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Figure 1: Our goal is to learn representations for robot behavior that capture what is salient to people, and, thus, support generalizable

preference learning with low sample complexity. We propose to extract this representation by asking people trajectory similarity queries (left),

where they judge which two out of three trajectories are most similar to each other. We then use the representation to learn reward functions

corresponding to di�erent people’s preferences on di�erent tasks (right).

ABSTRACT

When robots learn reward functions using high capacity models

that take raw state directly as input, they need to both learn a

representation for what matters in the task — the task “features" —

as well as how to combine these features into a single objective. If

they try to do both at once from input designed to teach the full

reward function, it is easy to end up with a representation that

contains spurious correlations in the data, which fails to generalize

to new settings. Instead, our ultimate goal is to enable robots to

identify and isolate the causal features that people actually care

about and use when they represent states and behavior. Our idea

is that we can tune into this representation by asking users what

behaviors they consider similar: behaviors will be similar if the

features that matter are similar, even if low-level behavior is dif-

ferent; conversely, behaviors will be di�erent if even one of the

features that matter di�ers. This, in turn, is what enables the robot
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to disambiguate between what needs to go into the representation

versus what is spurious, as well as what aspects of behavior can be

compressed together versus not. The notion of learning representa-

tions based on similarity has a nice parallel in contrastive learning,

a self-supervised representation learning technique that maps vi-

sually similar data points to similar embeddings, where similarity

is de�ned by a designer through data augmentation heuristics. By

contrast, in order to learn the representations that people use, so we

can learn their preferences and objectives, we use their de�nition

of similarity. In simulation as well as in a user study, we show that

learning through such similarity queries leads to representations

that, while far from perfect, are indeed more generalizable than

self-supervised and task-input alternatives.
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1 INTRODUCTION

Imagine waking up in the morning and your home robot assistant

wants to place a steaming mug of fresh co�ee on the table exactly

where it knows you will sit. Depending on the context, you will

have a di�erent preference for how the robot should be doing its

task. Some days it carries your favorite mug close to the table to

prevent it from breaking in the case of a slip (so that it will remain

your favorite mug); other days the steam from your delicious meal

is di�cult to handle for the robot’s perception, so you’d want it to

keep a large clearance from the table to avoid collisions. Similarly,

some days you want the robot to keep your mug away from your

laptop to avoid spilling on it; other days the mug only has an

espresso shot so you want the robot keep it close to the laptop to

prevent clutter and leave the rest of the table open for you.

The reward function the robot should optimize changes—whether

due to variations in the task, having di�erent users, or, as in the

examples above, di�erent contexts that are not always part of the

robot state (e.g. holding the user’s favorite mug and not just a regu-

lar mug). However, the representation on top of which the reward is

built, i.e the features that are important (like the distance from the

table, being above the laptop, etc.), are shared. If the robot learns

this representation correctly, it can use it to obtain the right reward

function, even if the task, user, and context changes. Meta-learning

and multi-task learning methods [30, 46, 56] learn the representa-

tion from user input meant to teach the full reward, like preference

queries or demonstrations. By contrast, we propose that if learning

generalizable representations is the goal, then we should ask the

user for input that is speci�cally meant to teach the representation

itself, rather than input meant to teach the full reward and hoping

to extract a good representation along the way.

But asking people to teach robots representations, rather than

tasks, is not so easy. What are the features that they care about?

While some techniques advocate for people enabling users to teach

each feature separately [11], people may not always be able to

explicate their representation and break it down into concepts that

are individually teachable. In this work, our idea is that we can

implicitly tune into the representations people use by asking them

to do a proxy task of evaluating similarity of behaviors. Behaviors

will be similar if the features thatmatter are similar, even if low-level

behavior is di�erent; conversely, behaviors will be di�erent if even

one of the features that matter di�ers. This, in turn, should enable

the robot to arrive at the features that matter — we want robots that

can disambiguate between what needs to go into the representation

versus what is spurious, as well as what aspects of behavior can be

compressed together into a feature embedding versus kept separate.

We thus introduce a novel type of human input to help the robot

extract the person’s representation: trajectory similarity queries.

