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Abstract
Suppose that a,b,c,d € N and o = a + ib, § = ¢ + id are linearly
independent as planar vectors. Let U(a, 3) be the intersection with
N[i] of the smaller angular sector bounded by the half-lines through the
origin and «, 3, respectively, and let SG(«, 5) = { \a+ pfb | A\, p € N}.
It is shown that there exists w € N[i] such that w + U(«, ) C SG(a, §)
if and only if |ad — be| = 1. Further, when this requirement is satisfied,

Ula, 8) = SG(a, B) ={w € Z[i] | w+ U(a, B) C SG(a, B)}.

1 Introduction

Throughout, Z will denote the set of integers, Z™ the set of positive
integers, N the set of non-negative integers, Z[i] = {a + ib | a,b € Z},
the set of Gaussian integers, and N[i| = {a + ib | a,b € N}, the set of
Gaussian integers in the closed first quadrant of the complex plane.

What we will call the primordial Frobenius theorem is the following.
It is from the 19" century, and it is not due to Frobenius alone (Sylvester
may have been the first to prove it), but somehow it has becoem associ-
ated with the great German mathematician Frobenius.
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Theorem F. Suppose that ay, ..., a, € Z* and

SGlay,. .. a,) = {ZAjaj A GN}
j=1

Then SG(aq, ..., a,) contains a tail of N (i.e., all sufficiently large inte-
gers are in SG(ay,...,a,) if and only if ay,...,a, are relatively prime
(meaning that the greatest common integer divisor of ai, ..., a, is 1).

Still of mathematical interest are the Frobenius problems associated
with this theorem: Given ai,...,a, € Z", relatively prime, find the
largest integer not in SG(ay,...,a,); equivalently, find the successor
of that integer, which will be the smallest element of the largest (with
respect to inclusion) tail of N which is contained in SG(ay, ..., a,). If we
let wy denote that smallest element, then the tail of N of which wy is the
smallest element vs wy + N, the translate of N by wy. Further, because
wo—1¢ SG(ay,...,a,), wo+N={weZ|w+NCSG(a,...,a,)}
These comments are trivial to verify, but they are worth remembering,
in view of what is to come shortly.

It should be mentioned that in the case n = 2, there is a formula
solution to the Frobenius problem: If a,b are relatively prime positive
integers, then the largest integer not in SG(a, b) is ab— (a+b). Therefore,
in these case, the wy referred to above is ab— (a+b)+1 = (a—1)(b—1).
For n > 2, the Frobenius problems in Z are still being worked on, in
some precincts.

Nicole Looper found a way to seek Frobenius-type theorems in ar-
bitrary rings (usually commutative, with unit). We slightly modify the
presentation in [4] : A Frobenius template in a ring R is a triple (A, C, U)
in which each A,C' C R and U is a function which assigns to each fi-
nite sequence (aq,...,a,) € A" n € Z*, a monoid (closed under +,
containing 0) U(ay,...,a,) € R such that

SG(Oél,...,Oén) = {Z)\jaj | )\1,...,)\,160} QU(al,...,an)
j=1

For interesting answers to questions we shall pose about such a tem-
plate, generally C' (the coefficient set) is a monoid, and, often, so is



A U {0}, although this does not seem to be essential. What is es-
sential is that for each finite sequence aq,...,a, € A, U(aq,...,ay)
should be a monoid containing SG(ay,...,q,) with the vague prop-
erty of having no “holes” — a property that N clearly posseses in Z,
as do the monoids U(a, ) described in the abstract, in Z[i]. And
U(a, ..., a,) should satisfy a strange condition vis-a-vis SG(ay, . .., ay);
besides containing SG(ay, ..., q,), it should be the case that for any
monoid V' C R property containing U(aq,...,a,), there is no w € R
such that w +V C SG(aq,...,a,). If U does not satisfy these vague
requirements, the answers to the questions we are about to pose will be
trivial, or at least uninteresting.
Frobenius questions about this template are:

(1) For which sequences (as,...,q,) € A" is Frob(aq, ..., a,) =
{weR|w+U(ay,...,a,) CSG(ay,...,a,)} non-empty?

(2) When Frob(ay,...,q,) # &, can Frob(ay, ..., a,) be usefully de-
scribed?

