2: The assistive reacher environment. Left: the
environment where a two-link robot arm assists ~ robot’s goal is to move the human agent towards the
a point human agent to get to the target posi- .hldden target. Right: the hidden goal’s position can be
tion. This target is located at , &l costl, 0 sin B, ” inferred 90 degrees from the humans force output.
where B is a fixed value, and @ 2 » .is
known to the human, but not the robot. The human agent is initialized randomly in the 2D plane
with random hidden parameters 2 » BB fE 2 »0e5-1¢5... The robot can only identify
the
target position by physical interactions — once the robot initiates contact, the human applies a
force B, ,cos,, 2—sin W 2”. Only by recognizing the human in terms of @,~[, can the robot
compensate the force, and successfully move the human to the hidden target. Each episode has 40
timesteps.

The Scope of Generalization. We define D ,,,;, as 36 samples uniformly sampled from &, 2
» B-8 ..~y 2 »0e5-1e5... and Drest as 12 samples uniformly sampled from @y Z », B =4 2
»0e5-1e5....

Assistive Itch Scratching (Fig. 1) is adapted from assistive gym [3]. It consists of a human and a
wheelchair-mounted 7-dof Jaco robot arm. The human has limited mobility — they can only move
the 10 joints on the right arm and upper chest, and needs the robot’s assistance to scratch the itch. An itch
spot is randomly generated on the human’s right arm. The robot does not directly observe the itch spot,
and relies on interaction with the human to infer its location. Each episode has 100 timesteps.

We use co-optimization to create D, and D for Assistive Itch Scratching. A benefit of the
co-optimization framework is that it naturally induces reward-seeking behaviour from the human
and the robot, which simulates assistance scenarios. For instance, to generate more inactive human
policies, we can introduce a weighting term in the reward function for human action penalties
B, = Blp jjBu,Ba”jj? where [, is a constant controlling the penalty. The overall objective becomes
E 20 @ Bp—By, BB, Be” ,Bp jjBh,B” 2 (3)
The Scope of Generalization. We are motivated by real world applica-
tions where users tend to have different levels of mobility limitations, or
itch locations in different body parts. To generate a synthetic population
to capture such diversity in itch scratching task, we explore different
co-optimization settings (1) we assign different human action penalty to
Be @ =3-35-4, where larger penalties lead to the human agent
exerting less effort. (2) We simulate different itch positions on the
human’s arm and train co-optimized human and robot policies
conditioned on them.
This leads to qualitatively different strategies for the human and the robot. Figure 3: Definition of
Note that this serves first step to understanding how different methods Dtrain and Drest.
generalize, since we never expect to be able to capture the diversity in
humans perfectly. For training, we use Proximal Policy Optimization (PPO) to optimize human and
robot policies in an interleaving fashion. Note that we also keep the co-optimized robot policy and use it
to obtain expert actions for assistive policy training (see Sec. 3.1 and supplement for full details).

To construct D ,,;, and D ., we divide the two arms’ areas into four equal portions, as shown in Fig.
3, and generate human policies conditioned on itch positions in these areas. D, ,;, consists of three
of the four portions and D, consists of the remaining one. We then construct three distribution
sets in increasing order of difficulties. In the first distribution D, we confine itch positions from a

line-shaped region. In D2, we sample from all the arm areas. Note that D! and D 2 are constructed
by setting action penalty @,= 3. In D3, we combine humans of &= 3—3+5-4, each trained with two
different random seeds. This adds the extra complexity of human activity levels. We simulate 12 in-
distribution humans from each of the three training portions under each action penalty.

4.2 Baselines

We compare with baselines that do not learn an explicit latent space as well as existing methods for
adaptation via learning latent embeddings.

MLP and RNN. We follow [16] that trains sequential models to enable adaptation to simulated
humans. We explore using a recurrent neural network or a feed-forward network on concatenated
state-action histories. The models directly output robot action, and there is no latent space modeling.