A trajectory similarity query is a triplet of trajectories that the

person answers by picking the two more similar trajectories. In

Figure 1 (left), the person chooses the two trajectories that are close

to the table and far from the laptop, even though visually they

look dissimilar. This results in an (anchor, positive, negative) triplet

that can be used for training a feature representation. We call this

process Similarity-based Implicit Representation Learning (SIRL).

Our method has a parallel in self-supervised learning work, espe-

cially contrastive learning, where the goal is to learn a good visual

representation by training from (anchor, positive, negative) triplets

generated via data augmentation techniques [19]. However, this

notion of similarity is purely visual, driven by manually designed

heuristics for data augmentation, and is not necessarily re�ective of

what users would consider similar. For instance, two images might

be labeled as visually di�erent, when in fact their di�erence is only

with respect to some low-level aspects that are not really relevant

to the distribution of tasks people care about. This would result

in representations that contain too many distractor features that

are not present in the human’s representation. Our method uses

similarity too, but we defer to the user’s judgement of similarity,

with the goal of reconstructing the user’s representation.

Of course, our method is not the full answer to learning causally

aligned representations. But our experiments suggest that it out-

performs methods that are self-supervised, or that learn from input

meant to teach the full tasks. In simulation, where we know the

causal features, we show that SIRL learns representations better

aligned with them, which in turn leads to learning multiple more

generalizable reward functions downstream (Figure 1). We also

present a user study where we crowdsource similarity queries from

di�erent people to learn a shared SIRL representation that better re-

covers each of their individual preferences. While the study results

do show a signi�cant e�ect, the e�ect size is much lower than in

simulation. This is attributable in part to the interface di�culty of

analyzing the robot trajectories, which means more work is needed

to determine the best interfaces that enable users to accurately

answer similarity queries. Moreover, some users reported strug-

gling to trade o� the di�erent features, which means that similarity

queries might not be entirely preference-agnostic. Nonetheless, our

results underscore that there are gains by explicitly aligning robot

and human representations, rather than hoping it will happen as a

byproduct of learning rewards from standard queries.

2 RELATED WORK

Learning from Human Input. Human-in-the-loop learning is a

well-established paradigm where the robot uses human input to

infer a policy or reward function capturing the desired behavior.

In imitation learning, the robot learns a policy that essentially

copies human demonstrations [47], a strategy that typically doesn’t

generalize well outside the training regime [40]. Meanwhile, inverse

reinforcement learning (IRL) uses the demonstrations to extract

a reward function capturing why a speci�c behavior is desirable,

thus better generalizing to unseen scenarios [1]. Recent research

goes beyond demonstrations, utilizing other types of human input

for reward learning, such as corrections [6], comparisons [55], or

rankings [14]. Unless explicitly designed for, these methods learn a

latent representation implicitly from the respective human input.

We seek to instead explicitly learn a preference-agnostic latent space

that can be used for downstream tasks like reward learning. We

focus on learning models of human reward functions via pairwise

preference queries [55], but we believe the latent space we learn

can be useful for learning from any of the above types of feedback.

Representation and Similarity Learning. Common represen-

tation learning approaches are unsupervised [18, 20, 32] or self-

supervised [4, 27, 39, 48], but because they are purposefully de-

signed to bypass human supervision, the learned embedding does
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not necessarily correspond to features the person cares about. Prior

work leverages task labels [17] or trajectory rankings [13] to learn

latent spaces that help identify speci�c goals or preferences. By

contrast, we focus on learning task-agnositic measures of feature

similarity that are useful for learning multiple preferences. Some

work looks at having people interactively select features from a

pre-de�ned set [15, 16, 42] or teach task-agnostic features sequen-

tially via kinesthetic feature demonstrations [10] or active learning

techniques [9, 31, 37]. We instead focus on fully learning a lower-

dimensional feature representation all-at-once, rather than one at

a time. Furthermore, rather than relying on the human to provide

physical demonstrations for learning a good feature space [10, 11],

we propose a more accessible and general form of human feedback:

showing the user triplets of trajectories and simply asking them

to label which two trajectories are the most similar. Triplet losses

have been widely used to learn similarity models that capture how

humans perceive objects [2, 3, 25, 44, 54]; however, to the best of our

knowledge, we are the �rst to use a triplet loss to learn a general,

task-agnostic similarity model of how humans perceive trajectories.

