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We examine the dynamical role of the Pauli exclusion principle on resonant multi-electron 

ionization.  Using a simple essential state model that permits us approximate but analytical 

solutions, we show that this principle can lead to several unexpected consequences.  It has only a 

transient effect on the resonant multi-electron dynamics and its dynamical impact decreases with 

increasing Rabi frequency.  Due to mutually competing mechanisms, this principle can enhance 

the ionization probability, while at the same time it also decreases the probability for double 

ionization.  Furthermore, it can also manifest itself in the energy distribution of the ionized 

electrons, but only if the energy accumulation range of the electronic detector is chosen to be 

sufficiently wide. 
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1. Introduction 

 In 1955, S. Autler and C. Townes examined the effect of a resonant laser field on the dressed 

energy structure of a multi-level quantum system [1].  It was found that the effective energies of 

the two resonant states were split into doublets, which were separated by the Rabi frequency 

associated with the field.  This light-induced splitting changed the usual singly peaked fluorescent 

spectrum of these atoms and molecules into the famous Mollow triplet [2], where the usual 

central peak is accompanied by two side bands. 

 In 1978, P.L. Knight [3] showed that this Autler-Townes effect can also lead to a splitting of 

the kinetic energy of electrons in resonant two-photon photoionization, where the ground state 

population can decay into the continuum via a resonant intermediate bound state.  In 1993, it was 

suggested by numerical simulations that this coherence effect can also be communicated from one 

electron to another electron due to electron-electron correlations [4,5].  The coherence associated 

with resonant oscillations of a deeply bound inner electron can be transferred to the photoelectron 

spectrum of the loosely bound outer electron.  This prediction was also confirmed experimentally 

in 1995 by L. Di Mauro's group [6] in the two-photon ionization of calcium.  The resonant 

photoionization can also occur in systems of two spatially well-separated atoms, where a stepwise 

behavior of the ionization probability and a Mollow-type photoelectron spectrum is obtained, as 

well, when the field intensity is large enough [7,8].  

 Just recently, it was predicted that this Autler-Townes effect can even be transferred between 

the created electrons and positrons in the laser field-induced vacuum decay process in the 

presence of a highly charged nucleus [9].  Here the created electron can be captured subsequently 

by the binding field of the nucleus.  If the nucleus's transition frequency between two of its bare 

levels matches the laser frequency, the captured electron can perform Rabi oscillations between 

these two levels.  The captured electron's dynamics has an immediate impact on the kinetic 

energy spectrum of the created positrons.  It turns out that its positronic energy distribution can 

reveal split peaks whose energy separation is given precisely by the Rabi frequency of the 

captured electron. 

 In all of these phenomena, the electronic Rabi oscillations affected a second particle, such as 

the electron or the positron, but the presence of this second particle did not impact the Rabi 

oscillations of the first electron.  While these effects have been extensively studied during the past 

decades, we will examine for the first time a multi-particle mechanism, where the presence of the 

second particle directly affects the possibility for Rabi oscillations. 
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 The role of Autler-Townes splitting in attosecond ionization was very recently examined 

theoretically and also experimentally for autoionizing states in argon [10].  Most recent state-of-

the-art calculations of the Autler-Townes effect for specific atoms or molecules [11-15] have 

naturally incorporated the Pauli exclusion principle with regard to the bare energy level structure, 

but to the best of our knowledge, the quantitative magnitude of its dynamical relevance has not 

been investigated yet.  There are even rather obvious questions that have not been addressed.  For 

example, it is not known, if this principle increases or decreases the overall stability towards 

ionization or it affects the single and double ionization processes differently.  Are there only 

transient manifestations of this principle, and if so, on which time scales do they occur?   

 This work is organized as follows.  In Section 2, we briefly review the essential state 

formalism usually being employed to examine resonant ionization of a single-electron atom or 

ion.  In Section 3, we introduce the analytical framework that will permit us to distinguish 

between the time-dependence of various observables for two-electron systems with and without 

the Pauli exclusion principle.  In Section 4, we present numerical examples that illustrate how this 

principle can destabilize the atom by increasing its ionization probability while at the same time it 

decreases the probability for double ionization.  We also point out the unexpected role the 

detector's energy resolution plays for the ionized electrons.  We complete with an outlook on open 

questions, which might motivate further studies. 

 

2. The underlying single-electron model 

 In order to be able to capture the basic dynamical features of the Pauli-suppression in resonant 

two-electron ionization, we purposely examine here the simplest possible model and therefore 

include only the minimally necessary states and their couplings.  As we neglect the impact of the 

electron-electron correlations on the bare energy level structure, we can assume that one electron 

is initially in the ground level |1ñ with energy E1 and the other electron is in the first excited state 

level |2ñ energy E2.  In Figure 1 we have sketched the relevant bare energy levels of this restricted 

Hilbert space for the corresponding two decoupled single-electron systems together with the 

relevant one-photon couplings.  In the right sketch we display the corresponding two two-electron 

systems with and without the Pauli exclusion principle. In the absence of any Pauli-exclusion 

principle, the two-electron dynamics separates into two decoupled single-electron systems.   
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Figure 1   Sketch of the relevant bare energy levels of the two decoupled one electron systems 
(left) and the two-electron system with and without the Pauli-exclusion principle (right) together 
with the relevant single-photon couplings.  The subscripts ± corresponds to the type of 
symmetrization used.  The relevant energy levels are at E1= –1.5, E2 = –0.5, w = 1. 

