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ABSTRACT

Point process data are becoming ubiquitous in modern applications, such as social
networks, health care, and finance. Despite the powerful expressiveness of the
popular recurrent neural network (RNN) models for point process data, they may
not successfully capture sophisticated non-stationary dependencies in the data
due to their recurrent structures. Another popular type of deep model for point
process data is based on representing the influence kernel (rather than the intensity
function) by neural networks. We take the latter approach and develop a new deep
non-stationary influence kernel that can model non-stationary spatio-temporal point
processes. The main idea is to approximate the influence kernel with a novel and
general low-rank decomposition, enabling efficient representation through deep
neural networks and computational efficiency and better performance. We also take
a new approach to maintain the non-negativity constraint of the conditional intensity
by introducing a log-barrier penalty. We demonstrate our proposed method’s good
performance and computational efficiency compared with the state-of-the-art on
simulated and real data.

1 INTRODUCTION

Point process data, consisting of sequential events with timestamps and associated information such
as location or category, are ubiquitous in modern scientific fields and real-world applications. The
distribution of events is of great scientific and practical interest, both for predicting new events and
understanding the events’ generative dynamics (Reinhart, 2018). To model such discrete events in
continuous time and space, spatio-temporal point processes (STPPs) are widely used in a diverse
range of domains, including modeling earthquakes (Ogata, 1988; 1998), the spread of infectious
diseases (Schoenberg et al., 2019; Dong et al., 2021), and wildfire propagation (Hering et al., 2009).

A modeling challenge is to accurately capture the underlying generative model of event occurrence
in general spatio-temporal point processes (STPP) while maintaining the model efficiency. Specific
parametric forms of conditional intensity are proposed in seminal works of Hawkes process (Hawkes,
1971; Ogata, 1988) to tackle the issue of computational complexity in STPPs, which requires
evaluating the complex multivariate integral in the likelihood function. They use an exponentially
decaying influence kernel to measure the influence of a past event over time and assume the influence
of all past events is positive and linearly additive. Despite computational simplicity (since the integral
of the likelihood function is avoided), such a parametric form limits the model’s practicality in
modern applications.

Recent models use neural networks in modeling point processes to capture complicated event
occurrences. RNN (Du et al., 2016) and LSTM (Mei and Eisner, 2017) have been used by taking
advantage of their representation power and capability in capturing event temporal dependencies.
However, the recurrent structures of RNN-based models cannot capture long-range dependency
(Bengio et al., 1994) and attention-based structure (Zhang et al., 2020; Zuo et al., 2020) is introduced to
address such limitations of RNN. Despite much development, existing models still cannot sufficiently
capture spatio-temporal non-stationarity, which are common in real-world data (Graham et al., 2013;
Dong et al., 2021). Moreover, while RNN-type models may produce strong prediction performance,
the models consist of general forms of network layers and the modeling power relies on the hidden
states, thus often not easily interpretable.
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(a) Kernel matrix of k(t0, t) with rank 298. (b) Kernel matrix of k(t0, t� t0) with rank 7.

Figure 1: An example: equivalent representation of kernel by “displacement”, from k(t0, t) to
k(t0, t� t

0) can significantly decrease the rank of the kernel function: from 298 to 7, where t
0 and t

represent the historical event time and the current time, respectively. On fitting the one-dimensional
synthetic data generated by k, the model parameterized with (t0, t � t

0) outperforms the model
parameterized with (t0, t). See Section 5 and Appendix C for experiment and formulation details.

A promising approach to overcome the above model restrictions is point process models that combine
statistical models with neural network representation, such as Zhu et al. (2022) and Chen et al. (2020),
to enjoy both the interpretability and expressive power of neural networks. In particular, the idea is
to represent the (possibly non-stationary) influence kernel based on a spectral decomposition and
represent the basis functions using neural networks. However, the prior work (Zhu et al., 2022) is
not specifically designed for non-stationary kernel and the low-rank representation can be made
significantly more efficient, which is the main focus of this paper.

Contribution. In this paper, we develop a non-stationary kernel (referred to as DNSK) for (possibly
non-stationary) spatio-temporal processes that enjoy efficient low-rank representation, which leads to
much improved computational efficiency and predictive performance. The construction is based on an
interesting observation that by reparameterize the influence kernel from the original form of k(t0, t),
(where t

0 is the historical even time, and t is the current time) to an equivalent form k(t0, t � t
0)

(which thus is parameterized by the displacement t� t
0 instead), the rank can be reduced significantly,

as shown in Figure 1. This observation inspired us to design a much more efficient representation of
the non-stationary point processes with much fewer basis functions to represent the same kernel.

In summary, the contributions of our paper include
• We introduce an efficient low-rank representation of the influence kernel based on a novel “dis-

placement” re-parameterization. Our representation can well-approximate a large class of general
non-stationary influence kernels and is generalizable to spatio-temporal kernels (also potentially to
data with high-dimensional marks). Efficient representation leads to lower computational cost and
better prediction power, as demonstrated in our experiments.

• In model fitting, we introduce a log-barrier penalty term in the objective function to ensure the
non-negative conditional intensity function so the model is statistically meaningful, and the problem
is numerically stable. This approach also enables the model to learn general influence functions
(that can have negative values), which is a drastic improvement from existing influence kernel-based
methods that require the kernel functions to be non-negative.

• Using extensive synthetic and real data experiments, we show the competitive performance of our
proposed methods in both model recovery and event prediction compared with the state-of-the-art,
such as the RNN-based and transformer-based models.

1.1 RELATED WORKS

The original work of A. Hawkes (Hawkes, 1971) provides classic self-exciting point processes for
temporal events, which express the conditional intensity function with an influence kernel and a base
rate. Ogata (1998) proposes a parametric form of spatio-temporal influence kernel which enjoys
strong model interpretability and efficiency. However, such simple parametric forms own limited
expressiveness in characterizing the complex events’ dynamic in modern applications (Zhu et al.,
2021; Liao et al., 2022).

Neural networks have been widely adopted in point processes (Xiao et al., 2017; Chen et al., 2020;
Zhu et al., 2021). Du et al. (2016) incorporates recurrent neural networks and Mei and Eisner (2017)
use a continuous-time invariant of LSTM to model event influence with exponential decay over time.
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These RNN-based models may be unable to capture complicated event dependencies due to the
recurrent structure. Zhang et al. (2020); Zuo et al. (2020) introduce self-attentive structures into point
processes for their capability to memorize long-term influence by dealing with an event sequence
as a whole. The main limitation is that they assume a dot-product-based score function and assume
linearly decaying of event influence. Omi et al. (2019) propose a fully-connected neural network to
model the cumulative intensity function to go beyond parametric decaying influence. However, the
event embeddings are still generated by RNN, and fitting cumulative intensity function by neural
networks lacks model interpretability. Note that all the above models tackle temporal events with
categorical marks, which are inapplicable in continuous time and location space.

