ACKNOWLEDGEMENTS

The authors would like to especially thank Qiran Dong, Grace Harper, and Dan Hofman, who were involved with much of the paper's early development. We would also like to thank Dr. William Gasarch and Dr. Clyde Kruskal of the University of Maryland at College Park, as well as the others involved in coordin ating the REU program of which this research was originally a part.

Thanks also to Dr. Thomas Goldstein, Dr. Alan Weiss, Yuval Widgerson, and Dr. Wiseley Wong for their comments and suggestions throughout the development of this research.

REFERENCES

- [1] A. D. N. J. de Grey. The chromatic number of the plane is at least 5. ArXiv e-prints, April 2018.
- [2] P. Erdos. On sets of distances of n points. The American Mathematical Monthly, 53(5):248-250, 1946.
- [3] Orin Frink. Jordan measure and riemann integration. *Annals of Mathematics*, 34(3):518-526, 1933.
- [4] Alejandra Garrido. An introduction to amenable groups. 2013.
- [5] Kate Juschenko. Amenability of discrete groups by examples. 2015.
- [6] Dan Pritikin. All unit-distance graphs of order 6197 are 6-colorable. *Journal of Combinatorial Theory, Series B*, 73(2):159-163, 1998.
- [7] Polymath Project. Probabilistic formulation of hadwiger-nelson problem.
- [8] Alexander Soifer. The Mathematical Coloring Book. Springer Science+Business Media, 2009.

On the Babai and upper chromatic numbers of ffin with non-Euclidean distance

William Jones

SUNY at Binghamton, wjones4@binghamton.edu

Jakub Kraus

University of Michigan, jakraus@umich.edu

Abstract

With 11-111 and 11-1100 denoting the £1 and £00 norms on n, it is shown that the upper chromatic number of (zn, 11-111) is greater than 2n, and the upper chromatic number of (zn, 11-110) is greater than 2n.

1 Introduction

i

A **ist nce** function on a nonempty set X is a function $p: X \times X - -t$ [O, 00) satisfying, for all $x, y \in X$,

1.
$$p(x,y) = 0$$
 $\{x,y\} = y$

$$2. p(x,y) = p(y,x)$$

If, in addition, for all x, $y \in X$:

3:
$$p(x, z) p(x,y) + p(y, z)$$
,

th n p_{S} said to be *metric* on X, and we call the pair (X, p) a *metric space*. If p is a distance function on X, let us call the pair (X, p) a distance space.

A **coloring** of a set X is a function $\varphi : X - t$ C for some set C, a set of *colors*. A oloring φ does n ot need to be surjective.

If (X, p) is a distance space, $\varphi : X - t$ C is a coloring, $c \to C$, and $d \to (0, \infty)$, we say **distanced is forbidden for the color** c with respect to φ (omitting "with respect to φ " when co_n text is clear), if and only if x, $y \to X$ and $\varphi(x) = C$

This research was supported by NSF grant no. 1950563.

q(y) = c imply that p(x, y) # d If d is forbidden for every $c \to C$, we say that p(x, y) # d in p(x,

If (X, p) is a distance space and D $(0, \infty)$, the **chromatic number** of (X, p) with respect to D, written as x((X, p), D), is the minimum cardinality CI of a set C such that there exists a coloring $\P: X \dashrightarrow C$ which forbids every $d \to D$. Since the identity function $idx : X \dashrightarrow X : S$ such a coloring, it follows that x((X, p), D) is well-defined and x((X, p), D) IXI. If we define the **distance graph** G((X, p), D) to have vertices V(G) = X and edges $E(G) = \{xy : x, y \to X \text{ and } p(x, y) \to D\}$, then x((X, p), D) is simply the chromatic number of the corresponding distance graph, i.e. the least cardinality of C such that there is a proper vertex coloring $\P: V(G) \dashrightarrow C$ When $D = \{d\}$, a singleton, we will omit the set brackets in notation involving D.

The kth Babai number of a distance space (X, p), denoted $B_k(X, p)$, is:

$$B_k(X, p) = \sup \{x ((X, p), D) : D \quad (0, \infty) \text{ and } IDI = k\}.$$

For all of the distance spaces that we will encounter in this paper, B1(X, p) is finite; therefore, the "sup" in the definition is "max", as it was in the definition of the Babai numbers in [3], where they first appeared. This was a mistake; distance spaces (X, p) can be found (see [10]) such that:

$$\{x((X, p), d) : d > 0\} = Z^+ = \{1, 2, 3, \dots\},\$$

so $B_1(X, p) = \sup Z^+ = 0$. A question in passing: is it the case that for every limit cardinal q there exists a distance \pace (X, p) such that x((X, p), d) < q for all d > 0, yet $B_1(X, p) = q$?

