of its first vertex and by the orientation angle ¢ of its second one, and
the average value of the binary function My{c, ¢} was determined, which
takes the value 1 or 0 depending on whether an edge is mono-chromatic
or not. Instead, we took an algebraic method, calculating the integral
Pe = iz [gdo f027r d¢ My (o, $) in the Mathematica package, which al-
lowed us to refine the optimal tiling parameters. However, we encountered
some problems with the numerical integration function NIntegrate in the

general case, and were forced to limit ourselves to relatively simple tilings.
As a result, we get the bounds: e5 > 99, v5 > 28, eg > 182, v > 42.

We also tried Gwyn-Stavrianos’ approach for the case k = 7, and
obtained the following estimates for a tiling close to Pritikin’s construction
using pentagonal tiles: e; > 232646, v; > 6456. (For the construction
using hexagonal tiles, we were able to get only ey > 69451 and vy > 2608.)
This is better than [7], but falls short of [6]. However, there is stiil some
hope of beating the latter one by using tiles with curved borders (the
so-called "wavy edges" used in [6]).
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Abstract

+ The best-known form of Szlam’s Lemma asserts that if R™ is colored
with red and blue so that no two blue points are at Fuclidean distance 1
_from each other, and there is a non-empty set ' C R™ so' that no translate
‘of F is all red, then the chromatic number x(R™, 1) of the Euclidean unit
distance graph on R™ is no greater than |F'|. Thus, the recent shocking dis-
covery by Aubrey de Grey that x(R?,1) > 5 implies an equally shocking
improvement of a famous result of R. Juhasz: if R? is colored with red and
blue so that Euclidean distance 1 is forbidden for the color blue, then the
red set must contain translates of each 4-point subset of R?. Here we prove
a theorem that contains Szlam’s Lemma as a special case !.

1 The Lemma and Its Generalization

Suppose (X, p) is a metric space and D C (0,00). The distance graph G =
G((X, p), D) is defined by: V(G) = X and 2,y € X are adjacent in G if and
only if p(z,y) € D. The chromatic number of G, denoted x((X, p), D) (note
the suppression of the symbol G) is the minimum cardinality |C'| among sets C
such that X can be colored by the elements of C so that all the distances in D are
“forbidden” for each colorin C.

This last bit, employing the jargon of the topic, requires explanation. Such a
coloring is-a function ¢ : X —» C suchthatif z,y € X and p(z,y) € D, then

© () # (y). More generally, if ¢ : X — C'is acoloring, c € C and d > 0,

we say the coloring o forbids the distance d for the color ¢ if, whenever z,y € X
and @(z) = @(y) = c, it must be that p(z,y) # d.
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If p is fixed in the discussion, the notation for the chromatic number is sim-
plified to x(X, D), and if D = {d}, a singleton, to x(X,d). In the com-
mon notation for the chromatic number of the plane, x(R?, 1), it is understood
that the meiric involved is the usual Euclidean distance, p((z1,v1), (z2,%2)) =
Vw2 —21)2 + (2 — 11)?. !

Szlam’s Lemma ([1],{4], [8]) now has several different forms, for application
in different contexts, but it was originally discovered as a theorem that established
a connection between the search for x(R?, 1) and properties of certain 2-colorings
of R, in which the distance 1 is forbidden for one of the colors. We will give a
version of the lemma that is a good deal more general than the original, yet far
from the most abstruse of its derivatives.

Lemma 1 (Szlam’s Lemma). Suppose (A, +,0) is an abelian group, with a
translation-invariant metric p, ) # B C A is closed under +, and D C (0, co).
Suppose that B can be colored with red and blue so that every d € D is forbidden
Sor blue, and, for some set ' C B, no translate b+ F,b € B is all red. Then
X((B, ), D) < |F). |

The following theorem contains the preceding as a special case.