 

 Before we compare the two-particle dynamics with and without the Pauli principle, let us 

briefly review in this Section the dynamical features of the underlying single-electron system.  It 

is characterized by the state  

 

                                |f(t)ñ  =  C1(t) |1ñ + C2(t) |2ñ  + òdE CE(t) |Eñ  (2.1) 

 

which is normalized according to áf(t)|f(t)ñ = |C1(t)|2 + |C2(t)|2 + òdE |CE(t)|2 = 1.  We assume that 

the coupling matrix element between the single-particle ground state |1ñ and the first excited state 

|2ñ is given by á1|H|2ñ = W(t).  Here W(t) º W0 Sin(wt), where W0 denotes the product of the 

amplitude of the external oscillatory field with frequency w and the dipole moment between both 

discrete states.  The corresponding coupling between the first excited state |2ñ and the continuum 

state |Eñ is given by á2|H|Eñ = g(t), where g(t) º  g Sin(wt).  For simplicity, we assume that the 

coupling strength g to any continuum state does not depend on the energy E of the state.  The 

resulting Hamiltonian H0 + Hint takes therefore the form 

 

                 H0 =  E1 |1ñá1|  + E2 |2ñá2| + òdE E |EñáE|  (2.2a) 

                 Hint = W(t) [ |1ñá2| + |2ñá1| ] + g(t) òdE [ |Eñá2| + |2ñáE| ]   (2.2b) 

 

| A > | B >

| 2 >

| E >

| 1 >

E2

0 | E’, E >±

E2+E2

E1

E1+E2

E1+E1

| 2, E >±

| 1, 2 >±

| 1, E >±

E g

g

g
W

W

W

| 2, 2 >

| 1, 1 >

with Pauli: | >–

without Pauli: | >+



                                                  5            12/22/21 

 

 

 In order to find the equation of motion of the expansion coefficients C1(t), C2(t) and CE(t), we 

insert the expansion for |f(t)ñ into the Schrödinger equation, given (in atomic units) by 

  i d |fñ /dt= (H0 + Hint) |fñ.  If we use the orthogonality among all states, we obtain 

 

            i d C1 / dt  =  E1 C1  +  W(t) C2 (2.3a) 

            i d C2 / dt  =  E2 C2  +  W(t) C1  +  g(t) òdE CE  (2.3b) 

            i d CE / dt  =  E CE  +  g(t) C2 (2.3c) 

 

 In order to be able to study the exact predictions from Eqs. (2.3) for arbitrary parameters, one 

can restrict the upper and lowest energy of the continuum states, assume that they are 

equidistantly separated by dE and therefore represent the continuum by NE states.  The resulting 

(NE+2) equations can then be solved numerically.  For sufficiently large NE and small dE, one can 

easily obtain fully converged solutions C1(t), C2(t) and CE(t), which are independent of the choice 

for the computational parameters NE and dE for all interaction times.  

 The ionization dynamics is characterized by the relationship of g, W0, w to E1 and E2.  Under 

the rotating wave approximation, solutions for the time-dependence of the amplitudes can be 

obtained approximately.  We briefly review this standard approach in Appendix A.  For the 

special case of zero detuning, i.e. E2 – E1 = w, the approximate solutions for the two bound states 

are {c1(t), c2(t)} = U(t) {c1(0), c2(0)}, where the four elements of the 2´2 propagator matrix U(t) 

are given by 

 

                 U1,1(t)  =  Exp(–t G/4) [ Cos(W t/2) + G Sin(W t/2)/(2W) ] (2.4a) 

                 U1,2(t)  =  i Exp(–t G/4) W0 Sin(W t/2)/W  (2.4b) 

                 U2,1(t)  =  i Exp(–t G/4) W0 Sin(W t/2)/W   (2.4c) 

                 U2,2(t)  =  Exp(–t G/4) [ Cos(W t/2) – G Sin(W t/2)/(2W) ]   (2.4d) 
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Here we have introduced the effective Rabi frequency W  º (W0
2 – (G/2)2)1/2, where in our 

notation we have assumed W0 > G/2.  The Fermi-Golden rule (FGR) decay rate is given by G º 2p 

(g/2)2. 

  

 

 
Figure 2   Comparison of the exact probabilities |C1(t)|2, |C2(t)|2 and òdE |CE(t)|2 obtained 
numerically from Eqs. (2.3) with the approximate but analytical predictions according to 
|U1,1(t)|2, |U2,1(t)|2 and 1– |U1,1(t)|2– |U2,2(t)|2 and given by Eqs. (2.4). In the inset we show the 
fast oscillations that the analytical model cannot capture. 
[c1(0) =1, g = 0.15, W0 = 0.1, w = 1, E1 = –1.5 and E2 = –0.5.  The continuum states were 
discretized with 200 levels for energies 0.2 < E < 0.8].  Here the FGR rate amounts to G = 
0.0353 and W = 0.0984.   

 

 In order to test the quality of these approximate expressions for the bound state amplitudes for 

our parameters studied below, we compare them in Figure 2 with the exact time evolution.  We 

find basically no major differences, suggesting that we can rely on the analytical expressions of 

Eq. (2.4) for a qualitative analysis in the following Sections.  In order to see some discrepancies, 

in the inset we enlarge the data between the 50th and 60th laser cycle.  It reveals that the 

analytical theory cannot reproduce the superimposed very fast oscillations on the time scale 

2´2p/w as well as the precise phase of the true signal, as one can expect from the rotating wave 

approximation.  
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3. The two-electron models with and without the Pauli-exclusion principle 

 As we want to focus solely on the dynamical impact of the Pauli-suppression, we neglect here 

the effect of the electron-electron correlations on any possible shifts to the bare energies.  This 

permits us to exploit the single-particle Hilbert space structure (shown in Figure 1 above) to 

construct the corresponding space for the two-electron system.   

 In order to evaluate quantitatively the dynamical impact of the Pauli exclusion principle, we 

have to compare the predictions with a system where this mechanism is absent.  This system for 

comparison is characterized by the symmetrized two-electron state  

 

                               |YI(t)ñ º [|A(t)ñ |B(t)ñ + |B(t)ñ |A(t)ñ ]/N1/2  (3.1) 

 

where |A(t)ñ º  A1(t) |1ñ + A2(t) |2ñ + òdE AE(t) |Eñ and |B(t)ñ º B1(t) |1ñ + B2(t) |2ñ + òdE BE(t) |Eñ  

are the corresponding single-electron states satisfying the initial conditions |A(t=0)ñ = |1ñ and 

|B(t=0)ñ = |2ñ.  In order to model the indistinguishability of the two electrons, we have 

symmetrized the state |YI(t)ñ in Eq. (3.1).  While for a general symmetrization the normalization 

factor depends on the relationship among the single particle states, i.e., N º áYI|YIñ = 2 

[1+|áA|Bñ|2], here the factor N º 2 reflects the mutual orthogonality of |Añ and |Bñ.  This 
orthogonality is maintained at all times as two states are solutions to the same Hamiltonian of Eq. 

(2.2) and differ only by their initial conditions.  This means we have áA(t)|A(t)ñ = áB(t)|B(t)ñ =  

|A1|2 + |A2|2 + òdE |AE|2 = |B1|2 + |B2|2 + òdE |BE|2 = 1 as well as áA(t)|B(t)ñ = A1*B1 + A2*B2 + òdE 

AE*BE = 0. 