Meta- and Multi-Task Reward Function Learning. To learn

multiple models of human reward functions, prior work has pro-

posed clustering demonstrations and learning a di�erent reward

function for each cluster [5, 21, 26]; however, these methods require

a large number of demonstrations and do not adapt to new reward

functions. Meta-learning [29] seeks to learn a reward function ini-

tialization that enables fast �ne-tuning at test time [33, 51, 57, 58].

Multi-task reward learning approaches pretrain a reward function

on multiple human intents and then �ne-tune the reward function

at test time [30, 46]. This has been shown to be more stable and scal-

able than meta-learning approaches [43], but still requires curating

a large set of training environments. By contrast, we do not assume

any knowledge of the test-time task distribution a priori and do not

require access to a population of di�erent reward functions dur-

ing training. Rather, we focus on learning a task-agnostic feature

representation that can be utilized for down-stream reward learn-

ing tasks. In particular, we test our learned representation on the

down-stream task of learning models of human reward functions

via pairwise preference queries over trajectories [8, 41, 50, 55].

3 METHOD

We present our method for learning preference-agnostic represen-

tations from trajectory similarity queries. Our intuition is that if a

human judges two behaviors to be similar, then their representa-

tions should also be similar. Since directly asking if two trajectories

are similar is di�cult without an explicit threshold, we instead

present the human with a triplet of trajectories and ask them to

pick the two most similar (or, equivalently, the most dissimilar one).

We use the human’s answers to train the representation such that

similar trajectories have embeddings that are close and dissimilar

trajectories map to embeddings far apart. The robot then uses this

latent space as a shared representation for downstream preference

learning tasks with multiple people, each with di�erent preferences.

3.1 Preliminaries

We de�ne a trajectory b as a sequence of states, and denote the

space of all possible trajectories by ⌅. The human’s preference

over trajectories is given by a reward function ' : ⌅ 7! R that is

unobserved by the robot and must be learned from human inter-

action. The robot reasons over a parameterized approximation of

the reward function '\ , where \ represents the parameters of a

neural network. To learn \ , the robot collects human preference

labels over trajectories [22, 55] and seeks to �nd parameters \ that

maximize the likelihood of the human input. The robot can then

use the learned reward function to score trajectories during motion

planning in order to align its behavior with a particular human’s

preferences. We focus on explicitly using human input to �rst learn

a good representation and then use that representation for down-

stream reward learning, rather than using reward-speci�c human

input (e.g., preferences or demonstrations) to implicitly learn the

representation at the same time as the reward function.

3.2 Training the Feature Representation via
Trajectory Similarity Queries

We seek to train a latent space that is useful for multiple down-

stream preference learning tasks. To do this, we propose learning a

preference-agnostic model of human similarity. One way to learn

such a model would be to ask users to judge whether two trajecto-

ries are similar or not; however, humans are better at giving relative

rather than binary or quantitative assessments of similarity [35, 53].

Thus, rather than asking users to use some internal threshold or

scoring mechanism to quantitatively measure similarity, we instead

focus on qualitative trajectory similarity queries. We present the

user with a visualization of three trajectories and ask them to pick

the two most similar ones (equivalently the most dissimilar one).

The human’s queries form a data setDB8< = {(b8
%1
, b8
%2
, b8

#
)}, where

b8
%1

and b8
%2

are the trajectories that are most similar and b8
#

is the

trajectory most dissimilar to the other two.

We can interpret similarity (or dissimilarity) as a distance func-

tion, so we de�ne the distance between two trajectories as the !2
feature distance: 3 (b1, b2) = kq (b1) � q (b2)k

2
2. Given a dataset of

trajectory similarity queries DB8< , we use the triplet loss [7]:

LCA8? (b�, b% , b# ) = max(3 (b�, b% ) � 3 (b�, b# ) + U, 0) , (1)

a form of contrastive learning where b� is the anchor, b% is the

positive example, b# is the negative example, and U � 0 is a margin

between positive and negative pairs. However, because our queries

do not contain an explicit anchor, our �nal loss is as follows:

LB8< (q) =

|DB8< |’

8=1

LCA8? (b
8
%1
, b8%2

, b8# ) + LCA8? (b
8
%2
, b8%1

, b8# ) . (2)

We train a similarity embedding function q : ⌅ 7! R3 that mini-

mizes the above similarity loss, where 3 is the representation di-

mensionality. The intuition is that optimizing this loss should push

together the embeddings of similar trajectories and push apart the

embeddings of dissimilar trajectories. Before training the repre-

sentation with the loss in Eq. (2), we may also pre-train it using

unsupervised learning [36], which we experiment with in Sec. 4.