If S is a set and $k \to \mathbb{Z}^+$, then S^k will stand for the k-fold Cartesian product of S: $S^k = xf=1$ $S = S \times --- \times S$. The kth upper chromatic number of a distance space (X, p), denoted $x^{(k)}(X, p)$, is the least cardinality of a set C satisfying:

For every function $d: C \dashrightarrow (0, \infty)^k$, there is a coloring $\P: X \dashrightarrow C$ such that for every $c \to C$, each distance d_j in the k-tuple d(c) is forbidden for the color c, $i = 1, \dots, k$

The class of such sets C is always nonempty, because X itself is such a set via the coloring p = idx. Thus, by the fact that the cardinal numbers are well-ordered, we have that $X^{(k)}(X, p)$ is well-defined, and $X^{(k)}(X, p)$. IXI. When k = 1, we will omit k and use the notation x(X, p) to stand for $X^{(k)}(X, p)$. If we use the term "upper chromatic number" without mentioning k, it is safe to_1 assume that we are referencing the 1st upper chromatic number, x(X, p).

Lemma 1. For any distance space (X,p), B1(X,p) = x(X,p).

Proof Suppose that $\mathbf{M} = x(X,p)$, so for every $d : C - - + (0,\infty)$ there is a coloring $\mathfrak{P}: X - - + C$ such that for each $c \to C$ the distance d(c) is forbidden for the color c.

For an arbitrary distance $d^* > 0$, let d stand for the constant function on O with constant valued*. By the previous paragraph, there is a coloring $\phi: X \dashrightarrow$ C that forbids the distanced*, so $x((X, p), d^*)$ ICI. Therefore, $B_1(X, p) = \sup_{x \in A} d^* > o(X((X, p), d^*))$ ICJ = x(X, p).

The proof of Lemma 1 extends naturally to show $B_k(X, p) = X^{(k)}(X, p)$ for any $k \in \mathbb{Z}^+$.

Suppose that (X, p) is a distance space and k n E z+. If D is a k x n matrix with entries from $(0, \infty)$, i.e. $D \to (0, \infty)^{kxn}$, then let us say that D is **satisfiable** in (X, p) if there is a coloring of X with colors $(c1, \ldots, en)$ such that for 1 i = n, 1 = j = k, the distance dij (row i, column j of D) is forbidden for the color G, i.e. no two points colored G are distance dij apart. If D E (0, oo)lxn, we might refer to D as a sequence (d_1, \ldots, dn) rather than a matrix. Provided that $X^{(k)}(X, p) < \infty$, the definition of $X^{(k)}(X, p)$ may be restated as follows: $X^{(k)}(X, p)$ is the least positive integer n such that every matrix $D \to (0, oo)^k x^n$ is satisfiable in (X, p). Notice that $B_k(X, p)$, when finite, is the least positive integer n such that every matrix $D \to (0, oo)^k x^n$ with *identical* columns is satisfiable in (X, p); this framing makes it easy to see that $B_k(X, p)$; \cdots X(k)(X, p).

Lemma 2. Suppose $n \to \mathbb{Z}^+$. If every matrix $D \to (0, \infty)^{k \times n}$ is satisfiable in (X,p), then for all $m \to \mathbb{Z}^+$, $m \cong n$, every matrix $D \to (0,oo)^{k \times m}$ is satisfiable in (X,p).

Proof Given $D E(0, oo)^{kx}m$, color X with $(c_1, ..., en)$ so that for all i E(1, ..., n) and j E(1, ..., k), distance di_j is forbidden for the color c_i . Do not use the colors (Cn+i, ..., em).

Corollary 1. For k, $n \in \mathbb{Z}^+$, $X^{(k)}(X, p) > n$ if and only if some matrix $D \in (0, \infty)^{k \times n}$ is not satisfiable in (X, p).

We will let (V, 11-11) denote a normed vector space over \mathbb{R} or \mathbb{C} , where the norm is a function $11-11: V --+ [0, \infty)$ satisfying $\mathbb{R} \mathbb{N} = 0$ $\mathbb{R} = \mathbb{C}$, $\mathbb{N} + \mathbb{N} = \mathbb{N}$

The norms $\|.\|_1$ and $\|.\|_{\infty}$ on \mathbb{R}^n are defined by $\|(x_1,\ldots,x_n)\|_1 = \sum_{i=1}^n |x_i|$ and $\|(x_1,\ldots,x_n)\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$; the taxicab and maximum norms, respectively. Notice that distance spaces $(U,\|.\|)$ and $(U,f(\|.\|))$ always have translation-invariant distance functions ρ ; that is, for all $x,y,z \in U$ such that $x+z,y+z \in U$, $\rho(x,y) = \rho(x+z,y+z)$.

