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Abstract

With 11d11and 114100denoting the £1 and #0 norms on n, it is shown
that the upper .. number of (zn, 1-11)is greater than 2n, and the

upper chromatie” of (zn, 111100)is greater than 2n.

1 Introduction

A jstnce function on anonempty set X is a function p : X x X --t [0 00)
satlsfymg, for all x ,y EX,

1 p()(,)/) =0 -¢n=} X:y
2 py) =py.x)

If, in addition, for all x ,y EX:

3 pz) pxy) TPy z),

thn p ¢ said to be metric on X, and we call the pair (X, p) a metric space. 1f
p Is adistance function on X let us call the pair (X, p) a distance space.

A coloring of a set X is a function @ : X --t C for some set C, a set of
colors. A _oloring @ does n ot need to be surjective.

If (X, p) is a distance space, @ : X --t Cis acoloring, c E C and d E
(O, 00), we say distanced is forbidden for the color ¢ with respect to @ (omitting
"with respect to @' when context is clear), if and only ifx,y E X and qa(x) =
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@) = cimply that p(x, )) # d Ifdis forbidden for every ¢ E G we say that <p
forbids the distanced in (X, p).

If (X p) is a distance space and D (0, ), the chromatic number of
(X, p with respect to 3 written as x((X, p), D), is the minimum cardinality
I of a set C such that there exists a coloring <p : X --+ C which forbids
every d E D. Since the identity function idx : X --+ Xis such a coloring, it
follows that x((X,p), D) is well-defined and x((X,p),D) IXL If we define
the distance graph G((X, p), D) to have vertices V(G) = X and edges E(G) =
{xy : x,y E X and p(x,y) E D}, then x((X, p), D) is simply the chromatic
number of the corresponding distance graph, i.e. the least cardinality of C such
that there_is a proper vertex coloring <p: V(G) --+ € When D = {d}, a
singleton, we will omit the set brackets in notation involving D,

The kth Babai number of a distance space (X, p), denoted B (X, p), is:

Bi(X,p) =sup {x(X,p), D): D (0, 00) and IDI = k}.

For all of the distance spaces that we will encounter in this paper, B1(X, p) is
finite; therefore, the "sup" in the definition is "max", as it was in the definition of
the Babai numbers in [3], where they first appeared. This was a mistake; distance
spaces (X, p) can be found (see [10]) such that:

x(X,p), @ :d>0=2"={1,23 ...},

0 B (X, p =supZt = 0. A question in passing: is it the case that for every
limit cardinal g there exists a distance \pace (X, p) such that x(( p), @ < ¢
forall d> O yet BIX,p = ¢?

IfSis asetand k E Z* , then S* will stand for the k-fold Cartesian product of
S: 8k = xf=1 § = § x *--x S. The kth upper chromatic number of a distance
space (X, p), denoted x ® (X, p), is the least cardinality of a set C satisfying:

For every function d : C --+ (0, 00 )%, there is a coloring <p: X --+ C such that
for every ¢ EC, each distance d; in the k-tuple d(c) is forbidden for the color ¢
J=Ll.k

The class of such sets C'is always nonempty, because X itselfis such a set via the
coloring <p= idx Thus, by the fact that the cardinal numbers are well-ordered,
we have that X (X, p) is well-defined, and X (X, p)  IXIL. When k = 1, we
will omit £ and use the notation x (X, p) to stand for xC 1) (X, p). If we use the
term "upper chromatic number" without mentioning % it is safe #assume that
we are referencing the 1st upper chromatic number, x (X, p).

Lemma 1 For any distance space (X,p), B1(X,p) x(X, p).
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Proof* Suppose that JI = x(X,p), so for every d: C--+ (0,00) there is a
coloring <p: X --+ C'such that for each ¢ E Cthe distance df¢) is forbidden for
the color c.

For an arbitrary distance &* > (, let d stand for the constant function on O
with constant valued*. By the previous paragraph, there is a coloring @: X --+
C that forbids the distanced®, so x((X, p), d¥  ICL Therefore, B, (X,p) =

supd*>o(X((X,p),d*) XI =x(X.p). O

The proof of Lemma 1 extends naturally to show B, (X,p) X® (X, p) for any
kEZ*.