 The six types of time dependent coefficients A1(t), A2(t), AE(t), B1(t), B2(t) and BE(t) are 

obtained as numerical solutions from Eqs. (2.3) with the initial condition A1(0) = 1, A2(0) = 

AE(0)=0 and B1(0) = 0, B2(0) = 1 and BE(0) = 0.  In terms of these amplitudes, the state becomes  

 

|YI(t)ñ =  [2 A1 B1 |1ñ|1ñ + (A1 B2 + B1 A2) (|1ñ |2ñ + |2ñ|1ñ) + (A1 òdE BE + B1 òdE AE) (|1ñ|Eñ+ 
|Eñ|1ñ) 

               + 2 A2 B2 |2ñ |2ñ + (A2 òdE BE + B2 òdE AE) (|2ñ|Eñ+|Eñ|2ñ)  

              + òdE òdE' (AE' BE + BE' AE) |E'ñ |Eñ]/21/2  (3.2) 
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 In order to incorporate the Pauli-exclusion principle into the dynamics, we have anti-

symmetrized the two-particle state leading to 

 

                               |YII(t)ñ º [|A(t)ñ |B(t)ñ – |B(t)ñ |A(t)ñ ]/21/2  (3.3) 

 

If we again express this state in terms of the same single-particle amplitudes, we obtain  

 

|YII(t)ñ =  [(A1 B2 – B1 A2 ) (|1ñ |2ñ – |2ñ |1ñ)  + (A1 òdE BE – B1 òdE AE ) (|1ñ |Eñ –  |Eñ |1ñ)  

         + (A2 òdE BE – B2 òdE AE ) (|2ñ |Eñ – |Eñ |2ñ) + òdE' òdE (AE' BE – BE' AE) |E'ñ |Eñ ]/21/2 (3.4) 
 

As expected, in contrast to the decoupled system given by |YI(t)ñ, here the doubly occupied states 

|1ñ |1ñ, |2ñ |2ñ and |Eñ |Eñ are no longer part of the dynamics as shown in Figure 1.  In Appendix B 

we show that based on this reduced set of remaining two-particle states (|12ñ–, |2Eñ–, |1Eñ– and 

|EE'ñ– ), it is possible to derive a description in terms of a new effective two-level system. 

 The sets of the six types of time-dependent coefficients A1(t), A2(t), AE(t), B1(t), B2(t) and 

BE(t) are the common building blocks for both |YI(t)ñ and|YII(t)ñ.  This means we have fully 

analytical solutions for both states if we use the four general propagator solutions Eqs. (A.6) from 

Appendix A or the easier zero-detuning equations (2.4).  In particular, we have A1(t) = U1,1(t), 

A2(t) = U2,1(t), B1(t) = U1,2(t) and B2(t) = U2,2(t). 

 It turns out that the dynamical impact of the Pauli exclusion principle manifests itself rather 

differently depending on which observable is considered.  In order to compare the two dynamics 

described by |YI(t)ñ and |YII(t)ñ, we will compute the time evolution of four expectation values of 

several multi-particle operators P(t) =  áY(t)| P |Y(t)ñ in the Schrödinger picture.  The 

decomposition of the unit operator I Ä I in terms of the Hilbert space states is naturally given by 

nine types of direct product projections I Ä I =  {|1ñá1| + |2ñá2| + òdE |EñáE|} Ä { |1ñá1| + |2ñá2| + 

òdE |EñáE|)}.  The corresponding expectation values of these nine types of product operators 

represent the sum of mutually excluding probabilities to find the particles in various states.  

Below we briefly introduce the expressions that permit us to calculate the time-dependence of the 

probabilities that at least one electron in state |2ñ [denoted by P(2,t)], that both electrons are bound 
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P(bb,t), that at least one electron is ionized P(f,t) and finally that both electrons are ionized P(ff,t).  

We also examine the probability to detect at least one ionized electrons inside the interval [E–

DE/2, E+DE/2], denoted by P(E,t). 

 For example, the probability that at least one electron is in the first excited state |2ñ 

corresponds to the operator containing the three projections P(2) º |2ñá2| Ä I  + I Ä |2ñá2| – |2ñá2|Ä 

|2ñá2|, where the last subtracted term is required to avoid double counting.  We obtain for our two 

systems  

 

 PI(2,t)  º  áYI(t)| P(2) |YI(t)ñ    =  |A2(t)|2 + |B2(t)|2 – 2|A2(t) B2(t)|2   (3.5a)

 PII(2,t) º  áYII(t)| P(2) |YII(t)ñ  =  |A2(t)|2 + |B2(t)|2  (3.5b) 
 

 As a side issue, we should briefly use the example of this expectation value to illustrate the 

impact of the indistinguishability of both particles.  Had we chosen a state |Y0(t)ñ º |A(t)ñ |B(t)ñ, 

where both particles are distinguishable (and also not constrained to áA|Bñ = 0), then the resulting 

expectation value áY0(t)| P(2) |Y0(t)ñ would become P0(2,t)  = |A2|2 + |B2|2 – |A2 B2|2.  So we have 

the interesting result that 0 £ PI(2,t) £ P0(2,t) £ PII(2,t) £ 1.  This means that for áA|Bñ = 0, the 

symmetrization (anti-symmetrization) of a system usually decreases (increases) the probability to 

find at least one particle in certain state compared to that for a system of distinguishable particles.  

We should also remark that due to the assumed orthogonality áA|Bñ = 0, the probabilities |A2(t)|2 

and |B2(t)|2 are highly correlated with each other, such that |A2(t)|2 + |B2(t)|2 £ 1 at all times.  Due 

to the different initial conditions of the underlying two single-particle systems, PI(2,t) remains 

positive at all times, despite the minus sign in Eq. (3.5a).   

 The probability that both particles are in state |2ñ is PI(22,t)  =  2|A2(t) B2(t)|2 for system I and 

naturally vanishes for system II.  This means that double occupation probability can also be found 

by the difference PI(22,t) = PII(2,t) – PI(2,t).  We will discuss its dynamical relevance as a 

quantitative signature of the impact of Pauli-suppression in Section 3.  