When $(V, \|.\|)$ is a normed space (over $\mathbb R$ or $\mathbb C$), a simple change-of-scale argument shows that for any $d_1, d_2 \in (0, \infty), \chi((V, \|.\|), d_1) = \chi((V, \|.\|), d_2) = B_1(V, \|.\|)$. This fact does not necessarily hold for subsets of V equipped with the same metric. For instance:

$$\chi\left(\left(\mathbb{Q}^{3},\left|.\right|\right),1\right)=2\tag{[6]}$$

$$\chi\left(\left(\mathbb{Q}^{3},|.|\right),\sqrt{2}\right) = 4 = B_{1}\left(\mathbb{Q}^{3},|.|\right) \tag{[9]}$$

It is not known if $\hat{\chi}(\mathbb{R}^2,|.|)$ is finite. However, in a remarkable tour de force [5], Archer proves, among other things, that for all $n \in \mathbb{Z}^+$, $\hat{\chi}(\mathbb{R}^n,\|.\|_1) = \hat{\chi}(\mathbb{Z}^n,\|.\|_1) < \infty$ and $\hat{\chi}(\mathbb{R}^n,\|.\|_\infty) = \hat{\chi}(\mathbb{Z}^n,\|.\|_\infty) < \infty$. Archer also provides formulas for computing enormous upper bounds on these numbers; for example, $\hat{\chi}(\mathbb{R}^2,\|.\|_\infty) \leq 99$ and $\hat{\chi}(\mathbb{R}^3,\|.\|_\infty) \leq 106,623$. These are still the best known upper bounds to date.

Upper chromatic numbers were first defined in [7], where it was shown that $\hat{\chi}(\mathbb{R},|.|)=3$. Considerable advances were made in [1] and [5], then surveyed in [2], and then the topic lay fallow until [8], which concerned metric spaces naturally associated with connected graphs.

In the next section, we show that $\hat{\chi}(\mathbb{Z}^n,\|.\|_1)>2n$ and $\hat{\chi}(\mathbb{Z}^n,\|.\|_\infty)>2^n$ for all $n\in\mathbb{Z}^+$, which implies that the same lower bounds hold for \mathbb{R}^n . In the last section, we consider the Babai and upper chromatic numbers of distance spaces $(U,f(\|.\|))$.

2 Taxicab and maximum norm

Proposition 1. For all $n \in \mathbb{Z}^+$, $\hat{\chi}(\mathbb{Z}^n, \|.\|_1) > 2n$.

Proof. Let the sequence of forbidden distances $(d_1, \ldots, d_{2n-1}, d_{2n})$ be $(2, \ldots, 2, 1)$. Suppose this sequence is satisfiable in $(\mathbb{Z}^n, \|.\|_1)$, so there is a coloring of \mathbb{Z}^n with colors $(c_1, \ldots, c_{2n-1}, c_{2n})$ such that each distance d_i is forbidden for the color c_i , $i = 1, \ldots, n$. Bestow the name "umber" upon color c_{2n} . Write $\pm \mathcal{E}$ for the set of all standard basis vectors $\mathbf{e}_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ for \mathbb{R}^n and their negatives $-\mathbf{e}_i$, $i = 1, \ldots, n$. Because all 2n points in $\pm \mathcal{E}$ are $\|.\|_1$ distance 2 apart, umber must appear at least once on every translate of $\pm \mathcal{E}$. Since recoloring by translation will produce a coloring satisfying our supposition, we may assume

that $\mathbf{0}=(0,\ldots,0)\in\mathbb{Z}^n$ is colored umber. Since $\mathbf{0}\notin\pm\mathcal{E}$, at least one point in $\pm\mathcal{E}$ is also colored umber, so we have two points $\|.\|_1$ distance 1 apart colored umber, contrary to the supposition.

A weaker version of this result holds in many other metric spaces. If $p \geq 1$ is a real number, then the function $\|.\|_p:\mathbb{R}^n \longrightarrow [0,\infty)$ defined by $\|(x_1,\ldots,x_n)\|_p=(\sum_{i=1}^n|x_i|^p)^{\frac{1}{p}}$ produces a normed space $(\mathbb{R}^n,\|.\|_p)$ with a translation-invariant metric. In $(\mathbb{Z}^n,\|.\|_p)$, the n standard basis vectors (not the 2n vectors in $\pm \mathcal{E}$) are all $\|.\|_p$ distance $\sqrt[p]{2}$ apart, so the above argument may be adapted, with distances $(d_1,\ldots,d_{n-1},d_n)=(\sqrt[p]{2},\ldots,\sqrt[p]{2},1)$, to prove that $\hat{\chi}(\mathbb{Z}^n,\|.\|_p)>n$. To gauge how weak this result may be, note that $\|.\|_2$ is the usual Euclidean norm.