3.3 Using SIRL for Reward Learning

Given a learned embedding q , we can use it for learning models of

speci�c user preferences. While we focus on learning from pairwise
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preferences, we note that q can in principle be used in downstream

tasks that learn from many types of human feedback [34]. When

learning a reward function from human preferences, we show the

human two trajectories, b� and b⌫ , and then ask which of these

two the human prefers. We collect a data set of such preferences

D?A4 5 = {(b8
�
, b8
⌫
, ✓8 )}where ✓8 = 1 if b8

�
is preferred to b8

⌫
, denoted

b8
�
� b8

⌫
, and ✓8 = 0 otherwise. We interpret the human’s prefer-

ences through the lens of the Bradley-Terry preference model [12]:

%\ (b� � b⌫) =
4'\ (q (b� ) )

4'\ (q (b� ) ) + 4'\ (q (b⌫ ) )
. (3)

We learn the reward function with a simple cross-entropy loss:

L?A4 5 (\ ) = �

|D?A45 |’

8=0

✓8 log %\ (b
8
� � b8⌫)+(1�✓

8 ) log %\ (b
8
⌫ � b8�) .

(4)

3.4 Adapting to Di�erent User Preferences

We want robots that can adapt to changes to an individual user’s

preferences depending on the context as well as quickly adapt to

new users’ preferences. Rather than learn each preference inde-

pendently by collecting a new set of human data and training a

completely new reward function '\ , we study whether we can

leverage the latent space learned by SIRL to perform more accurate

and sample-e�cient multi-preference learning. When learning a

new user’s preference model,'\ the robot can useq to more quickly

learn the reward function '\ (q (b)). Our main idea is that because

this shared latent representationq is trained via preference-agnostic

similarity queries, it is more transferable than using a multi-task or

meta-learning approach, where the pre-trained network is trained

using multiple, speci�c task objectives. Furthermore, because SIRL

uses human input to train q , we hypothesize that the learned fea-

ture space will be better suited for learning human reward functions

than a latent space learned via unsupervised training.

4 EXPERIMENTS IN SIMULATION

We �rst investigate the quality of SIRL-trained representations and

their bene�ts for preference learning using simulated human input

in two environments with ground truth rewards and features.

4.1 Environments

GridRobot (Figure 2a) is a 5-by-5 gridworld with two obstacles

and a laptop (the blue, green, and black boxes). Trajectories are

sequences of 9 states with the start and end in opposite corners. The

19-dimensional input consists of the G and ~ coordinates of each

state and a discretized angle in {�90�,�60�,�30�, 0�, 30�, 60�, 90�}

at the end state. The simulated human answers queries based on 4

features q⇤ in this world: Euclidean distances to each object, and

the absolute value of the angle orientation.

JacoRobot (Figure 2b) is a pybullet [24] simulated environment

with a 7-DoF Jaco robot arm on a tabletop, with a human and

laptop in the environment. Trajectories are length 21, and each

state consists of 97 dimensions: the G~I positions of all robot joints

and objects, and their rotation matrices. This results in a 2037-

dimensional input space, much larger than for GridRobot. The

4 features of interest q⇤ for the simulated human are: a) table —

(a) GridRobot environment.

Preprogrammed Views

Query Answers

Trajectory Replay

Query ID

!!

!"
!#

(b) JacoRobot environment and user study interface.

Figure 2: Visualization of the experimental environments.

distance of the robot’s End-E�ector (EE) to the table; b) upright

— EE orientation relative to upright, to consider whether objects

are carried upright; c) laptop — G~-plane distance of the EE to a

laptop, to consider whether the EE passes over the laptop at any

height; d) proxemics [45] — proxemic G~-plane distance of the EE to

the human, where the EE is considered closer to the human when

moving in front of the human that to their side.