ID-based Human Embeddings. In contrast to learning
latent space from history, another class of method studies
encodes human-designed environment parameters [7, 19,
23]. We focus specifically on RMA [7], a two-phased
method that first learns to encode task-1D (phase |) and then
trains a recurrent network to regress to the embeddings from
observation history (phase Il). For training a quadruped
robot, RMA encodes the physical parameters (friction,
payload, etc) of the environment. The first stage trains
a policy with ground-truth information, and the second
phase performs environment identification. While RMA is
shown to be effective for learning policy for in-distribution
environments, it is unclear how well it generalizes to out-of-
distribution environments. Furthermore, in assistive tasks, =10 i =3.0
it is unclear how to construct the "ground-truth ID" for
phase | that quantifies the user characteristics. We study tive reacher environment when we can sam-
RMA-Param and RMA-Onehot, where we assign each ple humans By 2 » @ (red)-@ (blue)... con-
training human a one-hot vector. For RMA-Param, we use tinuously.

a three-dimensional vector that includes the B— position of the itch position and the arm index. When
there are multiple human activity levels as mentioned in Sec. 4.1, we introduce a fourth dimension
with an integer to indicate the action penalty Bj.

LILI and RILI. We consider two other methods of the PALM framework: LILI [17] and RILI [18].
As mentioned in Sec. 3.1, LILI jointly predicts future observation and reward, and RILI predicts

reward. Given that reward is only available at training time, we cannot perform test time optimization
for LILI and RILI.

Figure 4: Latent space of PALM in the assis-

Ablations of PALM. Our method has several components: we use a recurrent neural network to
encode interaction history, and use its output to minimize prediction loss L .4 and policy loss L .
We also use the KL term in Eq. (2) to regularize the human embeddings. To test the
effectiveness of our method, we separate different parts and create a set of baselines. We hereby

describe them in defajl: (1) No L : the model shares the same encoder and policy
network architectureprygt we don’t optimize for L . By removing the prediction loss in Fig. 1, the
latent space is not explicitly trained to contain hyman information. (2) No : no regularization in

the latent space. (3) Frozen embedding: instead of jointly training embeddings and the policy
network, we first train the encoder on expert data, freeze it, and then train robot policy. We
include an ablation study of our main experiments in the appendix.

4.3 Didactic Experiment in Assistive Reacher Environment

Can PALM learn a meaningful distribution from the interaction? Unlike other ID-based methods
like RMA, PALM does not have access to the human parameters at training time. We study whether
PALM can learn a meaningful latent space without explicitly knowing this information. We sample
training humans from &, 2 » ..continuously. We train PALM with different amount of prior
regularization, from Eq. (2). We train using a recurrent window of length 4 and a batch size of
512 episodes. Additional training details can be found in the supplementary material.

PALM ¢y,=0.1 PALM ¢,=0.1, test opt LILImz#% RILIZ®@ RMA param #@% RMA one-hot RNN MLPLZ. OOD

0

0.8
S S
g 06 0 Z06
g
02 02 \
w7 l
0o N ENES - 00 L i, W //]
o e, .

&=

In-distribution
Out-of-distribution

s

N L. L e
y ¥ &,] ©
: g ’ \ g ’

PALM ¢;; = 0 PALM ¢;; =0.1 PALM ¢y, = 0.1 test optim RNN LILI RILI

Figure 5: Top left: evaluation of PALM and baselines on in-distribution (green) and out-of-distribution (pink)
humans. Right and bottom: visualization of the latent embeddings of different methods. OOD humans are
highlighted in red crosses. Best viewed electronically.

We average test results using 100 episodes and visualize the results in Fig. 4.3. Given that humans are
parameterized by &~ , the ideal embedding space looks like a ring with a small blob in the center.
The ring corresponds to the 2D projection of B, and the blob denotes the initial part of interaction
before contact, which is indistinguishable. We find that while PALM never observes the underlying
parameter [, it can learn a latent space that characterizes @ |, Interestingly, varying the amount
of regularization qualitatively affects the shape of the latent space. Setting the VAE regularization
Bk, = 0e1 recovers a latent space that most resembles to the ideal latent space.