Proposition 2. For all $n \in \mathbb{Z}^+$, $\hat{\chi}(\mathbb{Z}^n, \|.\|_{\infty}) > 2^n$. Generally, $\hat{\chi}^{(k)}(\mathbb{Z}^n, \|.\|_{\infty}) > (k+1)^n$ for all $k \in \mathbb{Z}^+$.

Proof. First we will show $\hat{\chi}(\mathbb{Z}^n,\|.\|_{\infty}) > 2^n$. Let the sequence of forbidden distances $(d_1,\ldots,d_{2^n-1},d_{2^n})$ be $(1,\ldots,1,2)$. Suppose this sequence is satisfiable in $(\mathbb{Z}^n,\|.\|_{\infty})$, so there is a coloring of \mathbb{Z}^n with colors $(c_1,\ldots,c_{2^n-1},c_{2^n})$ such that each distance d_i is forbidden for the color $c_i,1\leqslant i\leqslant n$. Give the name "indigo" to color c_{2^n} . Since $\{0,1\}^n$, the vertices of a unit hypercube, has 2^n points that are all $\|.\|_{\infty}$ distance 1 apart, indigo must appear on every translate of $\{0,1\}^n$ in \mathbb{Z}^n . As in the proof of Proposition 1, we may assume that $\mathbf{0}=(0,\ldots,0)\in\mathbb{Z}^n$ is colored indigo. Then no element of $\{2\}\times\{0,1\}^{n-1}$ is colored indigo. Therefore, because indigo must appear on the translate $(1,0,\ldots,0)+\{0,1\}^n=(\{1\}\times\{0,1\}^{n-1})\cup(\{2\}\times\{0,1\}^{n-1})$, it follows that indigo must appear on $\{1\}\times\{0,1\}^{n-1}$. By a similar argument, indigo must appear on $\{-1\}\times\{0,1\}^{n-1}$. But this means that indigo appears on two elements in \mathbb{Z}^n that are $\|.\|_{\infty}$ distance 2 apart.

To generalize this proof to $\hat{\chi}^{(k)}(\mathbb{Z}^n,\|.\|_{\infty})$, construct the $k\times (k+1)^n$ distance matrix

$$D = \begin{bmatrix} 1 & 1 & \dots & 1 & 2 \\ 2 & 2 & \dots & 2 & 3 \\ 3 & 3 & \dots & 3 & 4 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ k & k & \dots & k & k+1 \end{bmatrix}$$

and let $\{0, 1, ..., k\}^n$ play the role on $\hat{\chi}$ that $\{0, 1\}^n$ played above.

Note that the lower bounds on $\hat{\chi}$ in propositions 2 and 3 are sharp for n=1 since $3 = \hat{\chi}(\mathbb{Z}, |.|) = \hat{\chi}(\mathbb{Z}, ||.||_1) = \hat{\chi}(\mathbb{Z}, ||.||_{\infty})$ [7].

The existence of $\pm \mathcal{E}$ in Proposition 1 demonstrates that $B_1(\mathbb{Z}^n, \|.\|_1) \ge 2n$, and the existence of $\{0, 1\}^n$ in Proposition 2 demonstrates that $B_1(\mathbb{Z}^n, \|.\|_{\infty}) \ge 2n$

 2^n . The latter result was already known, because a proof in [4] showed that if k and n are positive integers, then $B_k(\mathbb{Z}^n,\|.\|_\infty)=B_k(\mathbb{R}^n,\|.\|_\infty)=(k+1)^n$. Since $(\mathbb{R}^2,\|.\|_1)$ and $(\mathbb{R}^2,\|.\|_\infty)$ are isometrically isomorphic, it follows that $B_k(\mathbb{R}^2,\|.\|_1)=(k+1)^2$, so $B_1(\mathbb{R}^2,\|.\|_1)=4$. Given that $B_1(\mathbb{Z},\|.\|_1)=B_1(\mathbb{R},\|.\|_1)=2$, perhaps $B_1(\mathbb{Z}^n,\|.\|_1)=B_1(\mathbb{R}^n,\|.\|_1)=2n$? The following result answers part of this question.

Proposition 3. $B_k(\mathbb{R}^n, \|.\|_1) = B_k(\mathbb{Z}^n, \|.\|_1)$ for all $k \in \mathbb{Z}^+$.

We owe the ideas behind this proof to Archer's [5] proof that $\hat{\chi}(\mathbb{R}^n, \|.\|_1) = \hat{\chi}(\mathbb{Z}^n, \|.\|_1)$.

