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Abstract

We show that if p > 3 is a prime, and n 6= 2p is a positive integer
with the same abundancy index as 2p, then n has at least three distinct
prime factors, including p. Further, if n has precisely three distinct
prime factors, then its smallest prime factor is 3. If n has precisely
four distinct prime factors, then its smallest prime factor is 3 or 5; if
the smallest is 5, then the second smallest is 7 and the third smallest
is less than or equal to 31. This improves a result of Haenel and Wood
[1].

1 Introduction

For a positive integer n, the abundancy index I(n) is defined as σ(n)
n

, where
σ(n) is the sum of the positive divisors of n. Two positive integers m and n
are friends if and only if I(m) = I(n) and m 6= n. A number that has one
or more friends is called a friendly number, while a number that is known to
have no friends is called a solitary number. The most classic example of a set
of friendly numbers is the perfect numbers, which by definition are equal to
half the sum of their positive divisors. All perfect numbers are friends with
abundancy index 2.
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Lots of research has been done on friends of specific integers like 10 [3].
Additionally, Haenel and Wood [1] investigated the more general case of
friends of products of two primes, as well as friends of four times a prime
number. However, much is still unknown about friends of even the smallest
positive integers: of the positive integers less than 100, the status (friendly
or solitary) of thirty-one of them is not certain [5].

Many of these numbers with unknown status are of the form 2p for some
prime p > 3 (Note that if p = 3, then 2p = 6 is a perfect number and is
therefore friendly. If p = 2, then 2p = 4 is solitary; this will be shown later).
This paper builds on [1] and [3] to establish necessary properties of friends of
two times an odd prime other than 3, if such friends exist. First, some basic
properties of the abundancy index function must be shown.

Properties of the Abundancy Index

These properties will be used to establish conditions for the existence of
friends of 2p. Proofs can be found in [2], [3], and [4].

1. I(n) ≥ 1 with equality iff n = 1.

2. If m|n, then I(m) ≤ I(n) with equality iff m = n.

3. Abundancy index of products of primes: If p1,p2,...,pk are the dis-
tinct prime factors of n with corresponding positive integer exponents

e1,e2,...,ek, then I(
k∏

j=1

p
ej
j ) =

k∏

j=1

p
ej+1

j −1

p
ej
j (pj−1)

. This is derived from Property

4 below and from the well-known formula
k∑

j=1

rj = rk+1
−1

r−1
(r 6= 1).

4. The abundancy index is weakly multiplicative: I(mn) = I(m)I(n) for
relatively prime m,n.

5. Comparing abundancy indices: Suppose p1, p2, ..., pk are distinct primes,
q1, q2, ..., qk are distinct primes, pj ≤ qj for every j ∈ {1, 2, ..., k}, and

e1, ..., ek are positive integers. Then I(
k∏

j=1

p
ej
j ) ≥ I(

k∏

j=1

q
ej
j ) with equality

iff pj = qj for every j ∈ {1, 2, ..., k}.

6. Upper bound for abundancy index of a given n: If the distinct prime

factors of n are p1, p2, ...pk, then I(n) <
k∏

j=1

pj

pj−1
.
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7. If gcd(n, σ(n)) = 1, then n is solitary.

Proof. Let gcd(n, σ(n)) = 1 and suppose n has a friend m. Then
σ(n)
n

= σ(m)
m

, so mσ(n) = nσ(m). Thus n|mσ(n), so n|m. Therefore, by
Property 2, n and m cannot be friends.

A corollary of this result is that no prime power has a friend.

2 Friends of 2p

We will now use the above properties, as well as previous work by Haenel and
Wood [1], to establish more specific conditions for the existence of friends of
2p, where p is a prime greater than 3. Throughout this section, let m denote
a positive integer of the form 2p for some prime p > 3 and suppose n is a
friend of m.

Theorem 2.1. p|n.

Proof.
σ(m)
m

= 3
2
(p+1

p
) = σ(n)

n
. This implies 2pσ(n) = 3n(p + 1). Since

p|3n(p+ 1) and p is a prime other than 3, it follows that p|n.

Theorem 2.2. 3|σ(n).

Proof. The above equation also implies 3|2pσ(n), so 3|σ(n).

Theorem 2.3. 2 6 |n.

Proof. Suppose 2|n. Then by Theorem 1, 2p|n. But then by Property 2,
I(n) ≥ I(2p) with equality iff n = 2p. Therefore, 2 6 |n.

Theorem 2.4. n has at least three distinct prime factors. If n has exactly

three distinct prime factors, then the smallest of these factors must be 3.

Proof. By the corollary of Property 7, n = 2p must have at least two distinct
prime factors. Haenel and Wood [1] established that n has exactly two dis-
tinct prime factors if and only if n is of the form 3bp2 and 3b+1−1 = p(1+p),
where b ∈ Z

+. They acknowledged that they had yet to find any prime p
such that 2p has a friend satisfying this condition, but they had also been
unable to prove that such a prime does not exist.