In GridRobot the state space is discretized, so the trajectory space

⌅ can be enumerated; however, the JacoRobot state space is contin-

uous, so we construct ⌅ by smoothly perturbing the shortest path

trajectories from 10,000 randomly sampled start-goal pairs (see App.

A.1). We generate similarity and preference queries by randomly

sampling from ⌅. The simulated human answers similarity queries

by computing the 4 feature values for each of the three trajecto-

ries and choosing the two that were closest in the feature space.

For preference queries, the simulated human computes the ground

truth reward and samples the trajectory with the higher reward.

The space of true reward functions (used to simulate preference

labels) is de�ned as linear combinations of the 4 features described

above. The robot is not given access to the ground-truth features

nor the ground-truth reward function but must learn them from

similarity and preference labels over raw trajectory observations.

4.2 Qualitative Examples

In Figure 3 we show similar and dissimilar trajectories learned by

SIRL in a simpli�ed GridRobot environment with only the laptop

and the joint angle. Top: the given trajectory stays far from the

laptop and holds the cup on its side; SIRL learns that trajectories

that share those features are similar, despite being dissimilar in
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Figure 3: SIRL picks the two most and least similar trajectories to

a query trajectory. Top: trajectories are similar in features despite

being dissimilar in states. Bottom: trajectories are dissimilar in fea-

tures despite being close in states.

the state-space. Bottom: the trajectory stays close to the laptop and

holds the cup at an angle; SIRL learns that trajectories that hold

the cup upright and stay far from the laptop are dissimilar, despite

being similar in the state-space (going up and then right).

4.3 Experimental Setup

Manipulated Variables.We test the importance of user input that

is designed to teach the representation by comparing SIRL with

multi-task learning techniques from generic preference queries,

and unsupervised representation learning. We have 4 baselines: a)

VAE, which learns a representation with a variational reconstruc-

tion loss [36]; b)MultiPref , a multi-task baseline [30], where we

learn the representation q implicitly by training multiple reward

functions (each with shared initial layers) via preference learning;

c) SinglePref , a hypothetical method that learns from an ideal user

who weighs all features equally; d) Random, a randomly initial-

ized embedding, which does not bene�t from human data but is

also immune from any spurious correlations that might be learned

from biased data. For MultiPref, we trained versions with 10 and

50 simulated human preference rewards for good coverage of the

reward space. All embeddings have the same network size: for

GridRobot we used MLPs with 2 layers, 128 units each, mapping

to 6 output neurons, while for JacoRobot we used 1024 units to

handle the larger input space (see App. A.2). For a fair compar-

ison, we gave SIRL, SinglePref, and MultiPref equal amounts of

human data for pre-training: # similarity queries for SIRL, and

# preference queries (used for a single human for SinglePref or

equally distributed amongst humans for MultiPref). We also per-

formed ablations with and without VAE pre-training and found that

SinglePref and MultiPref are better without VAE (see App. A.3).

Dependent Measures. To test the quality of the learned repre-

sentations, we use two metrics: Feature Prediction Error (FPE) and

Test Preference Accuracy (TPA). The FPE metric is inspired by prior

work that argues that good representations are linearly separa-

ble [23, 38, 49]. Our goal is to measure whether the embeddings

contain the necessary information to recover the 4 ground-truth

features in each environment. We generate data sets of sampled

trajectories labeled with their ground truth (normalized) feature

vector D�%⇢ = {b,q⇤}. We freeze each embedding and add a linear

regression layer on top to predict the feature vector for a given

trajectory. We split D�%⇢ into 80% training and 20% test pairs, and

FPE is the mean squared error (MSE) on the test set between the

predicted feature vector and the ground truth feature vector. For

the human query methods, we report FPE with increasing number

of representation training queries # .

For TPA, we test whether good representations necessarily lead

to good learning of general preferences. We use the trained em-

beddings as the base for 20 randomly selected test preference re-

wards. For each '\8 , we generate a set of labeled preference queries

D
\8
?A4 5

= {b�, b⌫, ;}, which we split into 80% for training and 20%

for test. We train each reward model with " preference queries

per test reward, and we vary" . All preference networks have the

same architecture: we take the embedding q pre-trained with the

respective method, and add new fully connected layers to learn a

reward function from trajectory preference labels. For GridRobot

we used MLPs with 2 layers of 128 units, and for JacoRobot we

used 1024 units. We found that all methods apart from SIRL worked

better with unfrozen embeddings (App. A.3). We report TPA as

the preference accuracy for the learned reward models on the test

preference set, averaged across the test human preferences.