Proof. Clearly $B_k(\mathbb{Z}^n,\|.\|_1) \leqslant B_k(\mathbb{R}^n,\|.\|_1)$. Now set $m=B_k(\mathbb{R}^n,\|.\|_1)-1$, noting that $B_k(\mathbb{R}^n,\|.\|_1)<\infty$ by a proof in [3]. Since $m< B_k(\mathbb{R}^n,\|.\|_1)$, there exists a set $\hat{D}=\{\hat{d}_1,\ldots,\hat{d}_k\}\subseteq(0,\infty)$ such that the distance graph $G((\mathbb{R}^n,\|.\|_1),\hat{D})$ is not properly vertex colorable with m colors. By the De Bruijn-Erdős theorem, some finite subgraph of this infinite graph is not properly colorable with m colors, i.e. there exists a finite set $\hat{F}=\{\hat{\underline{x}}^{(1)},\ldots,\hat{\underline{x}}^{(r)}\}\subseteq\mathbb{R}^n$ such that $\chi((\hat{F},\|.\|_1),\hat{D})>m$. Using \hat{F} and \hat{D} , we will construct sets $F'\subseteq\mathbb{Q}^n$ and $D'=\{d'_1,\ldots,d'_k\}\subseteq(0,\infty)$ such that $G((F',\|.\|_1),D')$ is not properly colorable with m colors. Since we can scale such F' and D' to F'' and D'' such that $F''\subseteq\mathbb{Z}^n$ and $\chi((F'',\|.\|_1),D'')>m$, this will complete the proof. To find F' and D', it is sufficient to construct a system of homogeneous linear equations involving the nr+k unknowns d_1,\ldots,d_k and $x_i^{(j)}$, $i\in\{1,\ldots,n\}$ and $j\in\{1,\ldots,r\}$, such that

- 1. the coefficients in the equations are rational;
- 2. the vector $(\hat{x}_1^{(1)}, \dots, \hat{x}_n^{(1)}, \dots, \hat{x}_1^{(r)}, \dots, \hat{x}_n^{(r)}, \hat{d}_1, \dots, \hat{d}_k) \in \mathbb{R}^{nr+k}$ arising from (\hat{F}, \hat{D}) is a solution; and
- 3. if a solution $\left(x_1^{(1)},\ldots,x_n^{(1)},\ldots,x_1^{(r)},\ldots,x_n^{(r)},d_1,\ldots,d_k\right)$ of the system is sufficiently close, coordinatewise, to $\left(\hat{x}_1^{(1)},\ldots,\hat{x}_n^{(1)},\ldots,\hat{x}_1^{(r)},\ldots,\hat{x}_n^{(r)},\hat{d}_1,\ldots,\hat{d}_k\right)$ then, for $1\leqslant p< q\leqslant r$ and $t=1,\ldots,k$, we have $d_t>0$, $\underline{x}^{(p)}=\left(x_1^{(p)},\ldots,x_n^{(p)}\right)$ does not equal $\underline{x}^{(q)}=\left(x_1^{(q)},\ldots,x_n^{(q)}\right)$, and

$$\left\|\underline{\hat{x}}^{(p)} - \underline{\hat{x}}^{(q)}\right\|_1 = \hat{d}_t \implies \left\|\underline{x}^{(p)} - \underline{x}^{(q)}\right\|_1 = d_t.$$

Property 1 ensures that the solution space of this system is the kernel of a matrix with rational entries, so the solution space has a basis of rational vectors. Combined with property 2, this means there exist rational solutions arbitrarily close to the vector associated with (\hat{F}, \hat{D}) . Using the notation $F = \{\underline{x}^{(1)}, \dots, \underline{x}^{(r)}\}$ and $D = \{d_1, \dots, d_k\}$, property 3 guarantees that sufficiently close rational solutions will produce a distance graph $G((F, \|.\|_1), D)$ containing a subgraph isomorphic to $G((\hat{F}, \|.\|_1), \hat{D})$, so sufficiently close rational solutions will produce the F' and D' we want.

All that remains is to find such a system. For $i \in \{1, \ldots, n\}$ and $p, q \in \{1, \ldots, r\}$, let

$$\hat{s}^{p,q,i} = \begin{cases} 1 & \hat{x}_i^{(p)} > \hat{x}_i^{(q)} \\ 0 & \hat{x}_i^{(p)} = \hat{x}_i^{(q)} \\ -1 & \hat{x}_i^{(p)} < \hat{x}_i^{(q)} \end{cases}$$

and include the equation $\sum_i \hat{s}^{p,q,i}(x_i^{(p)}-x_i^{(q)})-d_t=0$ in the system whenever $\left\|\hat{\underline{x}}^{(p)}-\hat{\underline{x}}^{(q)}\right\|_1=\hat{d}_t$. This is almost sufficient for Property 3, but we also need to ensure that for close solutions, the relationship between $x_i^{(p)}$ and $x_i^{(q)}$ matches with the relationship encoded in $\hat{s}^{p,q,i}$ between $\hat{x}_i^{(p)}$ and $\hat{x}_i^{(q)}$, so we also include $x_i^{(p)}-x_i^{(q)}=0$ whenever $\hat{s}^{p,q,i}=0$. This system satisfies properties 1, 2, and 3.