 A second quantity of interest is the probability that both electrons are bound.  It is associated 

with the operator P(bb) º |1ñá1| Ä |1ñá1| + |1ñá1| Ä |2ñá2| + |2ñá2| Ä |1ñá1| + |2ñá2| Ä |2ñá2|.  The 

expectation value of its complementary operator P(f) º I Ä I – P(bb), would obviously correspond 

to the probability that at least one particle is ionized.  
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 PI(bb,t)  º  áYI(t)| P(bb) |YI(t)ñ   

 = 2|A1|2|B1|2 + 2|A2|2|B2|2 + |A1|2 |B2|2 + A1*B1 B2* A2 + B1*A1 A2* B2 + |A2|2 |B1|2 (3.6a) 

 PII(bb,t)  º  áYII(t)| P(bb) |YII(t)ñ   

 = |A1|2 |B2|2 + |A2|2 |B1|2 – A1*B1 B2* A2 – B1*A1 A2* B2   (3.6b) 

 

 The third quantity of interest is the double ionization probability, i.e., the probability that both 

particles have ionized.  This one is associated with the operator P(ff) º òdE' òdE |E'ñáE'| Ä |EñáE|.  

We obtain for our two systems  

  

 PI(ff,t)   º  áYI(t)| P(ff) |YI(t)ñ    =  (1/2) òdE' òdE |AE BE' + AE' BE|2   (3.7a) 

 PII(ff, t) º  áYII(t)| P(ff) |YII(t)ñ  =  (1/2) òd E' òdE |AE BE' – AE' BE|2  (3.7b) 

 

 The final quantity of interest is the probability P(E,t) to detect at least one electron in the 

energy interval [E–DE/2, E+DE/2] centered around energy E with a width DE.  It can be obtained 

from the expectation value P(E,t)   º  áY(t)| P(E) |Y(t)ñ, where the corresponding projector is 

given by     

P(E) = òE–DE/2E+DE/2 dE' |E'ñáE'| Ä I + I Ä òE–DE/2E+DE/2 dE' |E'ñáE'| – òE–DE/2E+DE/2 dE' |E'ñáE'| Ä òE–

DE/2E+DE/2 dE' |E'ñáE'|, where the last subtracted term avoids again the double counting.  If we 

compute the expectation value, we obtain  

 

PI(E,t)  =  òE–DE/2E+DE/2 dE'|AE'|2 +  òE–DE/2E+DE/2 dE' |BE'|2  
         –  òE–DE/2E+DE/2 dE' |AE'|2 òE–DE/2E+DE/2 dE'' |BE''|2. – |òE–DE/2E+DE/2 dE' AE'* BE' |2   (3.8a)  

 

PII(E,t)  =  òE–DE/2E+DE/2 dE'|AE'|2 +  òE–DE/2E+DE/2 dE' |BE'|2  
          –  òE–DE/2E+DE/2 dE' |AE'|2 òE–DE/2E+DE/2 dE'' |BE''|2 + |òE–DE/2E+DE/2 dE' AE'* BE' |2  

             = PI(E,t)  + 2 |òE–DE/2E+DE/2 dE' AE'* BE' |2  (3.8b)  
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 In the limit of DE ® ¥, we can use the normalizations ò–¥¥ dE |AE|2 = 1– |A1|2 – |A2|2, ò–¥¥ dE 

|BE|2 = 1– |B1|2 – |B2|2 and the orthogonality ò–¥¥ dE AE* BE = – A1* B1 – A2* B2 to show that 

each of these two expressions simplify consistently to P(E,t) ® P(f,t) = 1 – P(bb,t), where the 

probability P(bb,t) that both electrons are bound is given by Eqs. (3.6).   

 In order to examine the time-dependences of P(2,t), P(f,t), P(ff,t) and P(E,t) for both systems, 

we have to evaluate these expressions numerically, which we perform in the next sections.   

 

4. The impact of the Pauli exclusion principle on the ionization dynamics 

 In the following sections, we illustrate how the Rabi-frequency W0 and the resulting 

possibility for resonant Rabi oscillations between the two bound states |1ñ and |2ñ will affect the 

ionization dynamics differently, depending on whether the Pauli-exclusion principle is present or 

not.  We can therefore consider W0 as a dynamical control field to reveal dynamical differences 

associated with the presence or absence of Pauli-blocking.   

 In particular, we will show in Section 4.1 that for the probability to find at least one electron 

in state |2ñ the impact of the Pauli-exclusion principle is only of transient nature.  In Section 4.2, 

we examine the time-dependence of the single ionization probability and predict that the 

dynamical signature of the Pauli-suppression is the removal of the original Rabi-frequency 

dependence of the ionization rate, which characterizes the corresponding dynamics of the 

underlying single electron system.  In Sections 4.3 and 4.4, we predict that -quite unexpectedly at 

first- the Pauli-suppression increases the single ionization probability, while it decreases the 

probability for double ionization. In Section 4.5, we show that the Pauli-exclusion principle 

manifests itself in the energy distribution of the ionized electrons, but only if the energy 

accumulation range of the electronic detector is chosen to be sufficiently wide. 

 

4.1 The probability to detect at least one electron in state |2ñ 

 We have to show first that any dynamical differences between systems I and II are solely 

induced by the Rabi frequency W0.  Therefore, we consider the special case of W0 = 0 first.  In this 

limit, the ground state |1ñ is entirely decoupled from the dynamics for both systems, and we obtain 

|A(t)ñ = Exp(–i E1t) |1ñ, such that A1(t) = Exp(–i E1t) and A2(t) = AE(t) = 0.  Similarly, in the 

second system we have B1(t) = 0 for all times.  As a consequence of the different behaviors of the 
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corresponding single-electron systems, the two probabilities PI(2,t) = PII(2,t) = |B2(t)|2 remain 

identical at all time, as one could have expected.  We also obtain consistently PI(bb,t) = PII(bb,t) = 

|B2(t)|2, which is also identical to 1 – òdE |BE(t)|2, such that P(f,t) º òdE |BE(t)|2 and P(ff,t) = 0. 
 In order to better understand the effect due to the indistinguishability of both particles and the 

Pauli exclusion principle on the probability P(2,t), we first examine briefly the special but 

illustrative case g = 0, where none of the two particles can ionize.  As derived above in Eq. (3.5) 

and below, here we have simple expressions for P0(2,t), PI(2,t) and PII(2,t) in terms of B1(t) and 

B2(t).  While the single-particle system probabilities |B1(t)|2 and |B2(t)|2 oscillate with period 

2p/W0 between 0 £ |Bi(t)|2 £ 1, we find that P0(2,t) and PI(2,t) oscillate doubly as fast with half 

that period, i.e. 2p/W, but with a smaller elongation, i.e., 0 £ P0(2,t) £ 0.75 and 0 £ PI(2,t) £ 0.5.  