Suppose that (X, p) is a distance space and k n E z+. IfDis a kX n matrix
with entries from (0, ), i.e. D E (0, 00)*X" then let us say that Dis satisfiable
in (X, p) if there is a coloring of X with colors (c1,...,en) such that for 1
izsnlzj 5 Kk the distance dij (row i, column j of D) is forbidden for the
color (G i.e. no two points colored G are distance dij apart. IfD E (0, 00)lxn,
we might refer to D a a sequence (d;, ... ,dn) rather than a matrix. Provided
that X (X, p) < oo, the definition of X*>(X, p) may be restated as follows:
X (X, p) is the least positive integer 7 such that every matrix D E (0, 00 )**" is
satisfiable in (X, p). Notice that B4 (X, p), when finite, is the least positive integer
n such that every matrix D E (0, 00 )**¥"? with identical columns is satisfiable in
(X, p); this framing makes it easy to see that B, (X, ph=y X (X, p).

Lemma 2. Suppose n E 2*. Ifevery matrix D E (0, c0)**" is satisfiable in
(X.,p), thenforallm Ez*, m ?>=n, everymatrixD E (0,00)**m is satisfiable
in (X,p).

Proof Given D E (0, 09)%Xm, color X with (cy,...,en) so that for all i E
{L...,n} andj E {1, ... ,k}, distance ai'j is forbidden for the color ¢, Do not
use the colors (Cn, ... em). D

Corollary 1. For kn E z*, X® (X, p) > n ifand only if some matrix D E
(0, 00) X" is not satisfiable in (X, p).

We will let (¥ 11q1)denote a normed vector space over R or C, where the
norm is a function 1141: ¥V --+ [0, 00) satisfying IKI = 0 x = QO
Ix +vl = Ixl + IVL and Ikxll = Ikllixll for all scalars k. For all sub-
sets UV, @ papwill also stand for the metric space (Up), with p de-
fined by p(x,)) = lix - YE In this paper we will see distance functions on
U  V defined by p(x,y) = f(llx-yll), where f: [0,00)-+ [0,00) is
a strictly increasing function satisfying f(0) = (; in such cases, we shall let
@ fl-11)) stand for ] p). The usual Euclidean norm on Rn will be denoted
14- Thus, on R 14is the usual absolute value, and on JR?, I(x, y)l = (x*> +y») %2_
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The norms ||.||; and ||.||,, on R™ are defined by [|(z1,...,2a)ll; = 32ty |2l
and ||(z1,--.,2Zn)|le = MaXigign |2i]; the taxicab and maximum norms, re-
spectively. Notice that distance spaces (U, |.|]) and (U, f(|.]])) always have
translation-invariant distance functions p; that is, for all z,y,z € U such that
z+2z,y+2 €U, p(@,y) =plx+2zy+2)

When (V, |.]}) is a normed space (over R or C), a simple change-of-scale
argument shows that for any dy, d2 € (0, 00), x((V, [lII), d1) = x((V; [|.ID), d2) =
Bi1(V, ||.]]). This fact does not necessarily hold for subsets of V' equipped with
the same metric. For instance:

x ((@%10),1) =2 Q)
x ((@11),v2) =4 =By (@,]]) (&)

It is not known if (R?, |.|) is finite. However, in a remarkable tour de force
[51, Archer proves, among other things, that for all n € Z*, (R . =
2, ||.]l,) < oo and R(R™, ||.lloo) = R(Z™, ||llon) < 0. Archer also provides
formulas for computing enormous upper bounds on these numbers; for example,
RR2, ||]lo) < 99 and %(R3, ||.]lo,) < 106, 623. These are still the best known
upper bounds to date.

Upper chromatic numbers were first defined in [7], where it was shown that
%(R,|.]) = 3. Considerable advances were made in [1] and [5], then surveyed
in [2], and then the topic lay fallow until [8], which concerned metric spaces
naturally associated with connected graphs.

In the next section, we show that (@™ |-1ly) > 2n and R(Z™, ||.llo0) > 27
for all n € Z*, which implies that the same lower bounds hold for R". In the last
section, we consider the Babai and upper chromatic numbers of distance spaces

@, £A-)-

2  Taxicab and maximum norm

Proposition 1. For all n € Z*, x(Z", ||-|1) > 2n.