Now we can revisit the earlier conjecture that $B_1(\mathbb{R}^n,\|.\|_1)=2n$. Thanks to Proposition 3, it is sufficient to prove that $B_1(\mathbb{Z}^n,\|.\|_1)=2n$. Note that $\chi((\mathbb{Z}^n,\|.\|_1),d)=2$ when d>0 is odd, since two points are an odd $\|.\|_1$ distance apart if and only if their $\|.\|_1$ norms have different parities; therefore, all efforts should concentrate on $\chi((\mathbb{Z}^n,\|.\|_1),d)$ when d is even.

One can obtain a crude lower bound on $B_k(\mathbb{Z}^2,\|.\|_1)$ as follows: set $D=\{1,2,\ldots,k\}$, and consider the distance graph $G\left((\mathbb{Z}^2,\|.\|_1),D\right)$. If k is even so that $r=\frac{k}{2}$ is an integer, then the vertices in $\{\pm(r-i),\pm i\}\in\mathbb{Z}^2:0\leqslant i\leqslant r\}$ (such as (r-1,1),(r-1,-1),(-r+1,1),(-r+1,-1)) are all a $\|.\|_1$ distance in D apart. The same applies to all the points inside the rotated square boundary formed by these vertices, so counting the vertices in rows shows that there is a clique on $2(1+3+\cdots+(k-1))+k+1=\frac{1}{2}k^2+k+1$ vertices in the distance graph, so $B_k(\mathbb{Z}^2,\|.\|_1)\geqslant \frac{1}{2}k^2+k+1$. A similarly defined clique produces a lower bound for odd k. This technique highlights a general strategy for obtaining lower bounds on $B_k(X,\rho)$ for any distance space (X,ρ) : find k distances such that there are large cliques in the distance graph. Abrams discusses several such bounds in [2]; for example, $B_3(\mathbb{R}^3,|.|)\geqslant 12$, since all the vertices of a regular icosahedron are one of three possible |.| distances apart.

Here is one final result for this section, also inspired by Archer [5]. We will need the lemma below, which comes from [4].

Lemma 3. $B_k(\mathbb{R}^m, \|.\|_{\infty}) = (k+1)^m$ for all $k, m \in \mathbb{Z}^+$.

Proposition 4. $B_k(\mathbb{R}^n, \|\cdot\|_1) \leqslant (k+1)^{(2^{n-1})}$ for all $k, n \in \mathbb{Z}^+$.

Proof. Let $D = \{d_1, \ldots, d_k\}$ be an arbitrary sequence of distances in $(0, \infty)$, and let $r = (k+1)^{(2^{n-1})}$. To complete the proof, we will construct a coloring of $(\mathbb{R}^n, \|.\|_1)$ with r colors that forbids all the distances in D.

Denote the power set of $\{1,\ldots,n\}$ by $2^{[n]}$. Construct a family of sets $\mathscr{F}\subseteq 2^{[n]}$ such that if $S,R\in 2^{[n]}$ and $S=\{1,\ldots,n\}\setminus R$, then exactly one of S or R is in \mathscr{F} , but not both. Use the 2^{n-1} sets in \mathscr{F} to index the coordinates of $\mathbb{R}^{2^{n-1}}$, then define a linear transformation $T:\mathbb{R}^n\longrightarrow\mathbb{R}^{2^{n-1}}$ as follows: for each $S\in \mathscr{F}$, the Sth coordinate of $T((x_1,\ldots,x_n))$ is equal to the quantity $(\sum_{i\in S}x_i-\sum_{i\notin S}x_i)$. Notice that T is an isometry, i.e. $\|x\|_1=\|T(x)\|_\infty$. By the above lemma, there is a coloring $\varphi:\mathbb{R}^{2^{n-1}}\longrightarrow \{c_1,\ldots,c_r\}$ such that for all $u,v\in\mathbb{R}^{2^{n-1}}$, $\varphi(u)=\varphi(v)\Longrightarrow \|u-v\|_\infty\notin D$. To conclude, define a coloring $\psi:\mathbb{R}^n\longrightarrow \{c_1,\ldots,c_r\}$ by $\psi(x)=\varphi(T(x))$, and notice that

$$\psi(x) = \psi(y) \implies \varphi(T(x)) = \varphi(T(y)) \implies ||T(x) - T(y)||_{\infty} \notin D$$
$$\implies ||x - y||_{1} \notin D.$$

Although $2 \ge B_1(\mathbb{R}, \|.\|_1) = 2$ and $4 \ge B_1(\mathbb{R}^2, \|.\|_1) = 4$ are sharp and $16 \ge B_1(\mathbb{R}^3, \|.\|_1) \ge 6$ seems reasonable, $2^8 \ge B_1(\mathbb{R}^4, \|.\|_1) \ge 8$ suggests that this upper bound has significant room for improvement, not to mention $2^{16} \ge B_1(\mathbb{R}^5, \|.\|_1) \ge 10$.

