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Abstract

It is easy to see that the unit distance graphs on the classical
real normed sequence and function spaces — LP(N), LP(R),1 < p <
00, ¢g, C[0, 1], and C(R) N L*>°(R), the continuous bounded functions
from R = (—o00,00) into itself — have infinite clique and chromatic
numbers, because each graph contains a countably infinite clique. The
question remains to determine exactly which infinite cardinals these
numbers are. A related question is of interest as well: can the chro-
matic number be greater than the clique number?
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1 Introduction

N will stand for the set of non-negative integers and R will stand for the real
numbers. If X and Y are sets, the notation X will be used to denote the
set of all functions from Y into X. As usual, {0, 1}Y will be abbreviated 2Y,
and identified, in the usual way, with the set of all subsets of Y — also called
the power set of Y.

Also as usual, X" will be identified with the set of infinite sequences
(29,21, X9, ...) of elements of X; f € XY corresponds to the sequence
((0), F(1),..).

For any set X, the cardinality of X will be denoted | X].

For any set Y # (), RY can be made into a vector space in a natural way
via pointwise addition and scalar multiplication of functions.

Our questions concern single-distance graphs on infinite-dimensional normed
subspaces of RY when Y = N or Y is a subinterval of R. The spaces LP(I),
where 1 < p < oo and [ is a real interval, do not exactly fall into this
category, but bear with us.

If V' is a real vector space with norm ||-||, and d > 0, the distance-d graph
on V — let us denote it G(V/ ||-||, d), or just G(V, d) if the norm is fixed in the
discussion — is the graph with vertex set V' in which two vectors u,v € V are
adjacent if and only if they are a distance of d apart, i.e. ||[u—v|| = d. Clearly
scalar multiplication by d~! induces a graph isomorphism G(V,d) — G(V, 1),
so we restrict our discussion to G(V,1) in this paper.

A proper coloring of G(V/, || - ||, 1) with colors from a set C' is a function
¢ 'V — C such that if u,v € V and |ju — v|| = 1, then ¢(u) # ¢(v) —
in other words, adjacent vertices cannot be the same color. The chromatic
number of G(V,|| - ||,1) is the least cardinal |C| such that there is such a
proper coloring; we shall denote this chromatic number by x(V,| - ||, 1) or
x(V, 1), suppressing the superfluous “G.”

A clique in a simple graph H is a complete subgraph of H. The clique
number of H is

w(H) =sup{|V(K)|: K is a clique in H},

where V(K') stands for the vertex set of K. We shall denote the clique number
of GV, || - [I,1) by w(V; [ - [[,1) or w(V; 1).

Certainly, if w(H) is finite, the supremum in its definition is a maximum,
but clearly this is not necessarily the case when w(H) is infinite. It is easy
to describe a graph H with no infinite clique, but containing cliques of all
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positive integer orders. For such an H, w(H) = |N| and there is no clique in
H of order w(H).

It is elementary that for any graph H, w(H) < x(H). Each finite-dimensional
vector space over R is isomorphic to R” = R{L"} for some n € N. It is easy
to see that y(R", || - ||, 1) is finite for any norm || - || on R™: tile R™ with n-
dimensional cubes of diameter < 1, and then color the tiles periodically with
a copious, but finite, set of colors in such a way that all points in different
cubes bearing the same color will be distances > 1 from each other. There-
fore x(V,|| - ||,1) < oo for all finite-dimensional normed real vector spaces
(VoI - II)- Consequently, w(V, || -]|,1) < oo for all such vector spaces (V.|| - ||).
Therefore w(V, || - ||, 1) is achieved.

Question 1. If V is an infinite-dimensional subspace of RY (so Y is
infinite), with norm || - ||, is there necessarily a clique in G(V, 1) whose vertex
set has cardinality w(V,1)?

The Euclidean norm ||-||o on R™ is defined by || (@1, . .., ,)[|2 = /Dy 23
It is well known that w(R™, || - ||2, 1) = n+ 1. Determining or even estimating
X(R™ || - ||]2,1) is a famous problem; the journal Geombinatorics owes its
existence to the posing of this problem in the case n = 2. One of the shocking
early results in this area, due to Raiskii [2], was the discovery that for n > 1,
X(R™ || - ]l2,1) > n+ 2. Thus, x(R™, || - ||2,1) > w(R"™,|| - ||2,1) for all n > 1.
It has been shown [1] that x(R™, || - ||2, 1) grows exponentially with n. Hence,

X(Rn’ || i ||2a 1)
w(R™ |- |2, 1)

— 00, as n — o0.