Recent works adopt neural networks in learning the influence kernel function. The kernel introduced
in Okawa et al. (2021) uses neural networks to model the latent dynamic of time interval but
still assumes an exponentially decaying influence over time. Zhu et al. (2022) proposes a kernel
representation using spectral decomposition and represents feature functions using deep neural
networks to harvest powerful model expressiveness when dealing with marked event data. Our
method considers an alternative novel kernel representation that allows the general kernel to be
expressed further low-rankly.

2 BACKGROUND

Spatio-temporal point processes (STPPs) (Reinhart, 2018; Moller and Waagepetersen, 2003) have
been widely used to model sequences of random events that happen in continuous time and space. Let
H = {(ti, si)}ni=1 denote the event stream with time ti 2 [0, T ] ⇢ R and location si 2 S ⇢ RdS of
ith event. The event number n is also random. Given the observed history Ht = {(ti, si) 2 H|ti < t}
before time t, an STPP is then fully characterized by the conditional intensity function

� (t, s | Ht) = lim
�t#0,�s#0

E [N([t, t+�t]⇥B(s,�s)) | Ht]

|B(s,�s)|�t
, (1)

where B(s,�s) is a ball centered at s 2 RdS with radius �s, and the counting measure N is defined
as the number of events occurring in [t, t +�t] ⇥ B(s,�s) ⇢ RdS+1. Naturally � (t, s|Ht) � 0
for any arbitrary t and s. In the following, we omit the dependency on history Ht and use common
shorthand �(t, s). The log-likelihood of observing H on [0, T ]⇥ S is given by (Daley et al., 2003)

`(H) =
nX

i=1

log � (ti, si)�
Z T

0

Z

S

�(t, s)dsdt (2)

Neural point processes parameterize the conditional intensity function by taking advantage of
recurrent neural networks (RNNs). In Du et al. (2016), an input vector xi which extracts the
information of event ti and the associated event attributes mi (can be event mark or location) is fed
into the RNN. A hidden state vector hi is updated by hi = ⇢(hi�1,xi), where ⇢(·) is a mapping
fulfilled by recurrent neural network operations. The conditional intensity function on (ti, ti+1] is
then defined as �(t) = �(t,hi), where � is an exponential transformation that guarantees a positive
intensity. In Mei and Eisner (2017) the RNN is replaced by a continuous-time LSTM module with
hidden states h(t) defined on [0, T ] and a Softplus function �. Attention-based models are introduced
in Zuo et al. (2020); Zhang et al. (2020) to overcome the inability of RNNs to capture sophisticated
event dependencies due to their recurrent structures.

Hawkes process (Hawkes, 1971) is a well-known generalized point process model. Assuming the
influences from past events are linearly additive, the conditional intensity function takes the form of

�(t, s) = µ+
X

(t0,s0)2Ht

k(t0, t, s0, s), (3)

where k is an influence kernel function that captures event interactions. Commonly the kernel function
is assumed to be stationary, that is, k only depends on t � t

0 and s � s
0, which limits the model

expressivity. In this work, we aim to capture complicated non-stationarity in spatio-temporal event
dependencies by leveraging the strong approximation power of neural networks in kernel fitting.

3 LOW-RANK DEEP NON-STATIONARY KERNEL

Due to the intricate dependencies between events, it is challenging to choose the form of kernel
function that achieves great model expressiveness while enjoying high model efficiency. In this
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section, we introduce a unified model with a low-rank deep non-stationary kernel to capture the
complex heterogeneity in events’ influence over spatio-temporal space.

3.1 KERNEL WITH HISTORY AND SPATIO-TEMPORAL DISPLACEMENT

For the influence kernel function k(t0, t, s0, s), by using the displacements in t and s as variables, we
first re-parameterize the kernel as k(t0, t�t0, s0, s�s0), where the minus in s�s0 refers to element-wise
difference between s and s

0 when dS > 1. Then we achieve a finite-rank decomposed representation
based on (truncated) singular value decomposition (SVD) for kernel functions (Mollenhauer et al.,
2020) (which can be understood as the kernel version of matrix SVD, where the eigendecomposition
is based on Mercer’s Theorem (Mercer, 1909)), and that the decomposed spatial (and temporal) kernel
functions can be approximated under shared basis functions (cf. Assumption A.2). The resulting
approximate finite-rank representation is written as (details are in Appendix A.1)

k(t0, t� t
0
, s

0
, s� s

0) =
RX

r=1

LX

l=1

↵lr l(t
0)'l(t� t

0)ur(s
0)vr(s� s

0). (4)

Here { l,'l : [0, T ]! R, l = 1, . . . , L} are two sets of temporal basis functions that characterize
the temporal influence of event at t0 and the decaying effect brought by elapsed time t� t

0. Similarly,
spatial basis functions {ur, vr : S ! R, r = 1, . . . , R} capture the spatial influence of event at
s
0 and the decayed influence after spreading over the displacement of s � s

0. The corresponding
weight ↵lr at different spatio-temporal ranks combines each set of basis functions into a weighted
summation, leading to the final expression of influence kernel k.

To further enhance the model expressiveness, we use a fully-connected neural network to represent
each basis function. The history or displacement is taken as the input and fed through multiple hidden
layers equipped with Softplus non-linear activation function. To allow for inhibiting influence from
past events (negative value of influence kernel k), we use a linear output layer for each neural network.
For an influence kernel with temporal rank L and spatial rank R, we need 2(L + R) independent
neural networks for modeling.

The benefits of our proposed kernel framework lies in the following: (i) The kernel parameterization
with displacement significantly reduces the rank needed when representing the complicated kernel
encountered in practice as shown in Figure 1. (ii) The non-stationarity of original influence of histor-
ical events over spatio-temporal space can be conveniently captured by in-homogeneous { l}Ll=1,
{ur}Rr=1, making the model applicable in modeling general STPPs. (iii) The propagating patterns
of influence are characterized by {'l}Ll=1, {vr}Rr=1 which go beyond simple parametric forms. In
particular, when the events’ influence has finite range, i.e. there exist ⌧max and amax such that the
influence decays to zero if |t� t

0| > ⌧max or ||s� s
0|| > amax, we can restrict the parameterization

of {'l}Ll=1 and {vr}Rr=1 on a local domain [0, ⌧max] ⇥ B(0, amax) instead of [0, T ] ⇥ S, which fur-
ther reduce the model complexity. Details of choosing kernel and neural network architectures are
described in Appendix C.

Remark 1 (the class of influence kernel expressed). The proposed deep kernel representation covers a
large class of non-stationary kernels generally used in STPPs. In particular, the proposed form of the
kernel does not need to be positive semi-definite or even symmetric (Reinhart, 2018). The low-rank
decomposed formulation equation 4 is of SVD-type (cf. Appendix A.1). While each 'l (and vr)
can be viewed as stationary (i.e., shift-invariant), the combination with left modes in the summation
enables to model spatio-temporal non-stationarity. The technical assumptions A.1 and A.2 do not
require more than the existence of a low-rank decomposition motivated by kernel SVD. As long as
the 2(R+ L) many functions  l, 'l, and ur, vr are sufficiently regular, they can be approximated
and learned by a neural network. The universal approximation power of neural networks enables our
framework to express a broad range of general kernel functions, and the low-rank decomposed form
reduces the modeling of a spatio-temporal kernel to finite many functions on time and space domains
(the right modes are on truncated domains), respectively.