Proof. Let the sequence of forbidden distances (ds, . . ., dan—1,d2n) be (2,.. .,

2,1). Suppose this sequence is satisfiable in (Z™, ||.||;), so there is a coloring of
Z" with colors (cy, - . - , Can—1, C2n) sSuch that each distance d; is forbidden for the
color ¢;; i = 1,...,n. Bestow the name “umber” upon color czn. Write +& for
the set of all standard basis vectors ¢; = (0,...,0,1,0,...,0) for R” and their
negatives —e;, i = 1,...,n. Because all 2n points in & are ||.||; distance 2
apart, umber must appear at least once on every translate of &=£. Since recoloring
by translation will produce a coloring satisfying our supposition, we may assume
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that 0 = (0,...,0) € Z" is colored umber. Since 0 ¢ +£&, at least one point in
+£ is also colored umber, so we have two points ||.]|; distance 1 apart colored
umber, contrary to the supposition. [

A weaker version of this result holds in many other metric spaces. If p > 11is a
real number, then the function |||, : R™ — [0, c0) defined by || (1, - . ., zn)|, =

oy |zl? )P produces a normed space (R™, ||.|[,) with a translation-invariant
metric. In (Z”, ||| ,), the n standard basis vectors (not the 2n vectors in +£) are

all ||. ||, distance \/5 apart, so the above argument may be adapted, with distances

(d1, .- ydn-1,dp) = (V2,...,V2,1), to prove that R(Z", ||. l,) > n. To gauge
how Weak this result may be, note that ||.||, is the usual Buclidean norm.

Proposition 2. For alln € Z, (27, ||.||,,) > 2" Generally, 3™ (2", |.|.)
> (k+1)" forall k € Z*+.

Proof. First we will show %(Z", ||.]|.,) > 2" Let the sequence of forbidden dis-
tances (di, . ..,dan_1,dan) be (1,...,1,2). Suppose this sequence is satisfiable
in (Z™,].]|o), so there is a coloring of Z™ with colors (c1, . . ., can_1, cgn) such
that each distance d; is forbidden for the color ¢;, 1 < i < n. Give the name “in-
digo” to color con. Since {0, 1}, the vertices of a unit hypercube, has 2" points
that are all ||.||, distance 1 apart, indigo must appear on every translate of {0,1}"
in Z™. As in the proof of Proposition 1, we may assume that 0 = (0, .. ., 7O) €
Z" is colored indigo. Then no element of {2} x {0,1}""! is colored indigo.
Therefore, because indigo must appear on the translate (1,0, ...,0) 4+ {0,1}" =
({1} x {0,1}™1) U ({2} x {0,1}"1), it follows that 1nd1go must appear on
{1}x{0,1}"1. By a similar argument, indigo must appear on {—1}x{0,1}1,
But this means that indigo appears on two elements in Z” that are ||.||__ distance
2 apart. ~

UTO generalize this proof to x(¥)(Z", |L.|| ), construct the k x (k-+ 1)™ distance
matrix

11 ... 1 2
2 2 ... 2 3
D=3 3 ... 3 4
kK k ... k k+1
andlet {0, 1, ..., k}" play the role on ¥ that {0,1}" played above. O

. Note that the lower bounds on ¥ in propositions 2 and 3 are sharp forn =1
since 3 = $(Z, ) = X(Z, |.I,) = X2 I.]..) 7]

The existence of £ in Proposifion 1 demonstrates that By (Z", ||.||,) > 2n

and the existence of {0, 1}" in Proposition 2 demonstrates that By (Z, ||.||.,) >
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9™, The latter result was already known, because a proof in [4] showed that
if k and n are positive integers, then By (Z",.]lo,) = Br(R", HHOO) = (k+
1)™. Since (R, ||.|l;) and (RZ,]|.|l,) are isometrically isomorphic, it follows
that By(R2, ||.]l,) = (k + 1), so By(R%,||.|;) = 4. Given that B1(Z, ””1) =
Bi(R, ||.ll,) = 2, perhaps B1(Z", ||.|l;) = B1(R™,||.]l;) = 2n? The following
result answers part of this question.