Clearly Theorem F answers question (1) in the classical case, in which
the ring is Z and the template is (N ~ {0},N,N). Note that U is a
constant function in this template. Results mentioned earlier settle both
questions for sequences a,b € N \ {0} of length 2: From Theorem F,
Frob(a, b) # @ if and only if @ and b are relatively prime, and if they are,
Frob(a,b) = (a — 1)(b — 1) + N. Both questions for this template in the
case of a single positive integer are pretty easy. For sequences aq, ..., a,,
n > 2, there are algorithms and short answers for (2) in special cases,
but there is still plenty of territory open for exploration.

Looper’s clearing of the path to Frobenius theorems in contexts more
general then the classical led to non-trivial results in [1], [3], [4], and [5].
In each of these the U component of the template was constant.

The very first Frobenius theorems in a non-classical context (that we
know of) appeared in [2], before the publication of [4]. In terms not
available at the time, the template in [2] was (N[z] \ {0}, N[i],U) and
the U was necessarily non-constant, due to the nature of complex mul-
tiplication and the (related) absence of a linear ordering on the ring of
Gaussian integers Z[i| compatible with the ring operations. The Frobe-
nius theorem that we will prove here is also in the ring Zl[i], although



the ring structure is incidental, of no importance. But, again, U will be
non-constant.

Before getting down to business, we want to acknowledge the contri-
butions of two of the co-authors of [2], Chris Maier and Jordan Paschke,
to the entire Frobenius-generalization project. Undergraduates at the
time (summer, 2008, in a Research Experience for Undergraduates pro-
gram), having been introduced to the 19'" century classical Frobenius
results, they decided to search for analogous phenomena in Z[i]. With-
out a definite idea of what they were looking for, they decided to take
elements of N[7] \ {0} and form linear combinations of these elements
with coefficients from N[i]. Looking at two ”easy” cases, they found gold.
(And then the brilliant Ken Dutch appeared, and showed us how to find
more gold, buried deeper.)

2 The problem, and the main results

For a non-zero complex number z = x + iy, x,y € R, let 0(z) be the
unique number in (—, 7] such that z = |z]e?®). Thus, if z,y > 0,
0<6(z) <m/2. If > 0andy >0 then #(z) = arctan .

For 0 < ¢ < <7/2, let

Alp,¢) = {a e Ni] ~ {0} [ ¢ < b(e) <9} U{0}

Notice that we allow ¢ = 4, in which case A(p,%) is the intersection
with Z[i] of the single half-line starting at 0, making an angle ¢ with the
positive x-axis in the plane. Otherwise, A(p, ) is the intersection with
Z[i] of the angular sector with vertex 0, bounded by the half-lines with
equations 6(z) = ¢ and 6(z) = 1. Observe that A(p,1) is a monoid —
closed under addition and containing 0.

Strictly speaking, to have a Frobenius template we must have a ring.
Ours shall be Z[i], and the template shall be (N[i] ~ {0},N, U), in which
U is defined by:

Ifaq,...,a, € N[i]\{0},and 0(c;) < ... < O(ay,), then U(ay, ..., o)
= A(f0(cn),0(an)). Observe that U(ay, ..., a,) contains SG(ay,. .., ay)
= {>0" N | A, ..., A, € N} and more: A(f(a1),0(v,)) is minimal,
with respect to inclusion, among sets of the form A(p,¥), 0 < ¢ <
¥ < /2, which contain SG(ay, ..., ). Further, if A(6(aq),0(an)) C

=



A(p, ) (ie., if o < O(aq),0(a,) < 1), and at least one of these inequali-
ties is strict) then no translate of A(p,) could possibly be contained in
SG(ay,...,a,). Consequently, if we want U(ay, ..., a,) to be a monoid
containing SG(ay, ..., q,), with the possibility that for some choices
of ag,...,an, Frob(ay,...,an) = {w € Z[i] | w+ U(aq,...,a) C
SG(a,...,a,)} is non-empty, and with Mother Nature emphatically
pointing at the sets A(p, ), monoids without “holes” in Zl[i], our defi-
nition of U is virtually forced.

Our aim here is to completely determine the sets Frob(ay, ..., ay,),
ai, ..., o, € N[i| X\ {0}, in the cases n = 1,2.

Theorem 1. Suppose that o = a + ib, a,b € N, not both zero. With
reference to the Frobenius template (N[i| ~ {0},N,U) defined above, the
following are equivalent:

(a) Frob(a) # ;
(b) Frob(a) =U(a) = A(f(a),0(a)) = SG(a) = {ka | k € N};
(c) a and b are relatively prime in Z.