4 EFFICIENT COMPUTATION OF MODEL

We consider model optimization through Maximum likelihood estimation (MLE) (Reinhart, 2018).
The resulting conditional intensity function could now be negative by allowing inhibiting historical
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influence. A common approach to guarantee the non-negativity is to adopt a nonlinear positive
activation function in the conditional intensity (Du et al., 2016; Zhu et al., 2022). However, the
integral of such a nonlinear intensity over spatio-temporal space is computationally expensive. To
tackle this, we first introduce a log-barrier to the MLE optimization problem to guarantee the
non-negativity of conditional intensity function � and maintain its linearity. Then we provide a
computationally efficient strategy that benefits from the linearity of the conditional intensity. The
extension of the approach to point process data with marks is given in Appendix B.

4.1 MODEL OPTIMIZATION WITH LOG-BARRIER

We re-denote `(H) in equation 2 by `(✓) in terms of model parameter ✓. The constrained MLE
optimization problem for model parameter estimation can be formulated as:

min
✓
�`(✓), s.t.� �(t, s)  0, 8t 2 [0, T ], 8s 2 S.

Introduce a log-barrier method (Boyd et al., 2004) to ensure the non-negativity of �, and penalize the
values of � on a dense enough grid Ubar,t ⇥ Ubar,s ⇢ [0, T ]⇥ S . The log-barrier is defined as

p(✓, b) := � 1

|Ubar,t ⇥ Ubar,s|

|Ubar,t|X

ct=1

|Ubar,s|X

cs=1

log(�(tct , scs)� b), (5)

where ct, cs indicate the index of the gird, and b is a lower bound of conditional intensity function on
the grid to guarantee the feasibility of logarithm operation. The MLE optimization problem can be
written as

min
✓

L(✓) := �`(✓) + 1

w
p(✓, b) = �

 
nX

i=1

log �(ti, si)�
Z T

0

Z

S

�(t, s)dsdt

!

� 1

w|Ubar,t ⇥ Ubar,s|

|Ubar,t|X

ct=1

|Ubar,s|X

cs=1

log(�(tct , scs)� b),

(6)

where w is a weight to control the trade-off between log-likelihood and log-barrier; w and b can be
set accordingly during the learning procedure. Details can be found in Appendix A.2.

Note that previous works (Du et al., 2016; Mei and Eisner, 2017; Pan et al., 2021; Zuo et al.,
2020; Zhu et al., 2022) use a scaled positive transformation to guarantee non-negativity conditional
intensity function. Compared with them, the log-barrier method preserves the linearity of the
conditional intensity function. As shown in Table 1, such a log-barrier method enables efficient model
computation (See more details in Section 4.2) and enhance the model recovery power.

4.2 MODEL COMPUTATION

The log-likelihood computation of general STPPs (especially those with general influence function) is
often difficult and requires numerical integral and thus time-consuming. Given a sequence of events
{xi = (ti, si)}ni=1 of number n, the complexity of neural network evaluation is of O(n2) for the
term of log-summation and of O(Kn) (K � n) when using numerical integration for the double
integral term with K sampled points in a multi-dimensional space. In the following, we circumvent
the calculation difficulty by proposing an efficient computation for L(✓) with complexity O(n) of
neural network evaluation through a domain discretization strategy.

Computation of log-summation. The first log-summation term in equation 2 can be written as:

nX

i=1

log �(ti, si) =
nX

i=1

log

0

@µ+
X

tj<ti

RX

r=1

LX

l=1

↵lr l(tj)'l(ti � tj)ur(sj)vr(si � sj)

1

A. (7)

Note that each  l only needs to be evaluated at event time {ti}ni=1 and each ur is evaluated at all the
event location {si}ni=1. To avoid the redundant evaluations of 'l over every pair of (ti, tj), we set up
a uniform grid Ut over time horizon [0, ⌧max] and evaluate 'l on the grid. The value of 'l(tj � ti)
can be obtained by linear interpolation with values on two adjacent grid points of tj � ti. By doing
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so, we only need to evaluate 'l for |Ut| times on the grids. Note that 'l can be simply feed with 0
when tj � ti > ⌧max without any neural network evaluation.

Here we directly evaluate vr(si � sj) since numerical interpolation is less accurate in location space.
Note that one does not need to evaluate every pair of index (i, j). Instead, we have I := {(i, j) |
vr(si � sj) will be computed} = {(i, j) | tj < ti  tj + ⌧max} \ {(i, j) | ksi � sjk  amax}. We
use 0 to other pairs of (i, j).

Computation of integral. A benefit of our approach is that we avoid numerical integration for the
conditional intensity function (needed to evaluate the likelihood function), since the design of the
kernel allows us to decompose the desired integral to integrating basis functions. Specifically, we
have Z T

0

Z

S

�(t, s)dsdt = µ|S|T +
nX

i=1

Z T

0

Z

S

I(ti < t)k(ti, t, si, s)dsdt

= µ|S|T +
nX

i=1

RX

r=1

ur(si)

Z

S

vr(s� si)ds
LX

l=1

↵rl l(ti)

Z T�ti

0
'l(t)dt.

(8)

To compute the integral of 'l, we take the advantage of the pre-computed 'l on the grid Ut. Let
Fl(t) :=

R t
0 'l(⌧)d⌧ . Then Fl(T � ti) can be computed by the linear interpolation of values of Fl at

two adjacent grid points (in Ut) of T � ti. In particular, Fl evaluated on Ut equals to the cumulative
sum of 'l divided by the grid width.

The integral of vr can be estimated based on a grid Us in B(0, amax) ⇢ RdS since it decays outside
the ball. For each si,

R
S
vr(s � si)ds =

R
B(0,amax)\{S�si}

vr(s)ds, where S � si := {s0 | s0 =
s� si, s 2 S}. Thus the integral is well estimated with the evaluations of vr on grid set Us \ S � si.
Note that in practice we only evaluate vr on Us once and use subsets of the evaluations for different
si. More details about grid-based computation can be found in Appendix A.3.

Computation of log-barrier. The barrier term p(✓, b) is calculated in a similar way as equation 7
by replacing (ti, si, µ) with (tct , scs , µ� b), i.e. we use interpolation to calculate 'l(tct � tj) and
evaluate vr on a subset of {(scs , sj)}, cs = 1, . . . , |Ubar,s|, j = 1, . . . , n.

4.3 COMPUTATIONAL COMPLEXITY
Table 1: Comparison of model training time per
epoch on a 1D and a 3D synthetic data. Time is
measured in second.