4.4 Assistive Reacher Main Experiment

Experiment Setting. We use the finite D ,,,;,, described in Sec. 4.1 and train all baselines for 200
epochs with 512 batch size. We then evaluate the trained policies on D ;. We normalize the resulting
reward with respect to oracle reward.

Results. We average test results using 100 episodes. On in-distribution humans, we find that
all methods successfully follow the right policy that assists the human to reach their goal. This
shows that they all successfully predict the human latent information explicitly or implicitly. On
out-of-distribution humans, the methods are no longer guaranteed to predict the correct embedding.
PALM with action prediction significantly outperforms other methods. With test-time adaptation,
PALM further improves.

Visualizing the latent space. We qualitatively study generalization by visualizing the latent space as
well as the mapped embeddings of both in-distribution and out-of-distribution humans (in red crosses) in
Fig. 5. Interestingly, only PALM with action prediction can infer the “ring” structure. RMA, RNN, LILI
and RILI fail to do so. We hypothesize that because hand-crafted human IDs do not convey the
information about human policy, RMA warped the IDs in arbitrary what that are harmful for
generalization. The same happens with RILI and LILI. We hypothesize this is due to the inherent
ambiguity in reward prediction: a low reward does not necessarily recover the human policy structure.

The visualization also offers some insight into why having B, regularization is helpful for generaliza-
tion. Compare the latent space of PALM B, =0and PALM B,, =0e1, the latter induces a smoother
distribution where test humans are better fitting in the “missing arc” of the “ring". Further more, we

see that with test time optimization, the PALM latent space embeds the OOD human better, by filling

in more of the arc.

4.5 Assistive Itch Scratch Main Experiment

Results. We follow a similar procedure as the reach environment to train itch scratching policy, and

train for 240 epochs with 192 trajectories for batch size. As shown in Fig. 6, we observe PALM

with action prediction has better generalization performance than other baselines. We see that in the

simplified distribution D!, RILI and MLP have the best generalization performance among baselines,
yet as the complexity of the training human distribution increases, they deteriorate. Detailed results of
the ablation study are included in the appendix.

PALM ¢y=0.1

!

PALM ¢;;=0.1, test opt

06

W 4

04

RILIZ7Z8 RMA param P RMA one-hot

PxY

RNN MLPC~J OOD

o | . “ .
\ *g \ ST
[Drain 1=36 . / L
|Dtest |=12 50
‘ ™ l
% 204 P
;«: ? / \ ks
[Dtest =12 I
x3 CIJ 030
u!xzmds (- 1
. > XN
/ \ VORI T T R
T iDyain 12216 0 / S “imi RE s 2
|Dtest 1=72 00
Task Distributions OOD Evaluations (normalized reward) PALM Latent Space RMA Latent Space

Figure 6: In assistive itch scratching, we sample humans by different itch positions and activity levels (varying
action penalty Blp). We visualize the in- and out-of-distribution humans on the two-link arm figures. We also
visualize the embedding space of PALM and RMA, where we color-code the embeddings of in-distribution
humans. Here we leave the embeddings of other baselines to supplementary material.

Visualizing the Latent Space To further investigate S i

why PALM generalize better to OOD human than i :_';'{%;‘ / .
RMA baselines, We visualize the latent space of the kA5 % may d.s-‘(
"straight-line" distribution. As we see in Fig. 7, ! A ‘:;‘.,-..e{;»'«“"-"
PALM can capture the structure in human training R
distribution as two clusters, and also correctly embed
the OOD humans distribution as a part of the upper
arm distribution. RMA-based methods, on the
other hand, can discover the structure of training
humans. Yet qualitatively, they fail the correctly
embed the OOD humans in proximity to the upper
arm distribution.

x

Visualized
in Red

PALMcy =0 *

Figure 7: To better under extrapolations to OOD
human, which have new itch locations highlighted
in red on the left, we visualize the embeddings of
both the IND (colored) and OOD (red) humans on
the right.