On the other hand, with the norm |[|-||» defined on R™ by ||(z1, ..., %n)||cc =
maxj<;<yn |7, it turns out that x(R", || - [|oc, 1) = w(R", || - ||oc, 1) = 2™

Question 2. For an infinite-dimensional normed real vector space V', is
it possible that w(V,1) < x(V,1)?

We have questions auxiliary to Question 2 that are a bit embarrassing as
they reveal our ignorance, but here they are, with discussion.

Question 3. For an infinite-dimensional normed real vector space V, is
it possible that w(V, 1) < co?

Thanks to a famous result of P. Erdds about the existence of (finite)
graphs with arbitrarily large girth and arbitrarily large chromatic number, it
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is easy to see that infinite graphs G exist such that w(G) = 2 and x(G) = |N].

Question 4. If G is a graph with w(G) > |N|, can it be that w(G) <
X(G)?

In the rest of this paper, we inspect the unit distance graphs on particu-
larly well known normed sequence and function spaces.

2 1°(Y)
Suppose that Y is an infinite set. Define
1°(Y)={f €eR": forsome M >0, |f(y)| <M, forally € Y}.

In other words, [*°(Y) is the subspace of RY consisting of all bounded func-
tions. (Note: if Y is finite, then RY = [=(Y) ~ RYI) Clearly, [*(Y) is
naturally equipped with the norm || - [|o defined by || f||cc = sup,ey [f(y)|.

Theorem 1. If Y is an infinite set, then

wIY), 1+ oo 1) = x (V) [ I, 1) = [27].

Proof. The proof uses some well-known facts about cardinal arithmetic, in-
cluding 2| = |R].
Since {0,1}" C I®°(Y), and {0,1}" is the vertex set of a clique in the
graph
G, - s 1),

we have

2" =[{0,1}" |<W(l°°(Y) I+ lloos 1)
XUEX), [ floos 1)
< \l°°(Y)| < [RY|
=](2%"] = 2" =12"].

O

Note that this result extends the result about (R™, || - ||) mentioned earlier.
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3 IP(Y), 1<p<oo

If Y is infinite and 1 < p < oo, then I?(Y) = {f ceRY: Y oy IfWIP < oo} ;
clearly a subspace of {*(Y'), [P(Y) is naturally normed by || - ||,, which is

defined by /
1/p
£l = <Z |f(y)|”> :

yey

Theorem 2. If Y is an infinite set, and 1 < p < 0o, then

w(lY), - llpy 1) = XX ), - Ml 1) = Y.

Proof. For y € Y, let e, : ¥ — R be the characteristic function for the

singleton set {y}, i.e.
e,(2) 1 ifz=y
z) = .
Y 0 ifz+#y

Then the functions 2_%ey, y € Y, are the vertices of a clique in G(I?(Y), || -
s 1). Therefore w((Y). | - [, 1) > |Y].
With Q denoting the rational numbers, let

FY)={feQ" :{y: f(y) # 0} is finite} .

It is elementary that F'(Y') is dense in (I?(Y), || - ||,) for all p € [1,+00) and,
because Y is infinite and Q is countable, that |F(Y)| = |Y|. Therefore,
[P(Y) can be covered with |Y| metric balls of diameter 7/9. (Why 7/97
Feeble attempt at humor.) Each of these balls is an independent set in
G(P(Y), ]l - llp,1). Therefore, we have x(I?(Y), || - ||, 1) < |Y], which, with
the previous inequality w({P(Y), | - ||p, 1) > |Y|, establishes the claim. O

4 C(I)NI=()
For a real interval I let
C(I)y={f¢€ R’ : f is continuous on I},

where the continuity is with respect to the usual topologies on both spaces.
Then, C(I) N{*°(I) is the real vector space of continuous, bounded, real-
valued functions on the interval I, normed by the restriction of || - || to
C(I)N1*°(I). The following are facts familiar to many, but not all.
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1. If I is an open interval, then (C(I) NI{*(I),|| - ||«) is linearly and

isometrically isomorphic to (C'(R) N I*®(R),|| - ||oc). To see this, one
obtains a monotone, continuous surjection ¢ : I — R and then maps
C(R) N {*(R) one-to-one and onto C'(I) N {*(I) by f +— f o ¢, the
composition of f and ¢.