One could (incorrectly) expect that the up and down transitions between states |2ñ and |1ñ could 

somehow cancel out, such that P0(2,t) = PI(2,t) remains unity at all times, but this is not observed.  

The reason is that for both systems, the double occupation of level |1ñ is permitted dynamically, 

whose excitation does not contribute to P(2,t).  In fact, after a quarter of the Rabi period t1/4 º 

(2p/W0)/4, we have |B2(t)|2 = |A2(t)|2 = 1/2, leading to P0(2,t1/4) = 0.75 and PI(2,t1/4) = 0.5.  

Therefore, P(2,t) can decrease in time.  On the other hand, for the system with Pauli suppression, 

the probability PII(2,t) remains indeed unity at all times, as any double occupation is suppressed.  

 After the discussion of the two special limits g = 0 or W0 = 0, we will now examine the most 

interesting case where both g and W0 are nonzero.  In Figure 3 we compare PI(2,t) with PII(2,t) for 

W0 = 0.1 and g = 0.15. 
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Figure 3   Comparison of the probabilities PI(2,t) and PII(2,t) to find at least one particle in the 
first excited state |2ñ.  Inset:  Comparison of the probabilities PI(2,t) and PII(2,t) with the 
probability of double occupation P(22,t) on a logarithmic scale 
g = 0.15, W0 = 0.1, w=1 to E1 =–1.5 and E2 = –0.5.   

 

As expected, during early times, the probability PI(2,t) decreases more rapidly than PII(2,t).  Here 

in system I the electron (initially in state |2ñ) has two decay channels and it is coupled to both the 

continuum states |Eñ as well as to level |1ñ.  However, the same electron in system II, cannot 

perform a down-ward transition to state |1ñ, as this one is already occupied by the other electron 

and therefore this transition is blocked by the Pauli principle.  As a result, it can only couple to the 

continuum states.  We would therefore predict PI(2,t) £ PII(2,t), which is nicely confirmed by the 

structure of Eqs. (3.5).  In fact, this equation predicts that PI(2,t) £ PII(2,t) is even valid at all 

times.  However, it is quite astonishing that after an interaction time of about 20 optical cycles, 

both probabilities become graphically indistinguishable from each other, suggesting that the 

impact of the Pauli suppression on system II is only of transient nature. 

 Referring back to the Hilbert space analysis in the right of Figure 1, we remark that while an 

occupation all of the two-electron states |12ñ+, |22ñ+, and |2Eñ+ contribute to PI(2,t), in system II 

only the states |12ñ– and |2Eñ– contribute to PII(2,t).  In this view of the larger space of available 

states, the rigid inequality PI(2,t) £ PII(2,t) for all times is not easy to be understood.   

 Formally, the quantitative difference between the bound state dynamics of both systems is 

given by the term P(22,t) º 2|A2(t) B2(t)|2 in Eq. (3.5a).  This is proportional to the probability 

that the first excited state |2ñ is doubly excited.  In other words, the probability that both particles 
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are in state |2ñ for system I is a direct measure of the dynamical impact of the Pauli suppression in 

system II.  The transient nature of the difference between PI(2,t) and PII(2,t) in Figure 3 therefore 

suggests, that the double occupation probability should decay much more rapidly than PI(2,t) or 

PII(2,t).  In the inset of Figure 3 we compare PI(2,t) and PII(2,t) with P(22,t) on a logarithmic 

scale.  Our conjecture that the probability P(22,t) decays with an effective rate at least twice of 

that of either PI(2,t) or PII(2,t) is quite apparent.  This different decay pattern is also obvious from 

the different functional dependence on the corresponding amplitudes of the single-particle system.  

For example, if we assume for simplicity that for long times the largest values of A2(t) » B2(t) are 

given by Exp[–Gt/4], then according to Eqs. (3.5) we have PI(2,t)  » Exp[–Gt/2], while P(22,t) » 

Exp[–Gt], so the latter decays much faster. 

 From a physical perspective, the transient nature of the impact of the Pauli-suppression due to 

the ionization channel is also apparent.  At early times, the inner electron in the ground state |1ñ 

prohibits the outer electron in the first excited state to perform a Rabi-oscillation.  However, as 

later times, when the total bound state probability has been reduced, the ground state is only 

partially occupied and therefore permits Rabi oscillations from level |2ñ.   

 

4.2 Pauli enhancement of the single ionization probability with an W0 independent rate  

 We will next examine the impact of the Pauli principle on the time-dependence of the 

probability that at least one electron has ionized the atom.  In order to set the stage to examine 

two-electron effects, we review first how a sufficiently large Rabi frequency can halve the 

effective ionization probability for the single electron system from the first excited state |2ñ.  As 

derived in Appendix A, in the limit of W0 = 0 the ionization probability P(f,t) can be 

approximated by a simple monotonic growth P(f,t) = 1 – Exp(– G t).  Here the decay constant can 

be derived from Fermi's Golden rule as G º 2p (g/2)2.  As W0 is increased, the growth of P(f,t) is 

halted during those moments in time, when the ground state |1ñ becomes fully excited, resulting in 

an overall quasi-stepwise growth of P(f,t).  This halt occurs precisely after odd multiples of half 

of the effective Rabi period, which is given by 2p/W.  In the limit of large W0, the growth returns 

to a simple exponential form again, but this time with an effective halved rate G/2, reflecting that 
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only half of the time the decay channel (through state |2ñ) is open.  We have illustrated this 

transition of the effective decay from G to G/2 with increasing W0 in Figure 4.  

 

 
Figure 4   The ionization probability P(f,t) for the single electron system from the initial state 
|2ñ for four Rabi frequencies W0 = 0, 0.01, 0.1 and 0.4 together with the two reference lines 
(dashed)  
1 – Exp(– G t) and 1 – Exp(–G/2 t) for comparison.  (g = 0.1, w=1 to E1 =–1.5 and E2 = –0.5) 

 

 The best curve to understand the universal behavior of all data is the one for W0 = 0.01 as it 

provides the clearest separation of the two relevant time scales.  For early times less than the Rabi 

period, P(f,t) follows 1 – Exp(– G t) until a time when the accompanying downward transition to 

state |1ñ has depleted level |2ñ and therefore halts the ionization.  Once the first excited state gets 

populated again, the ionization channel opens again, but from this moment on the curve for P(f,t) 

oscillates around the second growth curve associated with 1 – Exp(– G/2 t), as the level |2ñ is 

populated effectively only half of the time.  This universal long-time oscillatory growth pattern 

with a time-average given by the half-rate decay reference curve as apparent for all data for W0 > 

0.01. 