4.6 Limitations and Failure Cases

Although PALM achieves good average-case performance, it works best with humans sampled near
the training distribution. If we pair the robot with an adversarial human, PALM is likely to fail as it
lacks a fall-back safety policy.

The major limitation of PALM is the requirement of generating a human population. While we
provide one way to generate human populations based on weighted human-robot co-optimization, we
lack ways to systematically generate diverse and realistic human motions. One important direction for
future work is to incorporate real user data to create training populations. Improving the realism of
the training human population is likely a crucial step to supporting transfer to real partners.

One future direction is extending to settings with one patient and one human caregiver. While our
framework still applies, this leads to new challenges including (1) learning a joint or separate latent
space for human patient and caregiver, (2) modeling a population of human caregivers for training in
simulation, and (3) modeling communication between the human caregiver and patient.

5 Conclusion

Generalization is an important task for assistive robotics, and in this paper, we formulate a problem
setting that focuses on Out-Of-Distribution users. To that end, we contribute a framework PALM
for learning a robot policy that can quickly adapt to new partners at test time. PALM assumes a
distribution of training humans and constructs an embedding space for them by learning to predict
partner actions. We can further adapt this embedding at test time for new partners. Experiments show
that PALM outperforms state-of-the-art approaches. We are excited by the potential of using PALM to
enable robotic assistance in the future.

Acknowledgments

We would like to thank Ashish Kumar for discussions on the RMA method and Annie Xie for
providing the implementation for LILI. We would also like to thank Charlie C. Kemp for feedbacks
and insights on assistive tasks. This research was supported by the NSF National Robotics Initiative.

References

(1]

(2]

(3]

D. P. Miller. Assistive robotics: an overview. Assistive technology and artificial intelligence,
pages 126—136, 1998.

S. W. Brose, D. J. Weber, B. A. Salatin, G. G. Grindle, H. Wang, J. J. Vazquez, and R. A.
Cooper. The role of assistive robotics in the lives of persons with disability. American Journal
of Physical Medicine & Rehabilitation, 89(6):509-521, 2010.

Z. Erickson, V. Gangaram, A. Kapusta, C. K. Liu, and C. C. Kemp. Assistive gym: A physics
simulation framework for assistive robotics. In 2020 | EEE International Conference on Robotics
and Automation (ICRA), pages 10169-10176. IEEE, 2020.

[4] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pages 23-30. IEEE, 2017.

J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke.
Sim-to-real: Learning agile locomotion for quadruped robots. arXiv preprint arXiv:1804.10332,
2018.

W. Yu, V. C. Kumar, G. Turk, and C. K. Liu. Sim-to-real transfer for biped locomotion. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3503—3510.
IEEE, 2019.

A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:2107.04034, 2021.

J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-net
2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics.
arXiv preprint arXiv:1703.09312, 2017.

Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel. Learning to manipulate deformable objects
without demonstrations. arXiv preprint arXiv:1910.13439, 2019.

D. Seita, A. Ganapathi, R. Hoque, M. Hwang, E. Cen, A. K. Tanwani, A. Balakrishna, B.
Thananjeyan, J. Ichnowski, N. Jamali, K. Yamane, S. lba, J. Canny, and K. Goldberg. Deep
Imitation Learning of Sequential Fabric Smoothing From an Algorithmic Supervisor. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.

J. Hietala, D. Blanco-Mulero, G. Alcan, and V. Kyrki. Closing the sim2real gap in dynamic
cloth manipulation. arXiv preprint arXiv:2109.04771, 2021.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D.
Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140-1144, 2018.