Theovern: 1. Suppose thar (A,+,0) is an abelian group, with a translation-
invariant metric p, § # B C A is closed under +, and D C (0, 00). Suppose
that B can be colored with red and k other colors, c1, ..., ¢, so that each d € D
is forbidden for each color c;,i = 1, ..., k, and, for some set F C B, no translate

b+ F,b< B, isall red Then x((B,p), D) < k|F|

Proof. We color B with ordered pairs (c;, f),4 € {1,...,k}, f € E, as follows:

b € Bis colored by (¢, f) satisfying the condition that b + f is colored ¢;. Such .

a pair can be found because b + F' is not all red. '
It remains to be seen that no two elements b, b’ of B with the same ordered
pair color, say (¢, f), are a distance d € D from each other. We have p(b,b') =
p(b+ f,b + f) ¢ D because p is translation-invariant, and every d € D is
forbidden for the color ¢;. ‘ , O

Applications and corollaries will be discussed in section 3.

2 Some History

Colorings of R? with red and blue such that some single distance is forbidden for
blue were introduced in [3] (for the first time, so far as we know) as phenomena
of interest independent of the question of y(R? 1). It was ingeniously proveri
. that for every such coloring, the red set must contain a translate of each 3-point

~J
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set in the plane. This result, quite spectacular in the 1970’s, is an instantaneous
corollary of Szlam’s Lemma and the well-known (by 1970) fact that x(R?,1) >
4. :

Erdés, et al, went on in [3] to ask if R? could be colored with red and blue
so that distance 1 is forbidden for blue and no square of side length 1 has all red

. corners. Soon after, R. Juhdsz [6] answered the larger question represented by

the no-red-unit-square problem, by showing that for every coloring of R? with
red and blue such that distance 1 is forbidden for biue, the red set must contain a
congruent copy of each 4-point set in the plane. (Sets F, F' C R? are congruent
copies of each other if F' can be mapped exactly onto F” by a translation followed
by a rotation.)

Juhdsz’s proof was a tour-de-force, and her result remained a sort of summit
in the mountain range of Euclidean coloring results, until A. de Grey’s proof [2]
that X(RQ, 1) > 5. As noted in [5], this result plus Szlam’s Lemma immediately
improves Juhdsz’s theorem to: for every coloring of R? with red and blue such
that the distance 1 is forbidden for blue, the red set contains a translate of each
4-point set in the plane.

3 What’s next?

We’ll confine our attention to normed spaces (R™, |||} and the single distance 1.
The norms of most interest are the norms |||l, 1 < p < oo, defined by

n

(1, @a)llp = O lmal?)Y7,

G=1

1 <p<oo,and

H("‘Ch axn)lloo = lfélf‘é)gn Ixz‘

It is folkloric that

X((R27 ““;D)’ 1) =4,
X(R2 [l11p), 1) = 4,

Thanks to A. de Grey [2], we now know that x((R?,|]2),1) > 5.

p € {1, 00}, and that
1 <p<oo.

We define a RPkS (red-plus-k-special) coloring of (R™, {||]) to be a coloring
of R™ with k41 colors, red and k others, c1, ..., ¢k, such that the distance (defined
by ||||) 1 is forbidden for each color ¢y, ..., ¢. Following [7], we define the Szlam
k-number of (R™, ||||) by Szx(R™, ||||) = min[|F|; F € R™ and, for some RPkS
coloring of (R™, ||||) no translate of [ is all red].



Proposition 1. If k and t are positive integers and k < t, then for all n and for
all norms |[|| on R™, Sz (R™, ||I1) < Szu(R™, |||1).

Proof. If F C R™ and there is a RPAS coloring of (R™, ||||) with colors red,
€1, -, g Which forbids red translates of I, then we can produce a RPtS coloring
of (R™, ||||) which forbids red translates of F’ by changing the color of each of
t — k singletons to one of the new colors. O

Observe that a RPES coloring of (R™, ||||) can forbid red translates of a sin-
gleton if and only if no point of R™ is colored red. This implies the following
curious result.

Proposition 2. Suppose thdt n and k are positive integers and |||| is a norm on
R™. Then Sz (R™, ) = 1 ifand only if k > x((R™, |[|}), 1).

From the Theorem in Section 1 and propositions above, plus results in [7], we
have the following.