1D Data set 1 3D Data set 1
Model #Parameters Training time #Parameters Training time

NSMPP 2576 60.040 9415 170.004
DNSK+Barrier 2307 1.299 9228 3.529

The evaluation of {ur}Rr=1 and { l}Ll=1 over n
events costs O((R+ L)n) complexity. The evalu-
ation of {'l}Ll=1 is of O(L|Ut|) complexity since
it relies on the grid Ut. The evaluation of {vr}Rr=1
costs no more than O(RC⌧maxn)+O(R|Us|) com-
plexity. We note that L,R, ⌧max, |Ut|, |Us| are all
constant that much less than event number n, thus
the overall computation complexity will be O(n). We compare the model training time per epoch for a
baseline equipped with a softplus activation function (NSMPP) and our model with log-barrier method
(DNSK+Barrier) on a 1D synthetic data set and a 3D synthetic data set. The quantitative results in
Table 1 demonstrates the efficiency improvement of our model by using log-barrier technique. More
details about the computation complexity analysis can be found in Appendix A.4.

5 EXPERIMENT

We use large-scale synthetic and real data sets to demonstrate the superior performance of our model
and present the results in this section. Experimental details and results can be found in Appendix C.
Codes will be released upon publication.

Baselines. We compare our method (DNSK+Barrier) with: (i) RMTPP (RMTPP) (Du et al.,
2016); (ii) Neural Hawkes (NH) (Mei and Eisner, 2017); (iii) Transformer Hawkes process (THP)
(Zuo et al., 2020); (iv) Parametric Hawkes process (PHP+exp) with exponentially decaying spatio-
temporal kernel; (v) Neual spectral marked point processes (NSMPP) (Zhu et al., 2022); (vi) DNSK
without log-barrier but with a non-negative Softplus activation function (DNSK+Softplus). We
note that RMTPP, NH and THP directly model conditional intensity function using neural networks
while others learn the influence kernel in the framework of equation 3. In particular, NSMPP designs
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Table 2: Synthetic data results. Testing log-likelihood per event (on the left side of slash, higher the
better) and MRE (on the right side of slash, lower the better) are reported in each entry.

Model 1D Data set 1 1D Data set 2 1D Data set 3 2D Data set 1 3D Data set 1 3D Data set 2

RMTPP �0.467(0.009)/0.086 �2.591(0.010)/0.259 �1.353(0.002)/0.212 �5.268(0.053)/0.195 �2.561(0.015)/0.117 �2.289(0.002)/0.316
NH �0.459(0.002)/0.068 �2.543(0.007)/0.092 �1.315(0.032)/0.204 �5.223(0.051)/0.174 �2.524(0.002)/0.098 �2.291(0.003)/0.319
THP �0.537(0.008)/0.843 �2.554(0.005)/0.106 �1.319(0.003)/0.115 �5.292(0.029)/0.182 �2.527(0.001)/0.041 �2.497(0.018)/0.350

PHP+exp �0.451(0.001)/0.093 �2.725(0.002)/0.181 �1.524(0.015)/0.223 �2.737(0.003)/0.306 �2.683(0.002)/0.291 �2.424(0.003)/0.282
NSMPP �0.462(0.010)/0.078 �2.638(0.008)/0.162 �1.473(0.033)/0.164 �2.807(0.016)/0.156 �2.637(0.012)/0.193 �2.381(0.012)/0.280

DNSK+Softplus �0.455(0.003)/0.045 �2.539(0.002)/0.037 �1.300(0.004)/0.104 �2.592(0.002)/0.042 �2.515(0.002)/0.088 �2.279(0.003)/0.119
DNSK+Barrier –0.451(0.002)/0.039 –2.536(0.003)/0.016 –1.298(0.002)/0.031 –2.585(0.001)/0.028 –2.498(0.003)/0.021 –2.251(0.001)/0.082

1D Dat
a set 2

1D Dat
a set 3

Figure 2: Kernel recovery results of 1D Data set 2 and 3. The first three columns show true kernels,
kernels learned by DNSK+Barrier, and kernels learned by NSMPP, respectively. The last two
columns show the predicted conditional intensity for a testing sequence and the averaged conditional
intensity for all testing sequences in each data set, which can be regarded as the event intensity by
taking the expectation of the history.

the kernel based on singular value decomposition but parameterizes it without displacement. The
model parameters are estimated using the training data via Adam optimization method (Kingma and
Ba, 2014). Details of training can be found in Appendix A.2 and C.

5.1 SYNTHETIC DATA EXPERIMENTS

Synthetic data sets. To show the effectiveness of DNSK+Barrier, we conduct all the models on
three temporal data sets and three spatio-temporal data sets generated by following true kernels: (i)
1D exponential kernel (ii) 1D non-stationary kernel; (iii) 1D infinite rank kernel; (iv) 2D exponential
kernel; (v) 3D non-stationary inhibition kernel; (vi) 3D non-stationary mixture kernel. Data sets are
generated using thinning algorithm in Daley and Vere-Jones (2008). Each data set is composed of
2000 sequences. Details of kernel formulas and data generation can be found in Appendix C.

We consider two performance metrics for testing data evaluation: Mean relative error (MRE) of
the predicted intensity and log-likelihood. The true and predicted �⇤(x), �̂(x) can be calculated
using equation 4 with true and learned kernel. The MRE for one test trajectory is defined asR
X
|�⇤(x)� �̂(x)|/�⇤(x)dx and the averaged MRE over all test trajectories is reported. The log-

likelihood for observing each testing sequence can be computed according to equation 2, and
the average predictive log-likelihood per event is reported. The log-likelihood shows the model’s
goodness-of-fit, and the intensity evaluation further reflects the model’s ability to recover the underly-
ing mechanism of event occurrence and predict the future.

The heat maps in Figure 2 visualize the results of non-stationary kernel recovery for DNSK+Barrier
and NSMPP on 1D Data set 2 and 3 (The true kernel used in 1D Data set 3 is the one in Figure 1).
DNSK+Barrier recovers the true kernel more accurately than NSMPP, indicating the strong repre-
sentation power of the low-rank kernel parameterization with displacements. Line charts in Figure 2
present the recovered intensities with the true ones (dark grey curves). It demonstrates that our
method can accurately capture the temporal dynamics of events. In particular, the average conditional
intensity � over multiple testing sequences shows the model’s ability to recover data non-stationarity
over time. While DNSK+Barrier successfully captures the non-stationarity among data, both
RMTPP and NH fail to do so by showing a flat curve of the averaged intensity. Note that THP with
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Table 3: Results of real data sets with time and categorical marks. We compare the testing log-
likelihood (Testing `, higher the better), event time prediction error (lower the better), and event type
prediction accuracy (higher the better) of DNSK+Barrier and other baselines on each data set.