D. Balduzzi, M. Garnelo, Y. Bachrach, W. Czarnecki, J. Perolat, M. Jaderberg, and T. Graepel.
Open-ended learning in symmetric zero-sum games. In International Conference on Machine
Learning, pages 434-443. PMLR, 2019.

M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castaneda, C. Beattie, N.
C. Rabinowitz, A. S. Morcos, A. Ruderman, et al. Human-level performance in 3d multiplayer
games with population-based reinforcement learning. Science, 364(6443):859-865, 2019.

M. Carroll, R. Shah, M. K. Ho, T. Griffiths, S. Seshia, P. Abbeel, and A. Dragan. On the utility of
learning about humans for human-ai coordination. Advances in neural information processing
systems, 32, 2019.

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

D. Strouse, K. McKee, M. Botvinick, E. Hughes, and R. Everett. Collaborating with humans
without human data. Advances in Neural Information Processing Systems, 34, 2021.

A. Xie, D. P. Losey, R. Tolsma, C. Finn, and D. Sadigh. Learning latent representations to
influence multi-agent interaction. arXiv preprint arXiv:2011.06619, 2020.

S. Parekh, S. Habibian, and D. P. Losey. Rili: Robustly influencing latent intent. arXiv preprint
arXiv:2203.12705, 2022.

E. Z. Liu, A. Raghunathan, P. Liang, and C. Finn. Decoupling exploration and exploitation for
meta-reinforcement learning without sacrifices. In International Conference on Machine
Learning, pages 6925-6935. PMLR, 2021.

D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2013. URL https://arxiv.
org/abs/1312.6114.

M. Watter, J. T. Springenberg, J. Boedecker, and M. A. Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. CoRR, abs/1506.07365, 2015. URL
http://arxiv.org/abs/1506.07365.

T. Yoneda, G. Yang, M. R. Walter, and B. C. Stadie. Invariance through latent alignment. CoRR,
abs/2112.08526, 2021. URL https://arxiv.org/abs/2112.08526.

D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and K.
Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. CoRR,
abs/2104.08212, 2021. URL https://arxiv.org/abs/2104.08212.

A. Clegg, Z. Erickson, P. Grady, G. Turk, C. C. Kemp, and C. K. Liu. Learning to collaborate
from simulation for robot-assisted dressing. |EEE Robotics and Automation Letters, 5(2):
2746-2753, 2020.

A. Gupta, A. Pacchiano, Y. Zhai, S. M. Kakade, and S. Levine. Unpacking reward shaping:
Understanding the benefits of reward engineering on sample complexity. arXiv preprint
arXiv:2210.09579, 2022.

Y. Zhai, C. Baek, Z. Zhou, J. Jiao, and Y. Ma. Computational benefits of intermediate rewards
for goal-reaching policy learning. Journal of Artificial Intelligence Research, 73:847—-896, 2022.

S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. J6zefowicz, and S. Bengio. Generating
sentences from a continuous space. CoRR, abs/1511.06349, 2015. URL http://arxiv.org/
abs/1511.06349.

J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recurrent latent
variable model for sequential data. CoRR, abs/1506.02216, 2015. URL http://arxiv.org/
abs/1506.02216.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 627—635. JIMLR Workshop and Conference Proceedings, 2011.

10

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1506.07365
https://arxiv.org/abs/2112.08526
https://arxiv.org/abs/2104.08212
http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1506.02216
http://arxiv.org/abs/1506.02216

Supplementary Material

In this supplementary material, We first present details and visualizations on how we generated D ...,
the training distribution of human agents in assistive itch scratching in Sec. A. We then present the
main algorithm pseudo-code for PALM in Sec. C. Next we provide implementation details of
different methods in our main experiments in Sec. D and the ablation study of PALM in Sec. E and an
evaluation of PALM with a second task, bed bathing assistance, in Sec. F.