Hypotheses.We test two hypotheses:

H1. Using similarity queries speci�cally designed to teach the

representation (SIRL) leads to representations more predictive of

the true features (lower FPE) than unsupervised (VAE), implicit

(MultiPref, SinglePref), or random representations.

H2. The SIRL representations result in more generalizable re-

ward learning (higher TPA) than unsupervised (VAE), implicit (Mul-

tiPref, SinglePref), or random representations.

4.4 Results

In Figure 4 we show the FPE score for both environments with

varying representation queries # from 100 to 1000. For GridRobot,

both versions of SIRL (with or without VAE pre-training) perform

similarly and outperform all baselines, supporting H1. When pre-

training with preference queries, MultiPref with 10 humans per-

forms better than SinglePref or MultiPref with 50 humans: Sin-

glePref may be over�tting to the one human preference it has seen,

while when MultiPref has to split its data budget among 50 humans

it ends up learning a worse representation than Random. There

is a balance to be struck between the diversity in human training

rewards covered and the amount of pre-training data each reward

gets, a trade-o� which SIRL avoids because similarity queries are

agnostic to the particular human reward. For the more complex

JacoRobot, both versions of SIRL outperform all baselines, in line

with H1, although SIRL without VAE scores better than with it.

In Figure 5 we present the TPA score for both environments with

a varying amount of test preference queries" from 10 to 190, and

# = 100, 500, and 1000. For GridRobot, each respective method

performs comparably with di�erent # s, suggesting that this is a

simple enough environment that low amounts of representation

data are su�cient. For JacoRobot, this is not the case: with just

100 queries, SIRL with VAE pre-training performs like VAE, SIRL

without pre-training has random performance (since it’s frozen),

and the preference baselines all perform close to Random, as if they
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Figure 4: FPE for the GridRobot (left) and JacoRobot (right) environments with simulated human data. With enough data, SIRL learns

representations more predictive of the true features q⇤ in both simple and complex environments.

weren’t trained with queries at all. For larger # , both versions of

SIRL start performing better than the baselines, suggesting that

with enough data a good representation can be learned.

Focusing on # = 1000, our results support H2: both SIRLs out-

perform all baselines in both environments, although for JacoRobot

SIRL without VAE is better than with VAE. In the GridRobot en-

vironment VAE pre-training helps SIRL. However, while VAE per-

forms comparably to other baselines in GridRobot, it severely un-

derperforms in JacoRobot. This suggests that the reconstruction

loss struggles to recover a helpful starting representation when

the input space is higher dimensional and correlated. As a result,

using the VAE pre-training to warmstart SIRL hinders performance

when compared to starting from a blank slate. When comparing the

preference-based baselines, in GridRobot they all perform similarly

apart from MultiPref with 50 humans. In JacoRobot we see a trend

that more preference humans does not necessarily result in better

performance. This con�rms our observation from Figure 4 that

deciding on an appropriate number of human preferences to use for

multi-task pretraining is challenging, a problem that SIRL bypasses.

Summary. With enough representation data, SIRL learns represen-

tations more predictive of the true features (H1), leading to learning

more generalizable rewards (H2). This does not necessarily mean

that SIRL representations are perfectly aligned with causal features

— they are just better aligned, so the learned rewards are also better.

When VAE pre-training recovers sensible starting representations

it further reduces the amount of human data SIRL needs, otherwise

it hurts performance. Lastly, surprisingly, Random is often better

than pre-training with preference queries: preference-based meth-

ods may learn features that correlate with the training data but are

not necessarily causal, and an incorrectly biased representation is

worse for learning downstream rewards than starting from scratch.

5 USER STUDY

We now present a user study with novice users that provide simi-

larity queries via an interface for the JacoRobot environment.