Proposition 3. By(R™, ||.|l,) = Bi(Z", ||.lI,) for all k € Z*.
We owe the ideas behind this proof to Archer’s [5] proof that X(R™, ||.||,) =
X" |1-11)-

Proof. Cléarly Bp(Z™, |.Il,) < Be(R™, ||.]|;). Now setm = By (R™, ]}Hl) -1,
noting that B (R™, ||.|l;) < oo by a proof in [3]. Since m < By(R )
there exists a set D = {dy,...,dx} C (0,00) such that the distance graph
G((R™, ||.|l,), D) is not properly vertex colorable with. m color§. By the De
Bruijn-Erd8s theorem, some finite subgraph of this infinite graph 18 nAOt )properlz
colorable with m colors, i.e. there exists a finite set I = {:_%_(1), A }, - Rn
such that x((#, ||.|;), D) > m. Using F' and D, we will construct sets F'CQ
and D' = {d, ..., d,} C (0,c0) such that G((F", ||.]l;), D') is not properllly col-
orable with m colors. Since we can scale such F’ and D’ to F" and D" such
that F C Z" and x((F",|-;), D”) > m, this will complete the.proof. To
find F and DV, it is sufficient to construct a system of homogeneous linear equa-
tions involving the nr + k unknowns djy, ..., d; and zgj), i€ {1,...,n} and
j€{1,...,r}, such that

1. the coefficients in the equations are rational,

+(1 (1)
1

(T ~(r) 7 7 nrtk peio
2. the vector (w cey B ,...,xg),...?:cn ,dl,...,dk) eR arising

from (ﬁ’, f)) is a solution; and

1) (1 (r)
1

U & e ) ,...,zg),dl,...,dk) of the system

3. if a solution (m
is sufficiently close, coordinatewise, o X
(cf:gl) 7L :%gr),...,:ﬁg),cil,...,dk) then, forl K p<g<r

R S

andt=1,...,k, wehaved; > 0, z?) = (mgp), - ,:r,(f’)) does not equal
2@ = (a:g‘ﬂ, R xg)) and

“i(m _ @(Q)Hl =d, = Hz@) _ g_(cn“l =d,.

34

Property 1 ensures that the solution space of this system is the kernel of a matrix
with rational entries, so the solution space has a basis of rational vectors. Com-
bined with property 2, this means there exist rational solutions arbitrarily close to
the vector associated with (E', D). Using the notation F' = {M,...,2"} and.
D = {dy, ..., dy}, property 3 guarantees that sufficiently close rational solutions
will produce a distance graph G((F, |.||,), D) containing a subgraph isomorphic
to G((£,]I.]l,), D), so sufficiently close rational solutions will produce the F’
and D' we want.

All that remains is to find such a system. Fori € {1,..., n} and p,q €
{1,...,7} let

Pt = { a;(p)

and include the equation Y, §p’q”'(x§p) - mEQ)) — d; = 0 in the system whenever
“@(p) - 2@ ”1 = d;. This is almost sufficient for Property 3, but we also need

to ensure that for close solutions, the relationship between a:z(p ) and ngq) matches

with the relationship encoded in §P%: between ii'gp ) and aﬁ"z(.Q), so we also include
:cfp ) _ mz@ = 0 whenever §79% = (. This system satisfies properties 1, 2, and
3. 0

Now we can revisit the earlier conjecture that By (R™, ||.||,) = 2n. Thanks
to Proposition 3, it is sufficient to prove that Bi(Z", ||.||,) = 2n. Note that
x((Z*, |Ill1), @) = 2 when d > 0is odd, since two points are an odd ||. ||; distance
apart if and only if their ||.||; norms have different parities; therefore, all efforts
should concentrate on x((Z™, |.||;), d) when d is even.