Corollary 1. A. For all positive integers n and k, and all norms ||| on R",
X (R 1), 1) < kSze(R™, I)-

B. Forl1l <p <o

<4< Sz (R2 ||]lp)
- 5 < Sa(R2 ||[l2) <7, and
© 4= 5a (R, |ll).p € {1,00)

C. 3 < 5z(R?%||)

Remarks
]

1. The inequality Sz; (IR, ||||2) < 7 is shown in [7].

2. Inequality C arises from the Theorem and x ((R?, |[{]2), 1) > 5. If Szo(R2, || ll2)

= 3, then y((R?, l|l2),1) < 6, which would be a major advance. Funher
on in this paper we will describe an RP3S coloring of (R?, |!||,) which for-
bids, for red, all translates of a 3-point set in R?. This does not tell us
anything we do not already know about x((R?, ||||2), 1), but it does show
that SZ3(R2, ”Hg) S {2, 3}.

3. To prove the equalities 4 = Sz (R?, |||l,),p € {1, oo}, it suffices to prove
the.equality for p = oo, because (R?, [|]|oo) and (R?, ||[|,) are isometrically
isomorphic. For m, n € Z, color the square [m, m + l) [n,n+1) blue if

-

both m and n are even, and red otherwise. This yields an RP1 S colminu of
(R?, |||lco) which forbids red translates of F = {(0,90), (0, 1), ( (1, D}
Thus 4 = x((R?, ||lloo), 1) < S2z1(R2,|||lco) < 4. Incidental ly, 1[ we did
not know that X((R?, |l/lec), 1) = 4, the existence of the RP1S coloring of
(R2, |||loo) just given would prove it, in view of the fact that (0,0}, (0, 1),

(1,0),(1,1) induce a clique in G((R?, ||le), 1), whence 4 < (((J“ o)

4 Application

Theorem 2. There is a RP3S coloring of (R?, |||l2) which forbids for red all
translates of a 3-point set in R?.

Proof. Let? = (0, % ) W= (-1, —%) Let X be the set of lattice points gen-
erated by 7, , i.e. X {a¥+bw |a,b € Z}. Consider the colormg of R? where
for all points 0 € X, we have a non-red open disc of radius 1 centered at 0.
The non-red discs are colored blue, green, and purple in an altemarmg marnner,
as shown in the Figure 1. The rest is colored red. Note that any two discs of the

same color are a distance of at least 1 apart; therefore this is a RP3S coloring.
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Figure 1: The RP3S coloring in Theorem 2, with the vectors @, 7' and a tralpslate
of the 3-point set @, b, ¢ shown.
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Now we prove that translates of the 3-point configuration {a, b, &=
{(=%5,0),(0,0), (&, 0)} is forbidden for red. Assume for contradiction that

there exists & such that {&,V,&@} = {&,b,&} + 7 is all red. In particular,
V = Z, so the point Z cannot be in any non-red discs. Note that for our proof
here we do not distinguish between non-red colors, just between red and non-
red. Clearly this 2-coloring is invariant with respect to translation by ¥ or .
Let p1 = (0,0),p2 = ¥,p3 = W,ps = ¥ -+ . Then it suffices to consider F
confined to the parallelogram p1 papsp4. Note that as both the ¢010ring and the 3-
point configuration {&, b, &} is symmetric about the y-axis, it suffices to consider
7 confined to the triangle p1p3py, as triangle pypapo is a reflection and translation
by ¥+ 7 of p1p3py. Let ps = (—1,0). Moreover, note that as both the coloring
"and the 3-point configuration {&, b, &} is symmetric about the x-axis, it suffices
to consider Z confined to the triangle pypsps. Note that the circular boundary of
the disc centered at py intersects the triangle pypspy at pg = (—1, = 75~ ) and

1

pr = (—1+4+ %, 7 —) Also note that the boundary of the disc centered at

p1 intersects triangle pipspy at pg = (— 2, 0) and pg = (— ‘1/;, %) Therefore it

suffices to consider & confined to the convex polygon pgpspspopr (see Figure 2).

528

- eg?

Figure 2: The RP3S coloring in Theorem 2, with points p; shown for i =
1,2,...,9. ‘ : ‘

Let p) = p; + (10,0) fort = 5,6,7,8,9. Then note that & must be some-
where in the convex polygon pspspépép/,q. But note that ||pills < % for all
1=15,6,7,8,9, so p; is contained in the disc centered at p;. Therefore the poly-
gon pgyog;ogp{gp’7 is contained in the disc centered at py, and so is ¢, which is a
contradiction to the assumption that &' is red.
‘ O

Corollary 2. Sz3(R?,||||l2) <3
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