Therefore, to study the unit distance graphs on (C'(I) NI®(I), || - |loo)s

it suffices to study the unit distance graph on (C(R) NI*®(R), || - |le)
when [ is an open interval.

. It is well-known that every continuous, real-valued function on an in-

terval I = [a,b] C R achieves both a maximum and a minimum on /.
Therefore, for —oco < a < b < o0,

C(la, b)) N1%=([a, b)) = C([a, b]),

and for f € C([a, b)),

[fllec = max [f(x)
x€[a,b]

Clearly, the different normed spaces (C([a,b]), | - ||oc), —00 < a < b <
oo are isometrically isomorphic (see 1) to each other. So, their unit
distance graphs are isomorphic as well. We will take C([0,1]) as the
representative of this tribe of spaces.

. (C([0,1]), ]| lloo) is separable, i.e. C([0,1]) has a countable subset which

is dense with respect to the topology induced by || - ||oc. One way to see
this arises from the well-known fact that each f € C([0,1]) is uniformly
continuous on [0,1]. This means that for all € > 0 there exists § > 0
such that s,t € [0,1] and |s — t| < ¢ imply that |f(s) — f(t)| < e It
is then easy to see that f can be uniformly approximated by functions
in C([0,1]) devised as follows— choose a positive integer n, rational
numbers

To=0<r1 <20 <---<wp =1,

more rational numbers g, ...,y,, and use these choices to define a
function g by the following:

(a) g(z:) =i, i =0,...,m;

(b) g is linear on each interval [z;_1,x;], i =1,...,n.
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Such functions g, called linear splines, are continuous on [0, 1] and the
collection of them is dense in C([0,1]). This collection is in one-to-
one correspondence with a subset of the set of all finite sequences of
ordered pairs of rational numbers; therefore, this collection of splines
is countable.

4. On the other hand, (C(R) NI*®(R), || - ||c) is not separable. We can
prove this by a “diagonal” argument. Let Z denote the set of integers,

and let {gr},c, be a subset of C(R) N[*(R) indexed by Z. Let f be
the spline defined by

. 1 if gk(k‘) <0
fik) = {—1 if gp(k) >0

such that fislinear on [k—1, k| for every k € Z. Then, f € C(R)NI*(R)
(in fact, || flloo = 1) and || f — gklleo > 1 for all k € Z.

Theorem 3. w(C([0,1]), [ - [[oe; 1) = x(C([0,1]), || - lloe; 1) = [N].

Proof. For each positive integer n, let f,, : [0,1] — R be defined by

X ite € 0.1\ (3. 3)
fo(@) =< 2n((n+ 1)z —1) if n+r1 << 25(”;;11) ,
(1) <

The main thing is that f,, is continuous, takes values between 0 and 1, is
zero outside the interval (1, 1), and that || f,,||oc = 1. Clearly, || f;— filloc = 1

pESg

for all 1 < ¢ < j. Therefore w(C([0,1]),] - |leos 1) > |NJ.
On the other hand, the separability of C([0, 1]) allows us to cover C(]0, 1])
with |N| sets that are independent in G(C([0,1)), || - ||c0, 1), by an argument

similar to that deployed in the proof of Theorem 2. Therefore

IN| < w(C([0,1]), - lloes 1)
< x(C(0, 1)), - floes 1) < INJ.

O

Theorem 4. w(C(R)NI®(R), ||“]lcos 1) = x(C(R)NI*®(R), || |locs 1) = |R|.
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Proof. For each f :7Z — {0,1}, extend f to a continuous function from R
into [0, 1] by linear interpolation on each interval [n —1,n],n € Z. Clearly, if
f,g€2% and f # g, then, letting f, g denote the spline extensions of f and
gtoall of R, 1 =|f — g||co- Thus,

W(CR)NIZR), [ - |, 1) > [27] = [27] = |R].

We are grateful for the prompt to complete this proof from posts on
Mathematics Stack Exchange illustrating why |C'(R)| = |R|. Notice that
C(R) N I>°(R) injects into RC by mapping each function to its values on
Q (this map is injective because the domain’s functions are continuous).
Therefore

X(CR) NIER), - [loo, 1) < [C(R) NIZ(R)|
< R = |RY| = [2"] = [R].