A Generating Human Populations

To train our robot using sim2real, we would like to have a set of diverse environments. However,
unlike single-agent domain randomization where we can vary environment parameters such as friction, in
assistive tasks the environment entails a changing user policy. It is not obvious how to best generate a
diverse population that captures user preferences, levels of disabilities, or movement characteristics.
Generating human motions that realistically capture the variation observed in physical human-robot
interaction has remained an unsolved challenge in robotics.

Figure 8: Visualization of humans generated of different activity levels. From left to right we apply action
penalties Bp = 0—10-30-60. Qualitatively, increasing the penalty results in the human taking more steady actions
with less swinging motions. This results in the human being more likely to expose the itch spot for the robot to
scratch, as opposed to scratching themselves.

Co-Optimization Prior works in robotic assistance [3, 24] have demonstrated that by optimizing for
the same task objective, we can generate human and robot motions that coordinate towards the same
goal, such as robot-assisted dressing. Further more, we can leverage reward engineering [25, 26] to
generate a diverse set of motions.

To generate diverse population in itch scratching task, we explore two sources of diversities: (1) we
assign different human action penalty B, where larger penalties lead to the human agent exerting less
effort. In the simulation experiment we use B, = 3—35-4.

(2) We simulate different itch positions on the human’s arm and train co-optimized human and robot
policies conditioned on them. This leads to qualitatively different strategies for the human and the
robot. Note that this serves as the first step to understanding how different methods generalize since we
never expect to be able to capture the diversity in humans perfectly. For training, we use Proximal
Policy Optimization (PPO) to optimize human and robot policies in an interleaving fashion. Note that

we also keep the co-optimized robot policy and use it to obtain expert actions for assistive policy
training (see Sec. 3.1 and supplement for full details).

Visualization Here we visualize trajectories from humans with different action penalties in Fig. 9.
Note that higher penalties result in the human taking more steady actions of smaller magnitude.

B Comparison with other VAE baselines for sequential data

Note that our method relies on embedding human trajectories as sequential data into a latent space.
Our implementation uses the final hidden state of RN N as the input to variational autoencoder. This
is based on [27], which has been shown to be effective in embedding and generating sentences. Given
that there are other different generative models for sequential data, our framework can be easily
combined with them. In fact, wee believe coming up with a better model for human embedding is a
future direction.

We hereby provide comparison with another different generative sequential model [28]. Different
from [27] that uses only the final hidden state, they construct a latent space for every intermediate
step in the sequential model. We keep all the experiment hyper-parameters the same, and concatenate
the final hidden state with observation as input to the robot policy. We show the results in

Normalized Reward [Distribution | Our Method [27] | Baseline [28] RNN
— IND 0.72 0.02 0.66 0.02 0,62 0.02
Assistive Reacher 00D 0.38 0.10 0.11 0.01 | 0.27 0.09
— IND 0.75 0.01 0.45 0.04 | 0.79 0.01
Itch Scratching D 00D 0.48 0.08 032 0.01 | 0.25 0.08
— IND 0.58 0.03 0.70 0.03 | 044 0.01
Itch Scratching D 00D 0.49 .0.02 0.31 0.05 | 0.40 0.02
— IND 0.34 0.02 0.23 022 [0.18 0.01
Itch Scratching D 00D 0.25 0.01 0.13 001 | 0.16 0.01

Table 1: Comparison with RNN-VAE baseline [28]

C Algorithm

We present the main algorithm for PALM assume we have access to training and test distributions
Dtrain and Drest.

D Additional Training and Implementation Details

In our experiments in both the assistive reaching and assistive itch scratching, we use a recurrent
network over a sliding window of 4-time steps, each of which is a concatenated vector of observation
human action B,; zand robot actions B, , For the current time step [, we use zero vector for
Bz and B, We set the latent space dimension to be four, and use a recurrent network with six layers.
Our base policy network has four dimensions and hidden size of 100.