Financial StackOverflow
Model Testing �` Time RMSE Type Accuracy Testing �` Time RMSE Type Accuracy

RMTPP �3.890 1.560 0.620 �2.600 9.780 0.459
NH �3.600 1.560 0.622 �2.550 9.830 0.463
THP �0.938 1.019 0.596 –1.231 11.804 0.436

NSMPP �3.058 1.276 0.608 �3.182 8.735 0.447
DNSK+Softplus �0.889 0.327 0.621 �2.173 6.416 0.497
DNSK+Barrier –0.709 0.153 0.630 �2.089 4.833 0.508

positional encoding recovers the data non-stationarity (as shown in two figures in the last column).
However, our method still outperforms THP which suffers from limited model expressiveness when
complicated propagation of event influence is involved (see two figures in the penultimate column).

Tabel 2 summarized the quantitative results of testing log-likelihood and MRE. It shows that
DNSK+Barrier has superior predictive performance against baselines in characterizing the dynam-
ics of data generation in spatio-temporal space. Specifically, with evidently over-parameterization
for 1D Data set 1 generated by a stationary exponentially decaying kernel, our model can still
approximate the kernel and recover the true conditional intensity without overfitting, which shows
the adaptiveness of our model. Moreover, DNSK+Barrier enjoys outstanding performance gain
when learning a diverse variety of complicated non-stationary kernels. The comparison between
DNSK+Softplus and DNSK+Barrier proves that the model with log-barrier achieves a better
recovery performance by maintaining the linearity of the conditional intensity. THP outperforms
RMTPP in non-stationary cases but is still limited due to its pre-assumed parametric form of influence
propagation. More results about kernel and intensity recovery can be found in Appendix C.

5.2 REAL DATA RESULTS

Real data sets. We provide a comprehensive evaluation of our approach on several real-world data
sets: we first use two popular data sets containing time-stamped events with categorical marks to
demonstrate the robustness of DNSK+Barrier in marked STPPs (refer to Appendix B for detailed
definition and kernel modeling): (i) Financial Transactions. (Du et al., 2016). This data set contains
transaction records of a stock in one day with time unit milliseconds and the action (mark) of each
transaction. We partition the events into different sequences by time stamps. (ii) StackOverflow

(Leskovec and Krevl, 2014): The data is collected from the website StackOverflow over two years,
containing reward records for users who promote engagement in the community. Each user’s reward
history is treated as a sequence.

Next, we demonstrate the practical versatility of the model using the following spatio-temporal data
sets: (i) Southern California earthquake data provided by Southern California Earthquake Data
Center (SCEDC) contains time and location information of earthquakes in Southern California. We
collect 19,414 records from 1999 to 2019 with magnitude larger than 2.5 and partition the data into
multiple sequences by month with average length of 40.2. (ii) Atlanta robbery & burglary data.
Atlanta Police Department (APD) provides a proprietary data source for city crime. We extract 3420
reported robberies and 14958 burglaries with time and location from 2013 to 2019. Two crime types
are preprocessed as separate data sets on a 10-day basis with average lengths of 13.7 and 58.7.

Finally, the model’s ability to tackle high-dimensional marks is evaluated with Atlanta textual crime

data. The proprietary data set provided by APD records 4644 crime incidents from 2016 to 2017
with time, location, and comprehensive text descriptions. The text information is preprocessed by
TF-IDF technique, leading to a 5012-dimensional mark for each event.

Table 3 summarizes the results of models dealing with categorical marks. Event time and type
prediction are evaluated by Root Mean Square Error (RMSE) and accuracy, respectively. We can see
that DNSK+Barrier outperforms the baselines in all prediction tasks by providing less time RMSE
and higher type accuracy.

For real-world spatio-temporal data, we report average predictive log-likelihood per event for the
testing set since MRE is not applicable. Besides, we perform online prediction for earthquake data to

8



Published as a conference paper at ICLR 2023

Robbery Burglary

!(1, 1, [0, 0],⋅) In-sample #($0,⋅) In-sample #($0,⋅)Out-of-sample #($!,⋅) Out-of-sample #($0,⋅)!(1, 1, [0, 0],⋅)
Figure 3: Kernel fitting and intensity prediction for ATL robbery & burglary data. First panel in each
category shows the learned influence kernel of each crime at fixed geolocation in downtown ATL.
Other panels show the predicted conditional intensity for two crimes over space at an in-sample and
out-of-sample time, respectively. The dots represent reported events on that day.

Table 4: Real data results with spatial and mark information. Testing log-likelihood (higher the better)
and prediction mean absolute error of event time and location (lower the better) are reported.

South California Earthquake Atlanta Robbery Atlanta Burglary Atlanta Textual Crime

Model Testing ` Time MAE Location MAE Testing ` Testing ` Testing `

RMTPP �1.825(0.053) 6.963 0.602 �2.349(0.018) �0.246(0.008) /
NH �1.818(0.037) 6.880 0.458 �2.445(0.016) �0.308(0.012) /
THP �1.784(0.007) 6.113 0.633 –2.221(0.005) �0.251(0.001) /

PHP+exp �2.048(0.093) 8.132 0.487 �2.641(0.006) 0.382(0.005) �10.542(0.016)
NSMPP �4.152(0.187) 6.780 0.455 �2.753(0.113) 0.304(0.098) �8.694(0.336)

DNSK+Softplus �1.807(0.096) 1.685 0.492 �2.435(0.009) 0.493(0.008) �5.876(0.057)
DNSK+Barrier –1.751(0.080) 1.474 0.431 �2.255(0.008) 0.519(0.012) –5.279(0.044)

1RMTPP, NH, and THP are not applicable when dealing with high-dimensional data.

demonstrate the model predicting ability. The probability density function f(t, s) which represents
the conditional probability that the next event will occur at (t, s) given history Ht can be written
as f(t, s) = �(t, s) exp

⇣
�
R
S

R t
tn
�(⌧, ⌫)d⌧d⌫

⌘
. The predicted time and location of the next event

can be computed as E [tn+1|Ht] =
R
1

tn
t
R
S
f(t, s)dsdt, E [sn+1|Ht] =

R
S
s
R
1

tn
f(t, s)dtds. We

predict the the time and location of the last event in each sequence. The mean absolute error (MAE) of
the predictions is computed. The quantitative results in Table 4 show that DNSK+Barrier provides
more accurate predictions than other alternatives with higher event log-likelihood.

To demonstrate our model’s interpretability and power to capture heterogeneous data characteristics,
we visualize the learned influence kernels and predicted conditional intensity for two crime categories
in Figure 3. The first column shows kernel evaluations at fixed geolocation in downtown Atlanta
which intuitively reflect the spatial influence of crimes in that neighborhood. The influence of a
robbery in the downtown area is more intensive but regional, while a burglary which is hard to
be responded to by police in time would impact a larger neighborhood along major highways of
Atlanta. We also provide the predicted conditional intensity over space for two crimes. As we can
observe, DNSK+Barrier captures the occurrence of events in regions with a higher crime rate, and
crimes of the same category happening in different regions would influence their neighborhoods
differently. We note that this example emphasizes the ability of the proposed method to recover data
non-stationarity with different sequence lengths, and improve the limited model interpretability of
other neural network-based methods (RMTPP, NH, and THP) in practice.