We will prove that there is no prime p satisfying 3b+1 − 1 = p(1 + p) for
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a positive integer b. We must consider three possible cases.
Case 1: p ≡ 0 mod 3.
This means p = 3, but we are requiring p > 3.
Case 2: p ≡ 1 mod 3.
Then p = 3x+ 1 for some positive integer x.
3b+1 − 1 = (3x+ 1)(3x+ 2)
3b+1 = 9x2 + 9x+ 3
3b = 3x2 + 3x+ 1, which is impossible.
Case 3: p ≡ 2 mod 3.
Then p = 3x+ 2 for some positive integer x.
3b+1 − 1 = (3x+ 2)(3x+ 3)
3 divides the right-hand side of the above equation, but not the left-hand
side. This contradiction implies that p 6≡ 2 mod 3.
Therefore, there is no prime p such that p(1 + p) = 3b+1 − 1. Thus, we can
conclude that n must have at least 3 distinct prime factors.

Now suppose n has exactly 3 distinct prime factors x, y, z. Then n = xaybzc

for some a, b, c ∈ Z
+. Without loss of generality, assume x < y < z. By

Theorem 3, 2 6 |n, so 3 ≤ x < y < z.
We know I(n) = 3

2
· p+1

p
> 3

2
and by Property 6, I(n) < x

x−1
· y

y−1
· z
z−1

.

• Suppose x ≥ 7. Then by Properties 5 and 6, I(n) ≤ I(7a11b13c) <
7
6
· 11
10

· 13
12

< 3
2
. Therefore, x < 7.

• Suppose x = 5 and y ≥ 11. Then I(n) ≤ I(5a11b13c) < 5
4
· 11
10

· 13
12

< 3
2
.

Therefore, if x = 5, then y = 7.

• Suppose x = 5, y = 7, and z > 31. Then I(n) ≤ I(5a7b37c) < 5
4
· 7
6
· 37
36

<
3
2
. Therefore, if x = 5, we have y = 7 and z ∈ {11, 13, 17, 19, 23, 29, 31}.

Now let n = 5a7bzc, a, b, c ∈ Z
+, z ∈ {11, 13, 17, 19, 23, 29, 31}. By Theorem

1, p|n, so p ∈ {x, y, z}. Ward [3] showed any friend of 10 must have at least
6 distinct prime factors, so p 6= 5.
Suppose p = 7. Then I(n) = 3

2
· 8
7
= 12

7
.

But I(n) ≤ I(5a7b11c) < 5
4
· 7
6
· 11
10

< 12
7
, so p 6= 7. Therefore, p = z.

• Suppose z ∈ {11, 13}. Then I(n) = I(2z) ≥ 3
2
· 14
13

= 21
13
.

But I(n) ≤ I(5a7b11c) < 5
4
· 7
6
· 11
10

< 21
13
. So z /∈ {11, 13}.

• Suppose z ∈ {17, 19, 23, 29}. Then I(n) = I(2z) ≥ 3
2
· 30
29

= 45
29
.

But I(n) ≤ I(5a7b17c) < 5
4
· 7
6
· 17
16

< 45
29
. So z /∈ {17, 19, 23, 29}.
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• Suppose z = 31. Then I(n) = I(2z) = 3
2
· 32
31

= 48
31
.

But I(n) = I(5a7b31c) < 5
4
· 7
6
· 31
30

< 48
31
. So z 6= 31.

We know that if x = 5, then y = 7 and p = z ≤ 31. But we’ve shown
contradictions for every prime z ≤ 31. Therefore, x 6= 5, so if n has exactly
3 distinct prime factors, then the smallest of these factors must be 3.

The case where 3|n presents unique challenges. When all prime fac-
tors of n are greater than 3, our strategy has been to employ Properties 5
and 6 to eliminate possible factorizations of n using proof by contradiction.
Employing this strategy, we have significantly narrowed down the possible
prime factors for n when 3 6 |n. However, when 3|n, Property 6 says that

I(n) < 3
2

k∏

j=1

pj

pj−1
, where p1, p2, ...pk are the other distinct prime factors of

n. Thus, when 3|n Property 6 always gives an upper bound greater than 3
2

for I(n). Our methods do not work in this case. Therefore, the rest of this
paper will focus on two cases: first, the case where 3|n, and secondly, the
case where 3 6 |n.

Theorem 2.5. If 3|n, then p appears with an exponent greater than 1 in the

prime factorization of n.