D.1 PPO and Behaviour Cloning

We need to train the base policy and the latent space encoder E ;,2;B "jointly because they
are interdependent — [is the input to @ ; and B decides the data distribution which leads to (.
We simultaneously optimize the prediction loss in Eq. (2) and the policy loss using PPO [29]
algorithm. See Appendix D for more training details. To amend for the instability of training with a
population of humans, we leverage Behaviour Cloning, where we use expert robot policies obtained

via co-optimization (see Appendix A) to supervise on on-policy data. More specifically, we

query the expert actions [‘;X" in a DAgger fashion[30] 3 during training, and optimize B% to minimize

deviation fromit: L 5 = Ejjgxp jjz. The overall policy optimization loss include three terms:

latent prediction loss, PPO loss and the Behaviour Cloning loss: Lpatm = Lpred, Lrro, LBC.

3This ensures that we encounter no distribution shift at deployment time.

Algorithm 1 Prediction-based Assistive Latent eMbedding Training

Randomly initialize base policy B, encoder E ; parameterized by [, decoder D parameterized by
@. Empty replay buffer @ , window size
foritr=1-ee—= do
for@=1-ee;[, do
Sample B, D
B, env.reset()
Initialize history
for@ =0—eee—P do
Get latest @ steps from [&: E» B:.
EguByBg”
By By, H”
Blggy et ”_i% Blegn By
1 envstep(Bl ;G)
Store ,Ba—Ep—LBlre—Bep—& a” in

optionally find pre-trained expert robot policy &,

train’

end

@, end

for Bl = 1—eees [do
Sample a batch of BBz —Ry —Bz ” from -
Compute L preq Using Eq. (2), L ppo Using [29] and L gc = 4 jjB " BZjj2
Optimize @—B~0 for LpaLm =BlpredLpred , BproLlrpo, Beclac

end

end

Algorithm 2 Prediction-based Assistive Latent eMbedding Test Time Adaptation

Sample B, D . Initialize history B, Empty trajectory data
for @ =0- ooy do
B, envreset()
for@ =0—eee—[2 do
Get latest @ steps from [E» @:..
Eg B8 5"
Bro e
Bg, env.step(By—Gy
) Store ,,Blg—Byp—0 g” in
end
Compute Lpreq using Eq. (2) on B, & ! Bralpred,Ez—0 7
end

D.2 Hyperparameters

PALM Training We use Blppo = 001- = 1-B, .4, = 01 in our experiments. We find that the
behaviour cloning loss is essential for the Assistive Itch Scratching task. Under this hyperparameter
setting, we train for 200 iterations. During each iteration, we collect 19,200 state-action transitions,
which is evenly divided into 20 mini-batches. Each mini-batch is fed to the base policy and encoder
for 30 rounds to compute the loss and error for back-propagation. We set the learning rate to be
000005.

For PALM prediction training, we use a three-layer decoder with hidden size 12 to predict the next
human action from the hidden state from the encoder. To implement the KL regularization, follow
the standard VAE approach. We use two linear networks to transform the encoder hidden state into
and @, which denote the mean and the standard deviation of the latent space. We then compute
approximate K L divergence to normal distribution on this latent distribution.

PALM Test Time Optimization At test time, we roll out the trained robot policy and collect data
with the same user for 25 iterations, or 2,500 time steps. This amounts to 150 seconds of wall clock
time. We then optimize for the prediction loss (including K L regularization term) using learning rate
of 0.0001 for one to five steps, and use the one with the lowest loss. We empirically find the

hyperparameters by doing the same process with humans from the training distribution, where we
collect a mini training set and mini evaluation set both of 25 iterations. We use the mini training set to
find the learning rate and use the evaluation set to ensure there is no over-fitting.

RILI/LILI Training We follow a similar approach to PALM, except that we learn to predict the next
state B 1 and scalar reward.

RMA Training We follow the two-phase training procedure in [7]. Note that we find it crucial in
phase 2 to train the encoder with on-policy data, meaning that the regression data is collected by
rolling out actions output by the “recurrent learner”, not the trained network from phase 1. The phase 1
network is used simply for generating labels.