 Let us now return to the two-electron system.  As is obvious from the arguments laid out 

above, for the special W0 = 0, the Pauli suppression does not have any dynamical impact on the 

ionization process and we have the same ionization probabilities PI(f,t) = PII(f,t), where both 

curves can be well approximated by 1 – Exp(– G t).  

 However, as W0 is increased, the outer electron of system I can perform a downward 

transition.  Each of the two bound-bound two-electron states |1ñ |1ñ and |2ñ|2ñ are coupled to the 

initial state (|1ñ |2ñ + |2ñ|1ñ)/21/2.  The excitation of each of these can momentarily halt of the 
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ionization process after a characteristic time shown in Figure 5.  At first, this observation seems to 

be reminiscent of the decay rate halving mechanism, which characterises the single-electron 

system (see Figure 4).   

 
Figure 5   The probabilities PI(f,t) (blue) and PII(f,t) (red) to ionize at least one electron for four 
Rabi frequencies W0 = 0, 0.01, 0.02, 0.03 and 0.1 together with the two reference lines (dashed) 
1 – Exp[–G t] and 1 – Exp[–G/2 t] for comparison. (g = 0.1, w=1 to E1 =–1.5 and E2 = –0.5) 

  

However, in contrast to the single-particle dynamics, after a longer time the probability PI(f,t) 

does not oscillate around the growth curve 1 – Exp(– G/2 t), but returns back to the faster 

decaying curve 1 – Exp(– G t).  The explanation for this contrasting behavior is fully consistent 

with the discussion in Section 4.1 for PI(2,t) and PII(2,t).  The return to 1 – Exp(– G t) is again 

related to the fact that the life time of the two doubly excited states |1ñ |1ñ and |2ñ|2ñ is much 

shorter than that of the state (|1ñ |2ñ + |2ñ|1ñ)/21/2.  Therefore, in the limit of large W0, the 

ionization probability PI(f,t) becomes identical to the one for vanishing W0.   

 On the other hand, the data for system II suggest the universal and non-oscillatory growth 

PII(f,t) =1 – Exp(– Gt) for any time and any W0.  This means that, for the entire range of Rabi-

frequencies, the Pauli-exclusion principle makes the dynamics completely immune to any 

reduction of the ionization decay channel due to Rabi oscillations.  Quite interestingly, this means 

that the dynamical signature of the Pauli-suppression manifests itself by the removal of the 

original Rabi-frequency dependence of the ionization rate, which was characteristic of the single 

electron dynamics. 

 The observed complete independence of PII(f,t) on any W0 can also be easily understood from 

the perspective of the available Hilbert space states for |YII(t)ñ.  In Eq. (3.4) we saw that the initial 
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state (|1ñ|2ñ – |2ñ|1ñ)/21/2 can only couple to those states for which at least one electron is in state 

|Eñ and therefore ionized.  This leads also to an effective modeling of the dynamics for system II 

as we outline in Appendix B.   

 

4.3 Pauli suppression of the double ionization probability with an W0-dependent rate  

 We have also compared the double ionization probabilities PI(ff,t) and PII(ff,t).  In contrast to 

the remarkably robust single ionization probability, we find here that PII(ff,t) does change 

significantly with increasing W0.  Both PI(ff,t) and PII(ff,t) vanish identically in the limit of W0 = 

0.  This should be obvious as in this limit the inner electron is trapped and AE(t) =0 in Eqs. (3.7).  

This also means that the Rabi frequency acts as the main enabler for the possibility of double 

ionization.   

 This is shown in Figure 6.  For small W0 (= 0.02) the early growth of the probability PII(ff,t) is 

delayed relative to PI(ff,t), as the inner electron is initially Pauli-blocked from the upward 

transition.  However, after a time of about 40 laser cycles the probability has caught up when its 

probabilty for double ionization reaches 60%.  We also note that the Pauli-exclusion principle is 

dynamically relevant only for smaller values of the Rabi-frequency and only for early times.   

 

 
Figure 6   The double ionization probabilities PI(ff,t) and PII(ff,t) for four Rabi frequencies W0 
= 0.01, 0.02, 0.03 and 0.1 together with the reference line 1 – 2 Exp[–G t/2] + Exp[–G t] for 
comparison. (g = 0.1, w=1 to E1 =–1.5 and E2 = –0.5) 
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 We note that in direct contrast to the relationship between PI(f,t) and PII(f,t), where we found 

that PI(f,t) £ PII(f,t), here we find here the reverse, PII(ff,t) £ PI(ff,t).  This means that the Pauli 

exclusion principle decreases double ionization process, while at the same time it enhances the 

probability for single ionization.  This decrease could be inferred from the possible couplings 

among the two-level states, which were sketched in the right Figure 1.  While the initial state and 

|12ñ– has only a single unique pathway to reach the doubly excited continuum states |E'Eñ– via the 

states |1Eñ–, the initial state |12ñ+ can excite this continuum |E'Eñ+ via two routes.  In addition to 

involving the states |1Eñ+ it has also an alternative route involving the intermediate states |22ñ+.  

On the other hand, level |12ñ+ is also coupled to state |11ñ+, which is energetically very far apart 

from |E'Eñ+.  So it remains difficult to find an easy and intuitive explanation for the observed 

inequality PII(ff,t) £ PI(ff,t). 

 For W0 > 0.1, the data for PI(ff,t) and PII(ff,t) become graphically indistinguishable from each 

other.  Furthermore, in the limit of large W0, the probabilities become independent of W0 and take 

the universal form PI(ff,t) = PII(ff,t) = [1 – Exp(–Gt/2)]2.  This particular expression can be easily 

interpreted as the double ionization probability is equal to the product of the probabilities that no 

electron is in state |1ñ and that no electron is in state for |2ñ.  In the limit of large W0, the two 

probabilities to find at least one electron in |1ñ (and |2ñ, respectively) are identical P(1,t) » P(2,t) » 

Exp(–Gt/2). 