For Atlanta textual crime data, we borrow the idea in Zhu and Xie (2022) by encoding the highly
sparse TF-IDF representation into a binary mark vector with dimension d = 50 using Restricted
Boltzmann Machine (RBM) (Fischer and Igel, 2012). The average testing log-likelihoods per event for
each model are reported in Table 4. The results show that DNSK+Barrier outperforms PHP+exp
in Zhu and Xie (2022) and NSMPP by achieving a higher testing log-likelihood. We visualize the
basis functions of learned influence kernel by DNSK+Barrier in Figure A.4 in Appendix.

6 CONCLUSION

We propose a deep non-stationary kernel for spatio-temporal point processes using a low-rank
parameterization based on displacement, which enables the model to be further low-rank when
learning complicated influence kernel and significantly reduces model complexity. The non-negativity
of the intensity is guaranteed by a log-barrier method that maintains the linearity of the conditional
intensity function. Based on that, we propose a computationally efficient strategy for model estimation.
The superior performance of our model is demonstrated using synthetic and real data sets.
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A ADDITIONAL METHODOLOGY DETAILS

A.1 DERIVATION OF EQUATION 4

We denote ⌧ := t�t0, ⌫ := s�s0, the variables t0 2 [0, T ], ⌧ 2 [0, ⌧max], s0 2 S and ⌫ 2 B(0, amax),
where the sets S, B(0, amax) ⇢ R2. Viewing the spatial and temporal variables, i.e., (t0, ⌧) and
(s0, ⌫), as left and right mode variables, respectively, the kernel function SVD (Mollenhauer et al.,
2020; Mercer, 1909) of k gives that

k(t0, ⌧, s0, ⌫) =
1X

k=1

�kgk(t
0
, ⌧)hk(s

0
, ⌫). (A.1)

We assume that the SVD can be truncated at k  K with a residual of " for some small " > 0,
and this holds as long as the singular values �k decay sufficiently fast. To fulfill the approximate
finite-rank representation, it suffices to have the scalars �k and the functions gk and hk so that the
expansion approximates the kernel k, even if they are not SVD of the kernel. This leads to the
following assumption:
Assumption A.1. There exist coefficients �k, and functions gk(t0, ⌧), hk(s0, ⌫) s.t.

k(t0, ⌧, s0, ⌫) =
KX

k=1

�kgk(t
0
, ⌧)hk(s

0
, ⌫) +O("). (A.2)

To proceed, one can apply kernel SVD again to gk and hk respectively, and obtain left and right
singular functions that potentially differ for different k. Here, we impose that across k = 1, · · · ,K,

the singular functions of gk are the same (as shown below, being approximately same suffices) set of
basis functions, that is,

gk(t
0
, ⌧) =

1X

l=1

�k,l l(t
0)'l(⌧).

As we will truncate l to be up to a finite rank again (up to an O(") residual) we require the (approx-
imately) shared singular modes only up to L. Similarly as above, technically it suffices to have a
finite-rank expansion to achieve the O(") error without requiring them to be SVD, which leads to the
following assumption where we assume the same condition for hk:
Assumption A.2. For the gk and hk in equation A.2, up to an O(") error,

(i) The K temporal kernel functions gk(t0, ⌧) can be approximated under a same set of left and right

basis functions, i.e., there exist coefficients �kl, and functions  l(t0), 'l(⌧) for l = 1, · · · , L, s.t.

gk(t
0
, ⌧) =

LX

l=1

�kl l(t
0)'l(⌧) +O("), k = 1, · · · ,K. (A.3)

(ii) The K spatial kernel functions hk(s0, ⌫) can be approximated under a same set of left and right

basis functions, i.e., there exist coefficients �kr, and functions ur(s0), vr(⌫) for r = 1, · · · , R, s.t.

hk(s
0
, ⌫) =

RX

r=1

�krur(t
0)vr(⌫) +O("), r = 1, · · · , R. (A.4)

Inserting equation A.3 and equation A.4 into equation A.2 gives the rank-truncated representation of
the kernel function. Since K, L, R are fixed numbers, assuming boundedness of all the coefficients
and functions, we have the representation with the final residual as O("), namely,

k(t0, ⌧, s0, ⌫) =
LX

l=1

RX

r=1

KX

k=1

�k�kl�kr l(t
0)'l(⌧)ur(t

0)vr(⌫) +O(").

Defining
PK

k=1 �k�kl�kr as ↵lr leads to equation 4.

A.2 ALGORITHMS
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Algorithm 1 Model parameter estimation
Input: Training set X , batch size M , epoch number E, learning rate �, constant a > 1 to update s
in equation 6.
Initialization: model parameter ✓0, first epoch e = 0, s = s0.
while e < E do

for each batch with size M do
1. For 1D temporal point process, compute `(✓), {�(tct)}ct=1,...,|Ubar,t|. For spatio-temporal
point process, compute `(✓), {�(tct , scs)}ct=1,...,|Ubar,t|,cs=1,...,|Ubar,s|.

2. Set b = min{�(tct)}ct=1,...,|Ubar,t|�✏ (or min{{�(tct , scs)}ct=1,...,|Ubar,t|,cs=1,...,|Ubar,s|�✏),
where ✏ is a small value to guarantee logarithm feasibility.
3. Compute L(✓) = �`(✓) + 1

wp(✓, b).

4. Update ✓e+1  ✓e � � @L
@✓e

.

5. e e+ 1, w  w · a
end for

end while

Algorithm 2 Synthetic data generation
Input: Model �(·), T,S , Upper bound of conditional intensity �̄.
Initialization: HT = ;, t = 0, n = 0
while t < T do

1. Sample u ⇠ Unif(0, 1).
2. t t� lnu/�̄.
3. Sample s ⇠ Unif(S), D ⇠ Unif(0, 1).
4. � = �(t, s|HT ).
if D�̄  � then
n n+ 1; tn = t, sn = s.
HT  HT [ {(tn, sn)}.

end if
end while
if tn >= T then

return HT � {(tn, sn)}
else

return HT

end if

A.3 GRID-BASED MODEL COMPUTATION

In this section, we elaborate on the details of the grid-based efficient model computation.

In Figure A.1, we visualize the procedure of computing the integrals of
R T�ti
0 'l(t)dt and

R
S
vr(s�

si)ds in equation 8, respectively. Panel (a) illustrates the calculation of
R T�ti
0 'l(t)dt. As explained

in Section 4.2, the evaluations of 'l only happens on the grid Ut over [0, ⌧max] (since 'l(t) = 0 when
t > ⌧max). The value of F (t) =

R t
0 'l(⌧)d⌧ on the grid can be obtained through numerical integration.