3 Translation-invariant distance functions

As discussed in the first section, $(V, \|.\|)$ stands for a normed vector space over \mathbb{R} or \mathbb{C} . If $f:[0,\infty) \longrightarrow [0,\infty)$ is a strictly increasing function that vanishes at 0, then $\rho(x,y)=f(\|x-y\|)$ is a distance function on any subset $U\subseteq V$, although it may or may not be a metric. Such distance spaces will be abbreviated as $(U,f(\|.\|))$.

Proposition 5. If $V \neq \{0\}$, then $\hat{\chi}(V, f(\|.\|)) > 2$.

Proof. Since V is nontrivial, there is a nonzero point $x \in V$. Consider the forbidden distance sequence

$$(d_1, d_2) = (f(||x||), f(||2x||)),$$

with respective colors c_1 and c_2 . If $0 \in V$ is colored c_1 , then x and -x must both be colored c_2 , but they are distance $f(\|2x\|)$ apart; therefore, 0 must be colored c_2 . Then 2x cannot be colored c_2 , so 2x must be colored c_1 . And $f(\|2x-x\|) = f(\|x\|)$, so x must be colored c_2 . A similar argument involving -2x shows that -x must be colored c_2 , but then x and -x are distance $f(\|2x\|)$ apart and both colored c_2 .

Proposition 6. $\hat{\chi}(\mathbb{R}, f(|.|)) = 3$.

Proof. We will show that for any $d_1, d_2, d_3 \in (0, \infty)$, the sequence (d_1, d_2, d_3) is satisfiable in $(\mathbb{R}, f(|.|))$ with colors c_1, c_2 , and c_3 . If some $d_i \notin f([0, \infty))$, i.e. if the distance d_i is never realized in $(\mathbb{R}, f(|.|))$, then we may color all of \mathbb{R} with the color c_i . So we may as well assume that each of d_1, d_2, d_3 is in the range of f. And f is injective since f is strictly increasing, so there exist unique $g(d_1), g(d_2), g(d_3) \in (0, \infty)$ such that $f(|x-y|) = d_i \iff |x-y| = g(d_i)$, i = 1, 2, 3. By the main result in [7], there exists a coloring of \mathbb{R} with c_1, c_2, c_3 such that ordinary |.| distance $g(d_i)$ is forbidden for the color c_i , i = 1, 2, 3. \square

The key part of this proof is that f is invertible when its codomain is restricted to its range, so points in the underlying set $\mathbb R$ are a given f(|.|) distance apart if and only if they are some unique |.| distance apart. The same correspondence exists between any normed space $(V, \|.\|)$ and $(V, f(\|.\|))$, where $f: [0, \infty) \longrightarrow [0, \infty)$ is strictly increasing and vanishing at 0. Thus, coloring $(V, \|.\|)$ is equivalent to coloring $(V, f(\|.\|))$.

For those who demand that the topology imposed by the distance function $\rho(x,y)=f(|x-y|)$ on $\mathbb R$ be the usual topology: all that is needed for that is continuity of f at 0. If f (strictly increasing, f(0)=0) is not continuous at 0, then the topology imposed on $\mathbb R$ by f(|.|) is the discrete topology, in which single points are open sets. The fact that $\hat{\chi}(\mathbb R, f(|.|))=3$ even in these cases sends the message that upper chromatic numbers do not have much to do with topology. This message will be further confirmed by a disturbing example at the end of this section.

Proposition 7. For all $k \in \mathbb{Z}^+$, $B_k(\mathbb{Z}, f(|.|)) = B_k(\mathbb{R}, f(|.|)) = k + 1$.

Proof. The k positive distances $f(1), \ldots, f(k)$ are distinct, and for any two points $x, y \in \{0, 1, \ldots, k\}, x \neq y$, we have $f(|x - y|) \in \{f(1), \ldots, f(k)\}$. Thus

$$B_k(\mathbb{R}, f(|.|)) \geqslant B_k(\mathbb{Z}, f(|.|))$$

$$\geqslant \chi((\mathbb{Z}, f(|.|), \{f(1), \dots, f(k)\})) \geqslant k + 1$$

Suppose that $0 < d_1 < \cdots < d_k$. As before, we may as well assume that $d_1, \ldots, d_k \in f([0, \infty))$, so we can set $g(d_i)$ to be the unique point in $(0, \infty)$

such that $f(g(d_i)) = d_i$, $1 \le i \le k$. It is shown [4] and [11] that $B_k(\mathbb{R}, |.|) = k+1$, so \mathbb{R} can be colored with k+1 colors to forbid the usual |.| distances $g(d_1), \ldots, g(d_k)$, and the same coloring will forbid the f(|.|) distances d_1, \ldots, d_k .