RNN/MLP Training. For RNN, we directly feed the hidden state of the recurrent encoder to the
policy network. The architectural difference between RNN and PALM is that we do not concatenate
the current observation B, to the encoded output. To ensure that the policy has at least the same
capacity as PALM, we use a base policy with the same number of parameters as in PALM.

E Ablation Studies

PALM Baselines Reach ltch DT ltch D? ltch D3
PALM test optim 0.43 0.13 0.51 0.08 0.50 0.02 0.29 0.02
PALM w/o test optim 0.38 0.10 0.48 0.08 0.49 0.02 0.26 0.01

NO L og 030 0.05 050 0.08 045 002 0.25 0.01M
(L =0 032 008 047 0.04 046 0.01 023 0.02
Frozen E 024 0.04 021006 015007 011 0.05

Table 2: Normalized Reward on Dtest, standard deviation over 3 seeds.

We include ablation studies of PALM in the main experiment in Sec. 4, where we study the effect of
test-time optimization, prediction loss, KL regularization and jointly training encoder E and policy &.

In the assistive reaching experiment, we observe that test-time optimization, L
and joint training all contribute to the OOD performance.

ored» KL regularization,

In the assistive itch scratching experiment, test time optimization and L pred improve experiment
results in all the settings. Applying KL regularization provides some gain in the complex distribution
D3, but does not lead to improvement in simpler distribution D1 and D.

F Additional Experiment: Bed Bathing Task

We further evaluate the performance of PALM in another assistive robotics task: robot-assisted
bathing. This task is a modified version of the bathing task introduced in Assistive Gym [3]. In this
task, we have a human lying on a tilted bed, with a robot mounted on the nightstand. The human can
move their right arm, and there is an identified patch of skin to be cleaned. Unlike the original bed
bathing task, where the entire right arm is covered in target points to be cleaned, we instead initialize a
fixed size region of points to be cleaned at a uniform randomly selected location along the surface of
the right forearm. The patch spans 10 centimeter along and 150 degrees around the forearm. Only the
human knows the center position of the patch, and the robot must infer the location of the patch based
on observations of the human motion. The points along the body are cleaned whenever the robot
initiates contact with the spot using its end-effector and applies a positive normal force. The task
reward is based on how many points are cleaned.

We generate synthetic humans by co-optimizing humans and robots conditioned on the centroid
position of the region to be cleaned. During co-optimization, we adopt the formulation in [3] where
both the human and the robot observe the centroid position along the human forearm. This helps
induce collaborative behaviour for the human and robot policies, where we then use the resulting
human as the synthetic population. During training, we blind of robot policy of the centroid position.
We use the co-optimized robot (observes the centroid position) as the oracle for querying expert
actions for Behaviour Cloning. We sample 18 humans from the training distribution, and save 6
humans from the held-out distribution as the out-of-distribution evaluation. We use the same
hyperparameters as the itch scratching experiment.

Out-of-distribution Evaluation

L P |
i

ood
PALM k=0, test opt PALM kl=1, testopt %@ LILI wZ® RILI W% RMA param P RMA Onehot RNN MLP

=
o

o4
=)

Reward (normalized)
(=1 o
N @

Figure 9: Visualization of the bed bathing task (left), where the human lies on a tilted bed with a table-mounted
robot to clean an area on their arm. The area is random initialized (middle) on the forearm, where we hold out a
quarter of the length as the held out distribution. The results of the held-out distribution is visualized on the right.

As we see in the results in Fig. 9, PALM achieves better out-of-distribution results compared to the
baseline methods. We also observe that this performance gap is smaller than the itch scratching task.
We believe this is due to the nature of the bed bathing task, where a robot controller that
maintains contact with the human’s forearm can be sufficient for solving the task if the human policy
learns to move and rotate their forearm accordingly to help the robot.