 The expression PI(ff,t) = PII(ff,t) = 1 – 2 Exp(–Gt/2) + Exp(–Gt) grows only quadratically for 

early times P(ff,t) » (G2/4) t2 .  This delay reflects the sequential nature of the required two 

consecutive ionization steps.  In the opposite long-time limit, P(ff,t) grows on the time-scale given 

by the half-decay rate G/2, as one might expect due to the large Rabi frequency from the two 

decoupled single-particle systems (see the discussion in Sec. 4.2). 

 

4.4 The ionized electron spectra and the role of the detector's resolution  

 In the prior sections we found that the Pauli-suppression had only a transient impact on the 

dynamics and its effect decreased with increasing Rabi frequency.  In this section, we will 

examine if the transient effect of the Pauli-suppression can actually lead to a more permanent 

signature with regard to the energy distribution of the ionized electrons.  After the ionization is 
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completed, final spectra can sometimes provide features associated with the entire historical 

record of the evolution.   

 It is well known that for the single-particle system the usual single Lorentzian-shaped peak of 

photo-electron spectrum centered at energy E = E2 + w and width G can be split into two peaks at 

locations E = E2 + w ± W0/2.  This Autler-Townes splitting can be easily understood in terms of 

the two dressed bound states, defined as the eigen vectors of the 2 ´2 interaction Hamiltonian 

matrix in the subspace of the bound Hilbert states.  In the rotating frame, it has two dressed states 

with eigenvalues E ± = ± [W0
2+D2]1/2/2, where each is coupled to one group of continuum states. 

 In Eqs. (3.8) we have derived the formal expressions for the probability P(E,t) that at least one 

electron has ionized into the energy interval [E–DE/2, E+DE/2] with an accumulation range DE.  

The similar structure of these equations for the states |YI(t)ñ, and |YII(t)ñ reveals the inequality 

PI(E,t) £ PII(E,t) for all times.  This is interesting as it reveals that the Pauli-exclusion principle 

enhances the probability to detect at least one electron inside any energy range.  This is consistent 

with the prior finding, where we predicted that the Pauli-exclusion principle would destabilize the 

atom favoring a more rapid ionization, i.e.  PI(f,t) £ PII(f,t).  In fact, as we argued above, for large 

accumulation ranges, we have lim DE®¥ PI(E,t) =  PI(f,t) and lim DE®¥ PII(E,t) = PII(f,t). 

 If we extend the energy width DE to ¥ and assume sufficiently long times such that both 

electrons are ionized, i.e. A1 = A2 = B1 = B2 = 0, we can use the normalization condition  ò–¥¥ dE 

|AE(t®¥)|2 = ò–¥¥ dE |BE(t®¥)|2 = 1 as well as the orthogonality áA|Bñ = ò–¥¥ dE' AE(t®¥)* 

BE(t®¥) = 0.  In this case, we obtain PI(E, t®¥) = PII(E, t®¥) = 1.   

 In the opposite limit, if we assume that the energy width DE is much smaller than the energy 

variation of the amplitudes AE and BE, we can approximate the integrals òE–DE/2E+DE/2 dE' |AE'|2 = 

|AE|2 DE + O(DE3) and similarly for BE' to obtain the simpler form  

 

                      PI(E,t)  =  (|AE|2 +  |BE|2) DE – 2 |AE|2 |BE|2 DE2 + O(DE3)  (4.1a)  

                      PII(E,t)  =  (|AE|2 +  |BE|2) DE                               + O(DE3)  (4.1b)  
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This is very interesting as it predicts that for sufficiently small energy intervals DE the dynamical 

impact of the Pauli-principle vanishes completely, i.e.,  lim DE®0 PI(E,t) = lim DE®0 PII(E,t).   

 We might note that the simultaneous scaling of PI(E,t) and PII(E,t) with DE and higher powers 

in DE is not so unusual for multi-particle probabilities.  For example, for two uncorrelated random 

variables E1 and E2 that are both uniformly distributed inside [0,1], the probability to find at least 

one variable inside the interval [E–DE/2, E+DE/2] (for DE/2 < E < 1 – DE/2) is given by 2 DE – 

DE2, which also reflects different powers in DE. 

 Equations (4.1) have also a direct classical mechanical analogue in the long-time limit when 

both electrons are ionized.  Let us assume the two-particle energy probability density is described 

by a general symmetric and continuous function r(E1, E2) = r(E2, E1) and r(E) º òdE2 r(E,E2) 

denotes the corresponding marginal density.  Then the probability to detect at least one electron 

with energy inside the interval [E–DE/2, E+DE/2] is given by  

 

 P(E,DE)  =  2 òE–DE/2E+DE/2 dE' r(E')  – òE–DE/2E+DE/2 òE–DE/2E+DE/2 dE' dE'' r(E',E'')  (4.2) 

 

If we apply the Taylor expansion around DE = 0 together with the Leipzig product rule we obtain 

for small DE 

 

                              P(E,DE)  =  2 r(E) DE  –  r(E,E) DE2  +  O(DE3)  (4.3) 

 

This general expression has a remarkably similar structure as Eqs. (4.1a).  This means that for 

small energy accumulation ranges DE the probabilities P(E,DE) for any classical (possibly highly 

correlated) two-particle systems [that share the same marginal density r(E)] will differ by the 

same Pauli-term r(E,E) DE2 as predicted in Eq. (4.1).  Furthermore, the formal similarity permits 

us also to associate (|AE|2+|BE|2)/2 with the (identical!) marginal energy density r(E) for systems I 

and II and 2|AE|2|BE|2  with the diagonal element of the joint energy density for system I in the 

long-time limit. 

 In order to examine how the Pauli-principle affects the energy spectra more quantitatively, we 

have to examine the dynamics for specific parameters.  In Figure 7 we compare the photo-electron 
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spectra PI(E,t) and PII(E,t) at various stages of the evolution for the two energy accumulation 

ranges DE=0.001 and DE=0.02. 