Then given ti, the value of F (T � ti) =
R T�ti
0 'l(t)dt is calculated using linear interpolation of F

on two adjacent grid points of T � ti. Panel (b) shows the computation of
R
S
vr(s� si)ds. Given

si,
R
S
vr(s � si)ds =

R
B(0,amax)\{S�si}

vr(s)ds since vr(s) = 0 when s > amax. Then B(0, amax)

is discretized into the grid Us, and
R
S
vr(s� si)ds can be calculated based on the value of vr on the

grid points in Us \ S � si (the deep red dots in Figure A.1(b)) using numerical integration.

To evaluate the sensitivity of our model to the chosen grids, we compare the performance of
DNSK+Barrier on 3D Data set 2 using grids with different resolutions. The quantitative re-
sults of testing log-likelihood and intensity prediction error are reported in Table A.1. We use
|Ut| = 50, |Us| = 1500 for the experiments in the main paper. As we can see, the model shows
similar performances when a higher grid resolution is used and works slightly less accurately but still
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Figure A.1: (a) Computation of
R T�ti
0 'l(t)dt computation based on grid Ut. Red dots represent grid

points. Line segments connecting two light or dark grey dots represent the linear interpolation of 'l

and Fl. Here ti is the time of the historical event which is fixed. (b) Computation of
R
S
vr(s� si)ds

based on grid Us. The background heatmap represents the evaluation of vr over S. Here the fixed
si is the location of the historical event. The integral is calculated based on the values of vr on grid
points with dark red color.
Table A.1: Comparison of DNSK+Barrier performance on 3D Data set 2 with different grid
resolutions. Testing log-likelihood per event and intensity MRE are reported. The highlighted ones
are the results in the main paper.

Spatial resolution: |Us|
Temporal resolution: |Ut| 1000 1500 3000

30 �2.272(0.005)/0.102 �2.252(0.002)/0.088 �2.250(0.002)/0.081
50 �2.257(0.002)/0.095 �2.251(0.001)/0.082 �2.249(0.001)/0.078

100 �2.255(0.001)/0.091 �2.252(0.001)/0.081 �2.250(0.001)/0.078

better than other baselines with less number of grid points. It reveals that our choice of grid resolution
is accurate enough to capture the complex dynamics of event occurrences for this non-stationary data,
and the model performance is robust to different grid resolutions.

In practice, the grids can be flexibly chosen to reach the balance of model accuracy and computational
efficiency. For instance, the number of uniformly distributed grid points along one dimension can be
chosen around O(n0), where n0 is the average number of events in one observed sequence. Note
that |Ut| or |Us| would be far less than the total number of observed events because we use thousands
of sequences (2000 in our synthetic experiments) for model learning. And the grid size can be even
smaller when it comes to non-Lebesgue-measured space.

A.4 DETAILS OF COMPUTATIONAL COMPLEXITY

We provide the detailed analysis of the O(n) computation complexity of L(✓) in Section 4.3 as
following:

• Computation of log-summation. The evaluation of {ur}Rr=1 and { l}Ll=1 over n events costs
O((R + L)n) complexity. The evaluation of {'l}Ll=1 is of O(L|Ut|) complexity since it relies on
the grid Ut. With the assumption that the conditional intensity is bounded by a constant C in a finite
time horizon (Lewis and Shedler, 1979; Daley et al., 2003; Zhu et al., 2022), for each fixed j, the
cardinality of set {(i, j) | tj < ti  tj + ⌧max} is less than C⌧max, which leads to a O(RC⌧maxn)
complexity of {vr}Rr=1 evaluation.

• Computation of integral. The integration of {'l}Ll=1 only relies on numerical operations of {'l}Ll=1

on grids Ut without extra evaluations of neural networks. The integration of {vr}Rr=1 depends on the
evaluation on grid Us of O(R|Us|) complexity.

• Computation of barrier. {'l}Ll=1 on grid Ubar,t is estimated by numerical interpolation of previously
computed {'l}Ll=1 on grid Ut. Additional neural network evaluations of {vr}Rr=1 cost no more than
O(RC⌧maxn) complexity.
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B DEEP NON-STATIONARY KERNEL FOR MARKED STPPS

In marked STPPs (Reinhart, 2018), each observed event is associated with additional information
describing event attribute, denoted as m 2M ⇢ RdM . Let H = {(ti, si,mi)}ni=1 denote the event
sequence. Given the observed history Ht = {(ti, si,mi) 2 H|ti < t}, the conditional intensity
function of a marked STPPs is similarly defined as:

� (t, s,m) = lim
�t#0,�s#0,�m#0

E [N([t, t+�t]⇥B(s,�s)⇥B(m,�m)) | Ht]

|B(s,�s)||B(m,�m)|�t
,

where B(m,�m) is a ball centered at m 2 RdM with radius �m. The log-likelihood of observing
H on [0, T ]⇥ S ⇥M is given by

`(H) =
nX

i=1

log � (ti, si,mi)�
Z T

0

Z

S

Z

M

�(t, s,m)dmdsdt.

B.1 KERNEL INCORPORATING MARKS

One of the salient features of our spatio-temporal kernel framework is that it can be conveniently
adopted in modeling marked STPPs with additional sets of mark basis functions {gq, hq}Qq=1. We
modify the influence kernel function k accordingly as following:

k(t0, t� t
0
, s

0
, s� s

0
,m

0
,m) =

QX

q=1

RX

r=1

LX

l=1

↵lrq l(t
0)'l(t� t

0)ur(s
0)vr(s� s

0)gq(m
0)hq(m).

Here m
0
,m 2M ⇢ RdM and {gq, hq : M! R, q = 1, . . . , Q} represented by independent neural

networks model the influence of historical mark m
0 and current mark m, respectively. Since the mark

space M is always categorical and the difference between m
0 and m is of little practical meaning,

we use gq and hq to model m0 and m separately instead of modeling m�m
0.

B.2 LOG-BARRIER AND MODEL COMPUTATION

The conditional intensity for marked spatio-temporal point processes at (t, s,m) can be written as:

�(t, s,m) = µ+
X

l,r,q

↵lrq

X

(ti,si,mi)2Ht

 l(ti)'(t� ti)ur(si)vr(s� si)gq(mi)hq(m).

We need to guarantee the non-negativity of � over the space of [0, T ] ⇥ S ⇥M. When the total
number of unique categorical mark in M is small, the log-barrier can be conveniently computed as
the summation of � on grids Ubar,t ⇥ Ubar,s ⇥M. In the following we focus on the case that M is
high-dimensional with O(n) number of unique marks.

For model simplicity we use non-negative gq and hq in this case (which can be done by adding a
non-negative activation function to the linear output layer in neural networks). We re-write �(t, s,m)
and denote as following:

�(t, s,m) = µ+
X

q

0

@
X

l,r

↵lrq

X

(ti,si,mi)2Ht

 l(ti)'(t� ti)ur(si)vr(s� si)gq(mi)

1

A

| {z }
F̂q(t,s)

hq(m).