Theorem 2. Suppose that o = a +ib, f = c+ id € N[i] \ {0}, and
O(a) = 0(5), with reference to the Frobenius template (N[i] <~ {0},N,U).

(1) Ifb = d = 0 then Frob(a, 5) # @ if and only if a and ¢ are relatively
prime in Z, in which case Frob(a, f) = (a — 1)(c — 1) + N.

(2) Ifa = c =0 then Frob(a, 5) # & if and only if b and d are relatively
prime in Z in which case Frob(a, ) = ((b—1)(d — 1) + N)i.

(8) Suppose that a,b,c,d € N\ {0}, and let vy =e+if, e, f € N {0},
be the element of N[i| {0} closest to 0 on the line with the equation
y = %:L‘ For some positive integers q,r,ac = ry and 3 = rvy. Then
Frob(a, B) # @ if and only if ¢ and r are relatively prime in Z, in
which case

Frob(a, ) = (¢—1)(r—1)y+A(0(a), () = ((g—1)(r—1)+N)7.

The astute reader will recognize that the conclusions in cases (1) and
(2) in Theorem 2 are really just special cases of the conclusion in case



(3). It seemed to us to be wise to separate these cases, to make the
conclusion in (3) easier to understand.

Theorem 3 Suppose that a,b,c,d € Nyao = a +ib,f = c+1id €
N[i] \ {0}, and 0(a) # 0(B). With reference to the Frobenius template
(N[i] ~ {0}, N, U), defined earlier, the following are equivalent:

(a) Frob(a, 5) # &;
(b) Frob(a, ) = U(a, B) = SG(a, B)
(c¢) lad — be| = 1.

3 Proofs

Lemma 1. Suppose that a and b are positive integers, and v = e + if,
e, f € N~ {0}, is the point in N[i] \ {0} closest to 0 on the line with
equation ay = bx in the plane. Then e and f are relatively prime in Z
and every point with integer coordinates on that line is an integer multiple
of .

Proof. If r > 1 is an integer which divides both e and f, then
£t (%) is a point on the line with positive integer coordinates which is
closer to 0 than 7. So e and f must be relatively prime, as integers.

To show that every integer point on the line I with equation y = gx
is an integer multiple of ~, it suffices to show that this holds for points
d =g-+ih,g,h € Nx {0}, on that line (so h = gg) For such a point 4,
let m be the largest positive integer such that me < g. If me = g then
d = mry, so suppose that me < g; we have g < (m+1)e, by the definition
of m. Then 0 < g—me <e, 500 < h—mf = %(g—me) < %e:f;
thence 0 — my is a point on that line with positive integer coordinates,
and is closer to 0 than v is. This is impossible, so § = m~y after all. [

Proof of Theorem 1. U(«) consists of the integer points on the half-
line starting at 0 and running through «, while SG(«) is {ma | m € N}.

As in Lemma 1, let v = e 4+ if be the non-zero integer point on that
half-line closest to the origin. (If the half-line is horizontal or vertical,
e+if =1ori) By Lemma 1, U(a) = yN.

Note that w € Frob(a) = w =w+0 € w+ U(e) € SG(«). Thus
Frob(a) € SG(«). Putting this together with the fact that SG(«) is
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closed under addition, we see that U(a) = SG(«) implies that Frob(a) =
U(a) = SG(«). Thus, (b) is equivalent to U(a) = SG(«).

Since e and f are relatively prime integers by Lemma 1, and o = my
for some positive integer m (again, by Lemma 1), we have that o =
~ if and only if a and b are relatively prime positive integers. Thus
(¢) = (b) = (a). On the other hand if a and b are not relatively prime
positive integers, then av = m~y for some m > 1; then SG(«a) = {ka |
ke N} ={qv]|¢€N,g=0mod m}. For any candidate w for Frob(a),
w € SG(a) = w = ta for some t € N. Take any r € N such that
r = 1 mod m and we have that w + ry = (tm +r)y € SG(a) and thus
w+U(a) € SG(«). Thus, a,b, not relatively prime integers implies that
Frob(a) = @. Therefore, (a) = (c). O

Proof of Theorem 2. In all 3 cases, U(«q, 3) consists of the integer
points on the half-line H containing o and [, anchored at 0. Let v =
e+if € U(a, B) be the non-zero element of U(«, ) closest to 0. (In case
(1), v = 1; in case (2), v = i.) By Lemma 1, U(a, 8) = {kvy | k € N}.
Then a = ¢y and 8 = rvy for some ¢,r € N~ {0}, so SG(o, ) =
{(A\g + pr)y | A\, x € N}. Thus the Frobenius questions about o and S,
with respect to the template (N[i] \ {0}, N, U), in the case when 6(«) =
0(B), are, in light disguise, just the same as the Frobenius questions
about ¢ and r with respect to the template (N \ {0}, N,N) in the ring
of integers. The answers are given by the 19** century results described
in the Introduction. U

Proof of Theorem 3. Without loss of generality, 6(a) < 6(B).