The penultimate equality comes from the proof of Theorem 1, where it is
shown that |RY| = |2¥] for any infinite set Y. O

What about half-open, half-closed intervals 1?7 It is straightforward to see
that for every such I, the metric space (C(1) NI®(I), || - |le) is isometrically
isomorphic to the metric space (C([0, 00)) NI*([0,00)), || - ||co)- By modifying
previous arguments, it is easily seen that this space is not separable, and
that the unit distance graph on this space has clique number no less than
IR|. (Come to think of it, the latter implies the former, since if the space
were separable, then its chromatic number would not be greater than |NJ.)
As this space has cardinality < |C(R) N [*(R)| = |R|, the chromatic and
clique numbers are both |R].

5 Step Functions

If S C R, the characteristic function of S is the function chg : R — {0,1}

defined by
1 ifzes
chs = .
0 ifzegs.

A step function on an interval / C R is a finite linear combination ), A;chg,
in which each \; € R and each S; C I is either a subinterval of I or a single-
ton. Clearly, each step function is bounded, so, with Step(l) denoting the
set of all step functions on the interval I C R, we can equip Step(/) with the
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norm || - ||eo-

Theorem 5. For each real interval I,
w(Step(I), || - lloos 1) = x(Step(D), || - lloe; 1) = [Step(I)] = [R].

Proof. Since Step(I) is the set of all real-valued functions on I representable
as finite linear combinations, with coefficients from R, of characteristic func-
tions for singletons from I and subintervals of I, elementary cardinality ar-
guments show that |Step(I)| = |R].

Clearly, x(Step(I), || - |ls; 1) < |Step(I)] = |R|. On the other hand, if J
and K are different subintervals of I, then |ch; — chk|loc = 1. Thus, the
characteristic functions of the different intervals in I are the vertices of a
clique in G(Step(I), || - |lco, 1), so |{intervals in I} | = |R| < w(Step(l), || -
Joor 1).

O

6 Simple Functions

A simple function on a real interval [ is a function representable as a finite
linear combination ) . A;chg, in which each \; € R and each S; is a Lebesgue-
measurable subset of I. We refer the reader to almost any graduate textbook
on real analysis for the definition of “Lebesgue-measurable.”
Let Simple(I) denote the set of simple functions on I. Clearly, Simple(I)
is a vector subspace of [*°(1). We will consider Simple(]) with the norm ||- || -
Let L£(I) denote the set of Lebesgue-measurable subsets of I. Clearly,

R| = 1] < [£(1)] < 2] = 2F].
By the proof of Theorem 5, we have the following.

Theorem 6. For any real interval [,

w(Simple(I), || - [, 1) = x(Simple(I), || - [loos 1)
= |Simple(I)| = |L(1)].

We have questions about |£(/)]. We have been told by reliable sources
that if the Zermelo-Fraenkel (ZF) axioms are consistent, then so are those ax-
ioms with the additional axiom LM: every subset of R is Lebesgue-measurable.
In ZF+LM, clearly |L(I)| = |2!| = |2%| for each real interval I. However, in
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Zermelo-Fraenkel set theory with the axiom of choice (ZFC), the negation
of the axiom LM is provable! We know from [3] and [4] that a change in
axiom systems can change cardinalities, even the chromatic numbers of in-
finite graphs. If anyone can enlighten us on |£(I)| in ZFC, we will be most
appreciative.

7 LP(I),1<p< oo

If I is a real interval and p € [1,00), LP(I) is usually thought of as the set
of Lebesgue-measurable functions f : I — R satisfying [ [f[’ < co, where
| ; denotes the Lebesgue integral over I. (The Lebesgue integral agrees with
the Riemann integral, but can be applied to a broader class of functions.)
As all students of real analysis know, this definition is not quite right. Ac-
tually, the elements of LP(I) are equivalence classes of Lebesgue-measurable
functions, with respect to the equivalence relation ~ defined by: f ~ g (for
Lebesgue-measurable functions f and g) if and only if {z € I : f(z) # g(x)}
has Lebesgue measure zero.

However, we shall, as is customary, treat the elements of LP(I) as func-
tions. LP(I) is a normed vector space over R with the norm || f||, = (f; | f|?) e,
Note that we also used || - ||, to stand for the canonical norm on [P(Y). We
hope that the distinction will be clear from context.