5.1 Experiment Design

We ran a user study in the JacoRobot environment, modi�ed for

only two features: table and laptop (we removed the humanoid in

the environment). We designed an interface where people can click

and drag to change the view, and press buttons to replay trajectories

and record their query answer (Figure 2b). We chose to display the

Euclidean path of each trajectory in the query traces, as we found

that to help users more easily compare trajectories to one another.

The study has two phases: collecting similarity queries and col-

lecting preference queries. In the �rst phase, we introduce the user

to the interface and describe the two features of interest. Because

similarity queries are preference-agnostic, we describe examples of

possible preferences akin to the ones in Sec. 1, but we do not bias the

participant towards any speci�c preference yet. Each participant

practices answering a set of pre-selected, unrecorded similarity

queries, and then answers 100 recorded similarity queries. In the

second phase, we describe a scenario in the environment that has

a speci�c preference associated with it (e.g. “There’s smoke in the

kitchen, so the robot should stay high from the table” or “There is

smoke in the kitchen and the robot’s mug is empty, so you want to

stay far from the table and close to the laptop.”) and assign di�erent

preference scenarios to each participant. Each person practices un-

recorded preference queries, then answers 100 preference queries.

Participants.We recruited 10 users (3 female, 6 male, 1 non-binary,

aged 20-28) from the campus community to give queries. Most users

had technical background, so we caution that our results will speak

to SIRL’s usability with this population rather than more generally.

Manipulated Variables. Guided by the results in Figure 5, we

compare our best performing method, SIRL without VAE, to Ran-

dom, the best performing realistic baseline. For SIRL we collect

100 similarity queries from each participant and train a shared

representation using all of their data.

Dependent Measures.We present the same two metrics from Sec.

4, FPE and TPA. For TPA, we collect 100 preference queries for each

user’s unique preference, we use 70% for training individual reward

networks which we evaluate on the remaining 30% queries (Real).

We compute TPA with cross-validation on 50 splits. To demonstrate

how well SIRL works for new people who don’t contribute to learn-

ing the similarity embedding, we also train SIRL on the similarity

queries of 9 of the users and compute TPA on the held-out user’s

preference data (Held-out), for each user, respectively. Lastly, be-

cause real data tends to be noisy, we also compute TPA with 70
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Figure 5: TPA for GridRobot (top) and JacoRobot (bottom) with simulated human data. With enough data, SIRL recovers more generalizable

rewards than unsupervised, preference-trained, or random representations.

simulated preference queries for 10 di�erent rewards, which we

also evaluate on a simulated test set (Simulated).

Hypotheses. Our hypotheses for the study are:

H3. Similarity queries (SIRL) recover more salient features than

a random representation (lower FPE), even with novice user data.

H4. The SIRL representation results inmore generalizable reward

learning (higher TPA), even with novice similarity queries.

5.2 Analysis

Figure 6 summarizes the results. On the left, SIRL recovers a repre-

sentation twice as predictive of the true features, supporting H3.

A 2-sided t-test (p < .0001) con�rms this. This suggests SIRL can

recover aspects of people’s feature representation even with noisy

similarity queries from novice users. On the right (Real), SIRL recov-

ers more generalizable rewards on average than Random, providing

evidence for H4. Furthermore, using the SIRL representation on

a novel user (Held-out) also performs better than Random, and

the result appears almost indistinguishable from Real. This sug-

gests that similarity queries can be e�ectively crowd-sourced and

the resulting representation works well for novel user preferences.

Lastly, training with simulated preference queries slightly improves

performance for both methods, suggesting that noise in the human

preference data can be substantial. Three ANOVAs with method as

a factor �nd a signi�cant main e�ect (F(1, 18) = 6.0175, p = .0246,

F(1, 18) = 4.7547, p = .0427, and F(1, 18) = 16.1068, p < .001, respec-

tively). For each of the 3 cases, we also separated the 6 humans that

were assigned preferences pertaining to both features (e.g. “There is

smoke in the kitchen and the robot’s mug is empty, so stay far from

the table and close to the laptop.”). SIRL performance is slightly

better when using preference data from this subset of users, hinting

that perhaps the learned representation entangled the two features.
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Figure 6: Study values for FPE, and TPA with real and simulated preferences. Even with novice similarity queries, SIRL recovers representations

both more predictive of the true features and more useful for learning di�erent user rewards than the baseline.