Therefore, either b = 0 or £ < %l. In either case, ad — bc > 0. We

interrupt this proof for a lemma.

Lemma 2. Suppose that v = e+if € U(a, 3)~{0}, then (i)[4] <e
and (ii)[%] < f.

Proof. v € U(a,8) ~ {0} = 0 < f(a) = arctan 2 < 0(v) < 4(B) <
7/2. Noting that tan = (arctan) ™! is increasing on [0, 7/2), we have that
if 6(7) < 7/2 then §(a) = arctan 2 < (v) = arctané =2 < % = be <
f= (%ﬂ < f, because f is an integer. If () = /2 then e = 0 and
f >0, so we still have [%] = 0 < f. Thus (i) holds. If §(3) < 7/2
then ¢ > 0 and, from 6(vy) = arctan% < 0(B) = arctan ¢ we infer that
[%1 <e. If 0(B) = w/2 then ¢ = 0, d > 0, so we still have [%1 =0<e.
Thus (7) holds. O



We resume the proof of Theorem 3. Clearly, (b) = (a).
(¢c) = (b) : We assume that ad — bc = 1 and prove that U(«, 5) C
SG(«, ) which implies that Frob(«, 5) = SG(a, f) = U(«a, 5). Suppose
that v = e+ if € U(w, ). We can assume that v # 0. We will show
the existence of A\, u € N such that Aa+ pf = ~; A and p will be integer
solutions of the linear system

Ao+ puc=e
Ab + pud = f, which holds if and only if

Al 1 d —c||e
wl  ad—"be |-b al|l|f
| de—cf
| =be+af
By Lemma 2, because v € U(«, [3), we have

:jg cf <e=>A=ed—cf >0and
d d
be

b
= —< {—6-‘ <f=p=af —be>0,
a a

so A, € N. This establishes (¢) = (b).

(a) = (c) : Suppose that w € Z[i] and w + U(a, B) C («, 8). As
previously noted, w = w+0 € w+U(a, 5) C SG(a, ), sow = Na+pu'p
for some XN, ' € N.

Forally =e+if € U(e, B), w+vy = (Na+p'c+e)+(Nb+p'd+ f)i €
SG(a, B) implies that there exist A\, u € N such that Aa + pf = w + 7,
which is equivalent to

a c|[A] _ [Na+pc+e
bod] || = (Nb+pd+ £
and because ad — bc > 0 this implies
AN 1 [d —c][Na+pecte
w| T ad—be |-b a| | Nb+pd+f
1 [N(ad —bc) +de —cf
"~ ad —be |p(ad —be) + af —be|’

8



from which we can conclude that ad —bc | de —cf,af —be for all e, f € N
such that e+ if € U(a, ).

Because 0(a) < 0(), U(a, 5) “opens” without bound, so we can find
e, f € N, quite large, such that e+if, e+ 1+if, e+i(f+1) € U(a, ).
From this we have that ad —bc | de —cf,d(e+1)—cf,de—c(f+1),a(f +
1) —be,af — b(e + 1), and, from this, that ad — be | a,b, ¢, d. From this
it follows that (ad — bc)? | ad — be. Since ad — be > 0 and ad — be is an
integer, we can conclude that ad — bc = 1. L.

4 Remarks

This paper was inspired by [2], in which the ring was the same as here,
Z[i], and the Frobenius template (not identified as such in [2], as the
term did not exist at the time) was (N[i] \ {0}, N[z],U) with U defined
as follows: if aq,...,a, € N[i] ~ {0}, and 0(a;) < ... < (), then
Ulay,...,a,) = A(0(aq), 0(a,) +7/2). Gaussian integers oy, . .., o, are
relatively prime if they have no non-unit common divisor in Z[i]. One of
the main results in [2] was the following.