One can obtain a crude lower bound on By (Z2, |.||;) as follows: set D =
{1,2,...,k}, and consider the distance graph G ((Z2,]].],), D). ¥ k is even so
that r = £ is an integer, then the vertices in {£(r—i), ) eZ?:0<i<r}
(suchas (r—1,1), (r—1,-1), (~r+1,1), (~r+1,—1)) are all a [I.ll; distance
in D apart. The same applies to all the points inside the rotated square boundary
formed by these vertices, so counting the vertices in rows shows that there is a
cliqueon 2(1+3+---+(k—1))+k+1 = 1k2+k+ 1 vertices in the distance
graph, so By(Z%,||.ll,) > 1k® + k + 1. A similarly defined clique produces a
lower bound for odd k. This technique highlights a general strategy for obtaining
lower bounds on By (X, p) for any distance space (X, p): find k distances such
that there are large cliques in the distance graph. Abrams discusses several such
bounds in [2]; for example, B3(R3, |.[) > 12, since all the vertices of a regular
icosahedron are one of three possible |.| distances apart.
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Here is one final result for this section, also inspired by Archer [5]. We will
need the lemma below, which comes from [4].

Lemma 3. By(R™, ||.|l.) = (k+1)™ for all k,m € Z*.
Proposition 4. Bi(R",|.ll,) < (k-+ D™ for all k,n € Z*.

Proof. Let D = {di,...,dx} be an arbitrary sequence of distances in (Q, 00),
and letr = (k + 1)@"™). To complete the proof, we will construct a coloring of
(R™, ||.||;) with r colors that forbids all the distances in D. .

Denote the power set of {1,...,n} by 20l Construct a family of sets # C
ol such that if S,R € 2™ and § = {1,...,n} \ R, then exactly one of §
or R is in %, but not both. Use the 971 gets in & to index 21161 coordinates
of R?"™", then define a linear transformation T : R* — R2™ ag follo\ys:
for each § € &, the Sth coordinate of T((z1, . . ., Tn)) is equal to the quantity
(Cies Ti — 2igs ;). Notice that T is an iso-metry, ie. ||zl = T(z)ll - By
the above lemma, there is a coloring ¢ : RZ"™ — {c1, ..., ¢} such that for
all w,v € R, p(u) = p(v) => |lu—vll, ¢ D. To conclude, define a
coloring v : R* — {1, . . ., ¢} by ¥(z) = (T(z)), and notice that

P(@) =9(y) = ¢(T() = p(T) = |IT() ~TWle ¢ D
= |z -yl ¢ D-
O

Although 2 > Bi(R,|.]l;) = 2 and 4 > Bi(R?, []4”1) = 4 are sharp and
16 > By(R3, ||.|l,) > 6 seems reasonable, 2° > Bi(R*, ||.|l;) > 8 suggests that
this upper bound has significant room for improvement, not to mention 2*° =

B1(R%, |I.lly) = 10.

3 Translation-invariant distance functions

As discussed in the first section, (V,|.|]) stands for a normed vector space over
Ror C. If f : [0,00) — [0, 00) is a strictly increasing function that vanishes
at 0, then p(z,y) = f(||z — yl|) is a distance function on any subset U g v,
although it may or may not be a metric. Such distance spaces will be abbreviated

as (U, £(II-)-
Proposition 5. If V # {0}, then X(V, f(||-I1)) > 2.

Proof. Since V is nontrivial, there is a nonzero point z € V. Consider the for-
bidden distance sequence

(dr,da) = (), £I21D),
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with respective colors c1 and ¢cp. If O € V is colored ¢y, then z and —z must both
be colored cz, but they are distance f(||2x]|) apart; therefore, 0 must be colored
co. Then 2z cannot be colored cp, so 22 must be colored c;. And f([|22 — z||) =

f(llzl]), so z must be colored ca. A similar argument involving —2x shows that _

—z must be colored ¢y, but then = and —z are distance f(||2z]||) apart and both

" colored cs. |

Proposition 6. (R, f(].])) = 3.