Proof. Suppose p is a prime greater than 3 and suppose n is a positive integer
such that 3|n and I(n) = I(2p). Then, by Theorems 1 and 4, n = 3apbkc for
some positive integers a, b, c, k, where k > 1 is relatively prime to 3 and p.
Thus,
3
2
· p+1

p
= 3a+1

−1
3a(2)

· pb+1
−1

pb(p−1)
· σ(kc)

kc

Cancelling out the 2p term, we get 3(p+ 1) = 3a+1
−1

3a
· pb+1

−1
pb−1(p−1)

· σ(kc)
kc

If b = 1, then 3(p+ 1) = 3a+1
−1

3a
· p2−1

p−1
· σ(kc)

kc
⇒ 3 = 3a+1

−1
3a

· σ(kc)
kc

⇒

3a+1kc = (3a+1 − 1)σ(kc).
By Theorem 3, 2 6 |kc. Therefore, the left-hand side of the above equation is
odd, while the right-hand side is even. This contradiction implies b > 1.

Theorem 2.6. If 3 6 |n and n has exactly four distinct prime factors, then

its smallest prime factor is 5, its second smallest prime factor is 7, and its

third smallest prime factor is less than or equal to 31.

Proof. Suppose that p is a prime greater than 3 and suppose n is a friend
of 2p with exactly four distinct prime factors, where 3 is not one of these
factors. (In this case, we can actually specify that p > 5 thanks to the work
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done by Ward [3].) This means n = waxbyczd for distinct primes w, x, y, z
and positive integers a, b, c, d (not necessarily distinct). Without loss of gen-
erality, assume w < x < y < z. By Theorem 3, we know that w > 2, which
means in this case w > 3. We also know that I(n) = 3

2
· 1+p

p
> 3

2
.

Suppose w > 5. Then by Properties 5 and 6 of the abundancy index,
I(n) ≤ I(7a11b13c17d) < 7

6
· 11
10
· 13
12
· 17
16

< 3
2
. Therefore, w = 5 and p ∈ {x, y, z}.

Suppose x > 13. Then I(n) ≤ I(5a17b19c23d) < 5
4
· 17
16
· 19
18
· 23
22

< 3
2
. Therefore,

x ∈ {7, 11, 13}.

Suppose x ≥ 11, so y ≥ 13. Then by Property 5, I(n) ≥ I(2z) = 3
2
· z+1

z
. By

Property 6, I(n) ≤ I(5a11b13czd) < 5
4
· 11
10

· 13
12

· z
z−1

Thus we have
5
4
· 11
10

· 13
12

· z
z−1

> 3
2
· z+1

z
⇒ 143

144
> z2−1

z2
⇒ z2 < 144, contradicting z > y ≥ 13.

Therefore, x = 7.

Finally, suppose x = 7 and y > 31. Then by Property 5, I(n) ≥ I(2z) =
3
2
· z+1

z
. By Property 6, I(n) ≤ I(5a7b37czd) < 5

4
· 7
6
· 37
36

· z
z−1

.
It follows that

5
4
· 7
6
· 37
36

· z
z−1

> 3
2
· z+1

z
⇒ 1295

1296
> z2−1

z2
⇒ z2 < 1296 ⇒ z < 36,

a contradiction since y ≥ 37 implies z ≥ 41.
Therefore, y ≤ 31.

This process of eliminating potential prime factors of n becomes significantly
more difficult when 3|n. We can still eliminate some prime factors, but only
when we make assumptions about the exponent of 3 in the prime factor-
ization of n. The next two lemmas are included as an aside to show the
challenges of using this method.

Lemma 2.7. If n has exactly four distinct prime factors, the smallest of

which is 3, and if 3 appears with an exponent of 1 in the prime factorization

of n, then n’s second smallest prime factor is less than or equal to 19.

Proof. Given the above conditions, n = 3xbyczd for some primes 3 < x < y <
z and positive integers b, c, d. Then, by Property 6, I(n) < 4

3
· x
x−1

· y

y−1
· z
z−1

.

If x ≥ 23, then I(n) ≤ I(3 · 23b · 29c · 31d) < 4
3
· 23
22

· 29
28

· 31
30

< 3
2
.

This contradicts I(n) = 3
2
· p+1

p
> 3

2
. Therefore, x ≤ 19.
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Lemma 2.8. If n has exactly four distinct prime factors, the smallest of

which is 3, and if 3 appears with an exponent of 2 in the prime factorization

of n, then n’s second smallest prime factor is less than or equal to 73.

Proof. Given the above conditions, n = 9xbyczd for some primes 3 < x < y <
z and positive integers b, c, d. Then, by Property 6, I(n) < 13

9
· x
x−1

· y

y−1
· z
z−1

.

Using the same methods as the first lemma, if x ≥ 79, then I(n) ≤ I(9 · 79b ·
83c · 89d) < 13

9
· 79
78

· 83
82

· 89
88

< 3
2
. Therefore, x ≤ 73.

As the exponent on 3 increases, so do the possibilities for the next smallest
prime factor of n. It is easy to see why this method needs refining in order
to be of any real use in the case that 3|n, but such a refinement is certainly
possible.
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