The elements of L>(I) are also equivalence classes of Lebesgue-measurable
functions under the equivalence relation described above. The equivalence
class of a Lebesgue-measurable function f : [ — Ris in L*°(7) if and only if,
forsome M >0, u({x € I : |f(x)] > M}) = 0, where p denotes the Lebesgue
measure. Essentially, L>°(]) is the set of ~ classes of Lebesgue-measurable
functions whose members are bounded almost everywhere. We equip L*°([])
with the norm |[|f|jec = inf{M >0:u({z € l:|f(xz)] > M}) =0}, the es-
sential supremum of |f|. As with || -||,, we underscore that this || - || is not
the same as norms appearing previously in this paper with the same notation.

Theorem 7. For any real interval I and 1 < p < o0,
w(LP(D), || - [lp, 1) = x(LP(L), [ - I, 1) = |N].
Proof. Let J, = (a,,b,) be a sequence of pairwise disjoint open subintervals

of I, and let f,, = (2(bn—an))_%cth, where n =1,2,.... Then, || fi—fill, =1
whenever 1 < s < t. Thus, w(LP(I), || - |/, 1) > |N|.
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On the other hand, (LP(I), || - ||,) is a separable normed space (this is a
long story, which shall not be told here). Therefore, as in earlier proofs in
this paper, x(Z(), ]| |, 1) < [N].

[

Theorem 8. For any real interval [,

IR] < w(L=(1), |- lloes 1)
< XL, ]|+ Mooy 1) < (2],

Proof. If J and K are two different open intervals in I, then |[ch; — chg||s =
1. Thus, w(L>®(I), || - |, 1) = | {(a,0) : a,b € I and a < b}| = |R|.

On the other hand, clearly x(L®(1), || - |lo, 1) < |L®(I)] < |R¥| = |2F].
(Again, recall from the proof of Theorem 1 that |RY| = |2Y] for any infinite
set Y.) O

Out of sheer curiosity, we hope that Theorem 8 can be improved so that
both the clique number and chromatic number are completely determined.

8 Distance Graphs Defined By More Than
One Distance

In this last section we shall consider distance graphs in a more general setting
than we began this paper with. Suppose that (X, p) is a metric space and
D C (0,00). The distance graph G(X, p, D) is the graph with vertex set X
in which vertices x,y € X are adjacent if and only if p(x,y) € D. When
D = {d} we write G(X, p,d). If P is a graph parameter (e.g., x) we write
P(X, p, D), suppressing the superfluous “G.” When V is a real vector space
with distance induced by a norm || - ||, we write P(V, | - ||, D) as previously,
except now D need not be a singleton.

Theorem 9. Suppose that (X, p) is a metric space, and D C (0,00) is a
finite, nonempty set. Then:

maxw(X, p,d) < w(X,p, D) < x(X,p, D) < [[ x(X, p.d)
deD
Proof. The first two inequalities are straightforward to see. As for the last:

for each d € D, let Cy be a set of colors so that |Cy] = x(X,p,d) and
let pg : X — Cy be a proper coloring of G(X,p,d). Then the function
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¢ : X = [lyep Ca defined by ¢(x) = (¢4(x))aep corresponds to a proper
coloring of G(X, p, D), since if z,y € X and p(x,y) = d € D, then the dth
coordinates of the | D|-tuples p(x), ¢(y) will be different. Consequently:

[[ ¢

deD

X(X7p7D>§ :HX(X7p7D>

deD

0

Corollary. Suppose that (V, ||-]) is a real normed space and x(V, |||, 1)
is infinite. Then for each finite, nonempty D C (0, 00):

wVo - 1,1) w11, D) < x(Vi |- I, D) = x (Vo [ - 1, 1)

Proof. The corollary follows from Theorem 9, the fact that P(V, | - ||,d) =
PV, - ]|,1) for each d > 0 when P € {w, x}, and the fact that if ¢ is an
infinite cardinal and k is a positive integer, then c¢* = c. O

The corollary implies generalizations of almost all the previous results
of this paper from P(V,| - |,1) to P(V,| - ||,D) for P € {w, x} and finite
D C (0, 00). Extensions of the proposition to the case of infinite D C (0, c0)
are available, but we will leave these matters for another time.
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