Note that the function in the brackets are only with regard to t, s. We denote it as F̂q(t, s) (since
it is in the rth rank of mark). Since hq(m) � 0, the non-negativity of � can be guaranteed by the
non-negativity of F̂q(t, s). Thus we apply log-barrier method on F̂q(t, s). The log-barrier term
becomes:

p(✓, b) := � 1

Q|Ubar,t ⇥ Ubar,s|

|Ubar,t|X

ct=1

|Ubar,s|X

cs=1

QX

q=1

log(F̂q(tct , scs)� b),
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Since our model is low-rank, the value of Q will not be large.

For the model computation, the additional evaluations for {gq}Qq=1 on events is of O(Qn) complexity
and the evaluations for {hq}Qq=1 only depends on the unique number of marks which at most of
O(n). The log-barrier method does not introduce extra evaluation in mark space. Thus the overall
computation complexity for DNSK in marked STPPs is still O(n).

C ADDITIONAL EXPERIMENTAL RESULTS

In this section we provide details of data sets and experimental setup, together with additional
experimental results.

Synthetic data sets. To show the robustness of our model, we generate three temporal data sets and
three spatio-temporal data sets using the following kernels:

(i) 1D Data set 1 with exponential kernel: k(t0, t) = 0.8e�(t�t0).

(ii) 1D Data set 2 with non-stationary kernel: k(t0, t) = 0.3(0.5 + 0.5 cos(0.2t0))e�2(t�t0).
(iii) 1D Data set 3 with infinite rank kernel:

k(t0, t) = 0.3
1X

j=1

2�j

✓
0.3 + cos(2 + (

t
0

5
)0.71.3(j + 1)⇡)

◆
e
�

8(t�t0)2
25 j2

(iv) 2D Data set 1 with exponential kernel: k(t0, t, s0, s) = 0.5e�1.5(t�t0)
e
�0.8s0 .

(v) 3D Data set 1 with non-stationary inhibition kernel:

k(t0, t, s0, s) = 0.3(1� 0.01t)e�2(t�t0) 1

2⇡�2
s0
e
�

ks0k2

2�2
s0

cos (10ks� s
0k)

2⇡�2
s(1 + e10(ks�s0k�0.5)

e
�

ks�s0k2

2�2
s

, where �s0 = 0.5,�s = 0.15.
(vi) 3D Data set 2 with non-stationary mixture kernel:

k(t0, t, s0, s) =
2X

r=1

2X

l=1

↵rlur(s
0)vr(s� s

0) l(t
0)'l(t� t

0)

, where u1(s0) = 1�as(s02+1), u2(s0) = 1�bs(s02+1), v1(s�s0) = 1
2⇡�2

1
e
�

ks�s0k2

2�2
1 , v2(s�

s
0) = 1

2⇡�2
2
e
�

ks�s0�0.8k2

2�2
2 , 1(t0) = 1 � att

0
, 2(t0) = 1 � btt

0
,'1(t � t

0) =

e
��(t�t0)

,'2(t� t
0) = (t� t

0� 1) · I(t� t
0
< 3), and as = 0.3, bs = 0.4, at = 0.02, bt =

0.02,�1 = 0.2,�2 = 0.3,� = 2, (↵11,↵12,↵21,↵22) = (0.6, 0.15, 0.225, 0.525).

Note that kernel (iii) is the one we illustrated in Figure 1, which is of infinite rank according to the
formulas. In Figure 1, the value matrix of k(t0, t) and k(t0, t � t

0) are the kernel evaluations on a
same 300⇥ 300 uniform grid. As we can see, the rank of the value matrix of the same kernel k is
reduced from 298 to 7 after changing to the displacement-based kernel parameterization.

Details of Experimental setup. For RMTPP and NH we test embedding size of {32, 64, 128} and
choose 64 for experiments. For THP we take the default experiment setting recommended by Zuo
et al. (2020). For NSMPP we use the same model setting in Zhu et al. (2022) with rank 5. Each
experiment is implemented by the following procedure: Given the data set, we split 90% of the
sequences as training set and 10% as testing set.

We use independent fully-connected neural networks with two-hidden layers for each basis function.
Each layer contains 64 hidden nodes. The temporal rank of DNSK+Barrier is set to be 1 for
synthetic data (i), (ii), (iv), (v), 2 for (vi), and 3 for (iii). The spatial rank is 1 for synthetic data
(iv), (v) and 2 for (vi). The temporal and spatial rank for real data are both set to be 2 through cross
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Figure A.2: Kernel recovery results of 2D exponential kernel. The first two columns show the true
kernel and kernel learned by DNSK+Barrier. The last two columns shows the true and predicted
conditional intensity functions of a test sequence. The line charts visualize the conditional intensity
average over the 1D mark space at any given time for the ease of presentation. The red dots indicate
the time of observed events.

validation. For each real data set, the ⌧max is chosen to be around T/4 and smax is 1 for each data set
since the location space is normalized before training. The hyper-parameter of DNSK+Softplus
are the same as DNSK+Barrier. For RMTPP, NH, and THP the batch size is 32 and the learning
rate is 10�3. For others, the batch size is 64 and the learning rate is 10�1. The quantitative results are
collected by running each experiment for 5 independent times. All experiments are implemented on
Google Colaboratory (Pro version) with 25GB RAM and a Tesla T4 GPU.

C.1 SYNTHETIC RESULTS WITH 2D & 3D KERNEL

In this section we present additional experiment results for the synthetic data sets with 2D exponential
and 3D non-stationary mixture kernel. Our proposed model successfully recovers the kernel and
event conditional intensity in both case. Note that the recovery of 3D mixture kernel demonstrates the
capability of our model to handle complex event dependency with mixture patterns by conveniently
setting time and mark rank to be more than 1.

C.2 ATLANTA TEXTUAL CRIME DATA WITH HIGH-DIMENSIONAL MARKS

Figure A.4 visualizes the fitting and prediction results of DNSK+Barrier. Our model presents
an decaying pattern in temporal effect and captures two different patterns of spatial influence for
incidents in the northeast. Besides, the in-sample and out-of-sample intensity predictions demonstrate
the ability of DNSK to characterize the event occurrences by showing different conditional intensities.
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Figure A.3: Kernel recovery results of 3D non-stationary mixture kernel. The first two columns show
snapshots of the true kernel and kernel learned by DNSK+Barrier. The last two columns shows
snapshots of the true and predicted conditional intensity functions of a test sequence.

!!

"!

!" In-sample !!

In-sample !"

Out-of-sample !#

Out-of-sample !$""
Figure A.4: Model fitting and prediction for high-dimensional real data. First column shows the
learned temporal functions. Four panels in the middle shows the learned spatial functions, Deeper
color depth indicates higher function value. Last four panels show the predicted conditional intensity
over space at two in-sample times and two out-of-sample times, respectively. The dots represent
event occurrences at that day.
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