Proposition 7 is a special case of the following, which is a generalization of the result in [4] that $B_k(\mathbb{R}^n, \|.\|_{\infty}) = (k+1)^n$.

Proposition 8. For all $n, k \in \mathbb{Z}^+$, $B_k(\mathbb{Z}^n, f(\|.\|_{\infty})) = B_k(\mathbb{R}^n, f(\|.\|_{\infty})) = (k+1)^n$.

Proof. The proof is very much like the proof of Proposition 7; $\{0, 1, ..., k\}^n$ plays the role that $\{0, 1, ..., k\}$ played there. First, notice that $\{0, 1, ..., k\}^n$ is a clique in the distance graph $G((\mathbb{Z}^n, \|.\|_{\infty}), \{f(1), ..., f(k)\})$.

Given distances $d_1, \ldots, d_k > 0$, color $\mathbb R$ with k+1 colors (possibly not using all of them) to forbid these distances in $(\mathbb R, f(|.|))$, and express this coloring as a coloring function $\varphi: \mathbb R \longrightarrow \{1, \ldots, k+1\}$. Then color each $(x_1, \ldots, x_n) \in \mathbb R^n$ with $(\varphi(x_1), \ldots, \varphi(x_n)) \in \{1, \ldots, k+1\}^n$ to achieve a coloring of $\mathbb R^n$ with $(k+1)^n$ colors which forbids the $f(\|.\|_{\infty})$ distances d_1, \ldots, d_k .

Here is a disturbing, but interesting, example. Let

$$f(x) = \begin{cases} x, & 0 \leqslant x < 1 \\ 1, & 1 \leqslant x \end{cases}$$

Then ρ , defined by $\rho(x,y)=f(|x-y|)$, is a translation-invariant metric on $\mathbb R$ that induces the usual topology on $\mathbb R$. Noting that $\rho(x,y)=1$ if and only if $|x-y|\geqslant 1$, we can see that the integers compose a clique in the distance graph $G((\mathbb R,f(|.|)),1)$, so $\aleph_0\leqslant \chi((\mathbb R,f(|.|)),1)\leqslant B_1(\mathbb R,f(|.|))$. In fact, the chromatic number is precisely \aleph_0 , as we can color each interval [n,n+1) with the color $n\in\mathbb Z$ to achieve a coloring of $(\mathbb R,f(|.|))$ that forbids the distance 1. Meanwhile, if 0< d<1, then $\chi((\mathbb R,f(|.|),d)=\chi((\mathbb R,|.|),d)=2$; and if d>1, then clearly $\chi((\mathbb R,f(|.|)),d)=1$. Thus $B_1(\mathbb R,f(|.|))=\sup\{1,2,\aleph_0\}=\aleph_0$ and $\hat{\chi}(\mathbb R,f(|.|))\geqslant \aleph_0$. In fact, the same goes for any finite-dimensional normed space $(V,\|.\|):\hat{\chi}(V,f(\|.\|))\geqslant B_1(V,f(\|.\|))=\aleph_0$. Proof omitted.

References

[1] Aaron Abrams. The kth upper chromatic number of the line. Discrete Mathematics, 169:157–162, 1997.

- [2] Aaron Abrams. Upper chromatic numbers: an update. *Geombinatorics*, 10:4–11, July, 2000.
- [3] Aaron Abrams and Peter Johnson. Yet another species of forbiddendistances chromatic number. *Geombinatorics*, 10:89–95, 2001.
- [4] Loren Anderson and Peter Johnson. Constructively coloring the line. *Geombinatorics*, 23:52–64, October, 2013.
- [5] Aaron F. Archer. On the upper chromatic number of the reals. *Discrete Mathematics*, 214:65–75, 2000.
- [6] Miro Benda and Micha Perles. Colorings of metric spaces. Geombinatorics, 9:113-126, January, 2000.
- [7] Don Greenwell and Peter Johnson. Forbidding prescribed distances for designated colors. *Geombinatorics*, 2(1):13–16, 1992.
- [8] Peter Johnson and Alexis Krumpelman. On the Babai and upper chromatic numbers of graphs of diameter 2. (To appear in the *Tamkong Journal of Mathematics*).
- [9] Peter Johnson, Andrew Schneider, and Michael Tiemeyer. $B_1(\mathbb{Q}^3)=4$. Geombinatorics, 16:356–362, April, 2007.
- [10] Peter Johnson and Michael Tiemeyer. Which pairs of distances can be forbidden by a 4-coloring of Q³? *Geombinatorics*, 18:161–169, April, 2009.
- [11] Arnfried Kemnitz and Massimiliano Marangio. Coloring the line. Ars Combinatoria, 85:183–192, 2007.