Theorem G If ay,...,a, € N[i] \ {0} then with reference to the
Frobenius template of [2] (defined above), Frob(ay,...,a,) # @ if and
only if ay, ..., are relatively prime in Z]i].

In Theorems 1,2, and 3 there is no mention of Gaussian integers
being relatively prime in Z[i]; so you might ask: what is the relation
between Frob(ay, ..., a,) being non-empty, with reference to the Frobe-
nius template (N[i] {0}, N, U) of this paper, and the relative primeness
of ay,...,a, in Z[i]?

If O(ay) = -+ = 0(ay,) € (0,7/2) then there is no relation, since, by
Lemma 1, each «; is divisible in Z[i] by the non-zero Gaussian integer
v =e+1if closest to 0 on the half-line on which the o; lie, and v is not
a unit in Z[i] unless that half-line is horizontal or vertical. Yet the proof

of Theorem 2 extended to cases n > 2 shows that Frob(ay,...,«,) can
be empty or not.
However, in the cases () = -+ = 0(ay,) = 0 or O(ay) = -+ =

0(a,) = m/2, the conditions for Frob(ay, ..., a,) # & with reference to
the template of this paper and the template of [2] are the same.



Lemma 3. Suppose that oy, ..., a, € Z[i] ~ {0} and |aq %, ..., |a,|?
are relatively prime in Z. Then ay, ..., a, are relatively prime in Z[i].

Proof. If aq, . .., o, have some non-unit common divisor in Z[i], say
aj =764, 5=1,....,n,and v, B, ..., B, € Z[i], and 7 is not a unit, then
|72 > 1 divides each of |y |?,. .., |a,|?, in Z. O

Corollary. Ifay,...,a, are positive integers, then they are relatively
prime in Z if and only if they are relatively prime in Z[i].

Regarding the situation in Theorem 3: There are many, many choices
of a,b,c,d € N such that a = a 4+ tb and 3 = ¢ + id are relatively prime
in Z[i] yet |ad — be| > 1. For instance, take o« =7 + 4, § = 2+ 5i. Then
« and 3 are relatively prime in Z[i], by Lemma 3, since |a|? = 50 and
|82 = 29, yet ad — bc = 35 — 2 = 33.

On the other hand, if a,b,c,d € Z and ad — bc = 1 then a = a + b
and 8 = c + id are relatively prime in Z[i]. To see this, suppose that
e, f,a b, c,d €eZ,y=e+if, o =d +ib, p = +id, and a = v/,
B = ~p'. Then after a short struggle one finds that 1 = ad — bc =
(e + fA)(dd = V) = |y*(d’d — V). Thus |y]* is a positive integer
divisor of 1, from which it follows that ~ is a unit in Z[i].

5 More Problems

Obviously the next big question concerning the template (N[i|~{0}, N, U)
is: For which ay,...,a, € N[i| ~ {0},n > 2, is Frob(a, ..., a,) # 27 If
O(ar) < ... < O(ay), O(ay) < O(ay), a1 = ay +iby and a,, = a, + b,
then a,b, — a,b; = 1 implies that Frob(ay,...,a,) = SG(ay, ..., a,) =
U(a,...,a,), by appeal to Theorem 3; but is a1b, — a,b; = 1 necessary
for Frob(ay,...,a,) # @ when n > 27

Lemma 1 and the proofs of Theorems 1 and 2 show that when 6(ay) =

-++ = 0(a,) the question of whether Frob(ay,...,a,) = & or not can be
dealt with by applying Theorem F to a sequence ry,...,r, of positive
integers related to aq, ..., a,. Going in another direction: Some readers

may have noticed that with our template (N[7]\{0}, N, U), multiplication
in the ring Z[i] played no role in the pursuit of the associated Frobenius
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questions. We imposed Z[i| as the context for this inquiry to make
possible contrast with the work in [2], and because Looper’s templates [4]
normally require a ring. But in this case, we clearly could have replaced
Z[i] by Z* and N[i| by N? and thus considered our template and our
associated questions to be about a module (Z?) over a ring (Z) with the
coefficient part of the template being a monoid in the ring (N C Z, in
this case).

Therefore, we can have an infinity of new problems: Take, in Z",
a Frobenius template (N™ ~ {(0,...,0)},N,U), and ask the Frobenius
questions. As in the case n = 2, for n > 2, U will be a non-constant
assignment of half cones to sequences ay,...,a, € N~ {0}. We leave
exploration of this newly discovered island to the reader and to the fu-
ture.
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