Overall, the quantitative results support H3 and H4, providing

evidence that SIRL can recover more human-aligned representa-

tions. Subjectively, some users found the 2D interface deceiving at

times, as they would judge trajectory similarity di�erently based on

the viewpoint. This is a natural artifact of visualizing a 3D world in

2D, but future work should investigate better interfaces. Some users

reported struggling to trade o� the two features when comparing

trajectories. This is in part due to the fact that we almost “engi-

neered” their internal representation, so a more in-the-wild study

could determine whether similarity queries are indeed preference-

agnostic. Lastly, some queries were easier than others: users’ time-

to-answer varied across triplets suggesting that future work could

use it as a con�dence metric for how much to trust their answer.

6 DISCUSSION AND LIMITATIONS

In this work, our goal was to tackle the problem of learning good

representations that capture (and disentangle) the features that

matter, while excluding spurious features. If we had such a repre-

sentation, then learning rewards that capture di�erent preferences

and tasks on top of it would lead to generalizable models that reli-

ably incentivize the right behavior across di�erent situations, rather

than picking up on correlates and being unable to distinguish good

from bad behaviors on new data. Our idea was to implicitly tap

into this representation by asking people what they �nd similar

versus not, because two behaviors will be similar if and only if

their representations are similar. We introduced a novel human

input type, trajectory similarity queries, and tested that it leads to

better representations than those learned through self-supervision

or via multi-task learning: it enables learning rewards from the

same training data that better rank behaviors on test data.

That said, we need to be explicit that this is not the be-all end-all

solution to our goal above. The representations learned, as we see

in simulation, are not perfectly aligned with causal features — they

are just better aligned. The learned rewards are not perfect — they

are just better than alternatives. Similarity queries do not solve the

problem fully, potentially because they su�er from the same issue

preference queries do: when multiple important features change, it

becomes harder to make a judgement call on what is more similar.

The advantage that we see from similarity queries, though, is that

rewards for particular tasks might ignore or down-weigh certain

features that matter in other tasks, while similarity queries are

task-agnostic and implicitly capture the distribution of tasks in the

human’s head. Rather than having to specify a task distribution for

multi-task learning, with similarity queries we are (implicitly) ask-

ing the user to leverage their more general-purpose representation

of the world. But thinking about how to overcome the challenge

that multiple changing features make these queries harder to an-

swer opens the door to exciting ideas for future work. For instance,

what if we iteratively built the space, and based similarity queries

on some current estimate of what are the important features; over

time, as the representation becomes more aligned with the human’s,

the queries would get better at honing in on speci�c features.

Another obvious limitation is that we did not do an in-the-wild

study. In theory, similarity queries should be used when people

already have a robot they are familiar with and, thus, have a distri-

bution of tasks they care about in their everyday contexts, but in

our study we needed to explain to users these contexts and what

might be important. In doing so, we almost “engineered” their inter-

nal representation. As robots become more prevalent, a follow-up

study where users are given much less structure and allowed to

actually tap into their unaltered representation might be possible.

In a sense, with SIRL we build a foundation model, and this some-

times requires hundreds of queries to learn a good representation.

While we don’t think having this much data when pre-training

is unreasonable, especially since it leads to signi�cant desirable

performance improvement over baselines, sample-complexity is

crucial to address as we scale to more complex robotic tasks. Be-

cause similarity queries are task agnostic, we can crowd-source

the queries from multiple people (as we did in the user study) and

rely on this economy at scale to alleviate user burden. Future work

could also look at active querying methodologies to ask the person

for more informative similarity queries and reduce data amounts.

A further avenue of work is extending this beyond reward learn-

ing, using SIRL representations directly for policy learning or learn-

ing exploration functions. We also emphasize that similarity queries

are not a replacement for self-supervised learning; instead, we view

them as complementary — self-supervised learning might be able to

leverage expert-designed heuristics to eliminate many of the spuri-

ous features, while SIRL might serve to �ne-tune the representation.

How to properly combined the two remains an open question.

Overall, similarity queries are a step towards recovering human-

aligned representations. They improve upon the state of the art, and

can bene�t from further exploration in how to combine them with

other inputs and self-supervision, and how to make them easier

through better interfaces and query selection algorithms.
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