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Abstract 

With 11-111 and 11-1100 denoting the £1 and £00 norms on  n, it is shown 
that the upper _chromatic number of (zn, 11-111) is greater than 2n, and the 
upper chromatic number of (zn, 11-1100) is greater than 2n. 

1 Introduction 

A  ist nce function on a n onempty set X is a function p : X x X - - t  [O, 00) 
satlsfymg, for all x , y E X ,  

1. p(x,y) = 0 -¢ : :=}  X = y
2. p(x,y) =p(y,x)

If, in addition, for all x , y E X :  

3: p(x, z )   p(x,y) + p(y, z ),

th n p  s said to b e   metric on X ,  an d we call the pair (X, p) a metric space. If
p 1s a distance fun ction on X, let us call the pair (X, p) a distance space. 

A coloring of a set X is a fun ction cp : X - - t  C for some set C a set of 
colors. A  _oloring cp does n ot need to be surjective. 

If (X, p) is a distance space, cp : X - - t  C is a coloring, c E C, and d E 
(O,_oo ), we say distanced is forbidden for the color c with respect to cp (omitting 
"with respect to cp" when con text is clear), if and only if x , y E X an d cp(x ) = 
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cp(y) = c imply that p(x, y) #- d. If dis forbidden for every c E C, we say that <p 
forbids the distanced in (X, p ). 

If (X, p) is a distance space and D   (0, oo ), the chromatic number of 
(X, p) with respect to D, written as x((X, p), D), is the minimum cardinality 
ICI of a set C such that there exists a coloring <p : X --+ C which forbids 
every d E D. Since the identity function idx : X --+ X i s  such a coloring, it 
follows that x((X,p),D) is well-defined and x((X,p),D)   IXI. If we define 
the distance graph G((X, p), D) to have vertices V(G) = X and edges E(G) = 
{xy : x, y E X and p(x, y) E D}, then x((X, p), D) is simply the chromatic 
number of the corresponding distance graph, i.e. the least cardinality of C such 
that there_ is a proper vertex coloring <p : V ( G) --+ C. When D = { d}, a
singleton, we will omit the set brackets in notation involving D. 

The kth Babai number of a distance space (X, p), denoted Bk(X , p), is: 

Bk(X , p) = sup {x ((X, p), D ) :  D   (0, oo) and IDI = k}.

For all of the distance spaces that we will encounter in this paper, B 1 ( X, p) is 
finite; therefore, the "sup" in the definition is "max", as it was in the definition of 
the Babai numbers in [3], where they first appeared. This was a mistake; distance 
spaces (X, p) can be found (see [10]) such that: 

{x((X, p), d) : d > 0} = z+ = {1, 2, 3, . . .  }, 

so B1 (X, p) = sup z+ =  0. A question in passing: is it the case that for every
limit cardinal q, there exists a distance \pace (X, p) such that x( (X, p ), d) < q
for all d > 0, yet B1(X, p) = q? 

If S is a set and k E z+ , then Sk will stand for the k-fold Cartesian product of
S: Sk = xf=1 S = S x • --x S. The kth upper chromatic number of a distance
space (X, p ), denoted x (k) (X, p ), is the least cardinality of a set C satisfying: 

For every function d : C --+ (0, oo )k, there is a coloring <p : X --+ C such that 
for every c EC, each distance dj in the k-tuple d(c) is forbidden for the color c, 

j = 1, . . . ,k. 

The class of such sets C is always nonempty, because X itself is such a set via the 
coloring <p = id x. Thus, by the fact that the cardinal numbers are well-ordered,
we have that X(k) (X, p) is well-defined, and X(k) (X, p)   IXI. When k = 1, we 
will omit k and use the notation x(X, p) to stand for xC1) (X, p). If we use the
term "upper chromatic number" without mentioning k, it is safe to1 assume that 
we are referencing the 1st upper chromatic number, x(X, p). 

Lemma 1. For any distance space (X,p), B1(X, p)   x(X, p). 

30 

Proof Suppose that JCI = x(X,p), so for every d :  C - - +  (0,oo) there is a
coloring <p : X - -+ C such that for each c E C the distance d( c) is forbidden for 
the color c. 

For an arbitrary distance d* > 0, let d stand for the constant function on O 
with constant valued*. By the previous paragraph, there is a coloring cp : X --+ 
C that forbids the distanced*, so x((X, p), d*)   ICI. Therefore, B1(X, p) = 
supd*>o(X((X,p),d*)   JCJ = x(X,p). □ 
The proof of Lemma 1 extends naturally to show Bk(X , p)   X(k)(X , p) for any 
k E z+ . 

Suppose that (X, p) is a distance space and k, n E z+. If Dis a k x n matrix
with entries from (0, oo ), i.e. D E (0, oo )kxn, then let us say that Dis satisfiable 
in (X, p) if there is a coloring of X with colors (c1, . . .  , en) such that for 1   
i ::::; n, 1 ::::; j ::::; k, the distance dij (row i, column j of D) is forbidden for the 
color Cj, i.e. no two points colored Cj are distance dij apart. If D E  (0, oo)lxn, 
we might refer to D as a sequence (di , . . .  , dn) rather than a matrix. Provided 
that X(k)(X ,p) < oo, the definition of X(k>(X ,p) may be restated as follows: 
X(k) (X, p) is the least positive integer n such that every matrix D E (0, 0 0  )kxn is 
satisfiable in (X, p). Notice that Bk(X , p ), when finite, is the least positive integer 
n such that every matrix D E (0, oo )kxn with identical columns is satisfiable in
(X, p); this framing makes it easy to see that Bk(X , p):,::;; X(k)(X , p). 

Lemma 2. Suppose n E z+ . I f  every matrix D E (0, oo )kxn is satisfiable in 
(X,p), thenforallm E z+ , m ?= n, everymatrixD E (0,oo) kxm is satisfiable
in (X,p). 

Proof Given D E (0, oo)kxm, color X with (c1, . . .  , en) so that for all i E
{ 1, . . .  , n} and j E { 1, . . .  , k}, distance dij is forbidden for the color c;. Do not 
use the colors (Cn+i, . . .  , em). D 

Corollary 1. For k, n E z+ , X(k) (X, p) > n i f  and only if some matrix D E
(0, oo )kxn is not satisfiable in (X, p ). 

We will let (V, 11-11) denote a normed vector space over JR or C, where the 
norm is a function 11-11 : V --+ [0, oo) satisfying IJxJI = 0   x = O, 
llx + YII ::::; IJxll + IIYII, and llkxll = lklllxll for all scalars k. For all sub-
sets U   V, (U, 11-11) will also stand for the metric space (U,p), with p de-
fined by p(x, y) = llx - YII- In this paper we will see distance functions on 
U   V defined by p(x,y) = f(llx-yll),  where f :  [ 0 , o o ) - +  [0,oo) is 
a strictly increasing function satisfying f (0) = 0; in such cases, we shall let 
(U, f(ll-11)) stand for (U, p). The usual Euclidean norm on ]Rn will be denoted 
1-1- Thus, on JR, 1-1 is the usual absolute value, and on JR.2 , l(x, y)I = (x2 + y2) ½_ 
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