Proof. We will show that for any d3,da, d3 € (0, 00), the sequence (dy, da, ds)
is satisfiable in (R, f(|.]) with colors ¢y, cs, and c3. If some d; ¢ f([0, 00)),
ie. if the distance d; is never realized in (R, f(].|)), then we may color all of
R with the color ¢;. So we may as well assume that each of dy, dy, ds is in the
range of f. And f is injective since f is strictly increasing, so there exist unique
9(d1), 9(d2), g(ds) € (0,00) such that f(lz —y|) = d; <= |v—y| = g(dy),
1 =1,2,3. By the main result in [7], there exists a coloring of R with ¢, C2,C3
such that ordinary |.| distance g(d;) is forbidden for the color ¢;, i = 1,2,3. [

The key part of this proof is that f is invertible when its codomain is restricted
to its range, so points in the underlying set R are a given f(|.|) distance apart if and
only if they are some unique |.| distance apart. The same correspondence exists
between any normed space (V; ||.J|) and (V, f(|.||), where f : [0, 00) — [0, c0)
is strictly increasing and vanishing at 0. Thus, coloring (V; ||.||) is equivalent to
coloring (V; f(|I.)-

For those who demand that the topology imposed by the distance function
p(z,y) = f(lz —y|) on R be the usual topology: all that is needed for that is
continuity of f at 0. If f (strictly increasing, f(0) = 0) is not continuous at 0,
then the topology imposed on R by f(|.]) is the discrete topology, in which single

~ points are open sets. The fact that % (R, f(].])) = 3 even in these cases sends the

message that upper chromatic numbers do not have much to do with topology.
This message will be further confirmed by a disturbing example at the end of this
section.

Proposition 7. Forall k € Z%, By(Z, f(|.])) = Bx(R, f(|.])) =k + L

Proof. The k positive distances f(1), ..., f(k) are distinct, and for any two points
z,y €{0,1,...,k}, z # y, wehave f(|lz —y|) € {£(1),..., f(k)}. Thus
By, (R, £(I.1)) = Bk (2, f(]-))
> x(@ FAD AL, FR)}) = k+1

Suppose that 0 < d; < --- < di. As before, we may as well assume that
di,...,dx € f([0,00)), so we can set g(d;) to be the unique point in (0, cq)
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such that f(g(d;)) = di, 1 < ¢ < k. It is shown [4] and [11] that Bk(R, L.h) =
k 4 1, so R can be colored with k& + 1 colors to forbid the usual |.| distances
9{d1), ..., 9(dg), ang the same coloring will forbid the f(].|) distances dj, . . ., dg.

O

Proposition 7 is a special case of the following, which is a generalization of
the result in [4] that Bx(R™, ||.||.) = (k+ 1)™

Proposition 8. For all n,k € Z*, By(Z", f(|.l.)) = Be@®R"™, f([llls0) =
(k +1)™ '

Proof. The proof is very much like the proof of Proposition 7; {0,1,..., k}”
plays the role that {0, 1,. .., 5} played there. First, notice that {0,1,...,k}" isa
clique in the distance graph G ((Z™, ||-]lo): {f(1),. .., f(K)})- . o
Given distances ds, . .., dg > 0, color R with £+ 1 colors (possibly not using
all of them) to forbid these distances in (R, f(|.])), and express this coloring as a
coloring function ¢ : R — {1,...,k + 1}. Then color each (:rl., ceyZy) € R“
with (p(z1),...,p(zn)) € {1,...,k + 1}™ to achieve a coloring of R™ with
(k + 1)™ colors which forbids the f(]|.|| ) distances dy, . .., dy. O

Here is a disturbing, but interesting, example. Let

f(m)_{a:, 0<z<1

~
1, 1<z

Then p, defined by p(z,y) = f(|z — y|), is a translation-invariant metric on R
that induces the usual topology on R. Noting that p(z,y) = 1 'if and only if
|z — y| = 1, we can see that the integers compose a clique in the distance graph
G(®, £(11)),1). s0 Ro < x((®, £(1),1) < Bi(R, £(|])). In fact, the chro-
matic number is precisely Rg, as we can color each interval [n,n + 1) with the
color n € Z to achieve a coloring of (R, f(|.|)) that forbids the distance 1. Mean-
while, if 0 < d < 1, then x((R, f(|.]),d) = x((R,].]),d) = 2; and if d > 1,
then clearly x(R, £(11)),d) = L. Thus By(R, £(11)) = sup{1,2, N} = Ny
and ¥(R, 7(].])) = Ro. In fact, the same goes for any ﬁnite-dirinensmnal normed
space (V, J.1): 2(V; £(1-1)) = Bu(V; £(I11)) = Ro. Proof omitted.
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