 
Figure 7   Comparison of the time-evolution of the photo-electron energy spectra PI(E,t) (blue) 
and PII(E,t) (red) for different Rabi frequencies W0 and a small (top) and wider (bottom) energy 
accumulation range DE. All energies are in atomic units. (g = 0.1, w = 1 to E1 =–1.5 and E2 = –
0.5)  

 

 There are several observations with regard to the impact of the Pauli principle on the spectra 

as function of time, W0 and DE.  For spectra recorded by the high-resolution detector (top row in 

Fig. 7) we observe PI(E,t) » PII(E,t) and therefore no impact of the Pauli principle, which is, of 

course, consistent with Eqs. (4.1).  For the detectors with less resolution (bottom row), we find 

that at early times the spectra PI(E,t) and PII(E,t) are identical whereas at later times they begin to 

differ.  Most importantly, in direct contrast to the ionization probabilities (see Figure 5), for which 

any contrast between PI(f,t) and PII(f,t) is only of transient nature, we observe here that the 

differences between PI(E,t) and PII(E,t) prevail for long times.  This means that the Pauli-

exclusion principle leads to a permanent signature manifest in the final energy distribution of the 

ionized electrons, if the detector's energy resolution is not too fine. 

 Finally, we examine if there exits an optimum accumulation range DEopt for which the 

differences between the two spectra PI(E,t) and PII(E,t) are most significant.  Returning to the 

simplest possible system of two uniformly distributed energies given by rI(E1,E2) = 1 for 0 < E1 < 
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1 and 0 < E2 < 1, we can compare the spectra PI(E) with a distribution rI(E1,E2) = N rI(E1,E2) 

H(E1–E2), where the additional Pauli-suppression function H(E1–E2) º 1–Exp(–(E1–E2)2/(2w2)] 

lowers the likelihood of two matching energies.  Here N is the normalization factor and w models 

the energetic range on which the Pauli suppression can act.  We found that independent of this 

"hole width" w, the largest differences PII(E) – PI(E) occur for the optimum accumulation range 

DE » 0.5, which is proportional to the total energy range covered by E1 and E2. 

 
Figure 8   The difference between the final photo-electron energy spectra PII(E,t) – PI(E,t) for 
W0 = 0.03 and various energies E at time t = 100´2p/w as a function of the accumulation range 
DE.  The locations of the maxima are indicated by the open circles.  All energies are in atomic 
units. (g = 0.1, w = 1 to E1 =–1.5 and E2 = –0.5) 

 

 In order to examine the same idea for our actual dynamical system, we have graphed in Figure 

8 the difference PII(E,t) – PI(E,t) at time t = 100´2p/w for several central detector energies E as a 

function of DE.  If the central energy E is located between the two energy peaks, i.e., (E2 + w) – 

W0/2 £ E £ (E2 + w) + W0/2, then it turns out that the optimal DE to maximize the visability of the 

Pauli-principle does not depend on the energy E at all.  It occurs precisely at DEopt = W0, as we 

indicate by the vertical dashed line in the Figure.  For energies E that are smaller than this range, 

i.e., E £ (E2 + w) – W0/2 the optimum DEopt grows slightly with decreasing detector's central 

energy.  We found that here DEopt seems to decrease linearly with E and can be well described by 

the dependence DEopt = 2(E2 + w)–2E, which is even independent of W0.  This means that 

consistent with the findings above, the optimum DEopt is close to the actual total effective energy 

range of the energies, which can be approximated by the peak-to-peak spacing given by W0. 
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5. Conclusions and outlook to future work 

 In this work, we have shown that the Pauli-exclusion principle has a transient as well as 

permanent effect on the resonant multi-electron ionization dynamics.  While the model system 

was remarkably simple, this principle's dynamical implications were surprisingly complex and, in 

some cases, even unexpected.  Due to mutually competing mechanisms, it enhances the ionization 

probability, which is characterized by a rate that becomes independent of W0, while at the same 

time it also decreases the probability for double ionization (with an W0-dependent rate).  It 

manifests itself also in the final energy distribution of the ionized electrons, but only if the 

accumulation range of the detector is chosen sufficiently wide.  The fact that a detector with less 

energy resolution is more suited to detect any spectral implications of the Pauli-exclusion 

principle is possibly the most unexpected result.  This is rather counter-intuitive at first, as one 

normally would have expected a better discrimination for those detectors that have the highest 

energy resolution.  In fact, the spectral implications of the Pauli-principle are largest, if the 

detector covers the energy spacing of the two Autler-Townes peaks. 

 In order to be able to focus on the key dynamical differences due to the transient Pauli 

suppression of certain transitions, we have purposely chosen a model with minimal complexity 

with regard to the energy structure, the couplings and also the field configuration.  There were 

two benefits, it allowed for an unambiguous comparison and also analytical solutions for any 

time-dependent observables to be obtained.   

 The simplicity of our model was facilitated by the fact that we neglected any possible energy 

level shifts due to electron-electron correlations and excluded possible bound state degeneracies 

as well as off-resonant states.  Furthermore, the coupling strength to the continuum state was 

chosen independently of the final energy and we examined a cw-monochromatic laser field whose 

frequency matched exactly the bound-bound state resonance.  If the intensity of the resonant laser 

field is chosen sufficiently large, then the magnitude of the laser induced energy shifts are 

significantly larger than the energy shifts (which we neglect in our model) due to electron-

electron correlations, even if two electrons happen to share similar energy levels.  For example, in 

our case the ratio of the original bare energy spacing to the laser induced Autler-Townes splitting 

can serve as a quantitative measure of the relative importance of the laser-dressing.  For the data 

of most Figures, this ratio W0/(E2-E1) amounts to 10%, which, for typical atoms or molecules, is 

larger than the corresponding corrections to the bare energies due to spin, relativistic or electron 
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correlation effects, even when the electrons happen to share the same energy level.  We note that 

each of the two-electron energies in the effective description in Eqs. (B.3) has enough flexibility 

that they can easily incorporate these atomic level shifts. 

 As in a real atom the Pauli-exclusion principle cannot be directly turned on and off, as we did 

with our two-electron model systems, a corresponding experimental comparison would be more 

involved and requires more degrees of freedom.  For example, the system could be realized in 

excited two-electron atoms/ions like He(1s,2p).  When the 1s ground-state electron and the 2p 

excited electron couple their spins to a singlet (antiparallel spins), then the spatial wavefunction is 

symmetric and no Pauli blocking occurs.  Conversely, if a spin triplet state is formed (parallel 

spins), the spatial wave function is antisymmetric and Pauli blocking is active.  Such atoms might 

thus offer a natural realization of the problem under consideration.   

 As an example, for the possible large impact of electron-electron correlations on a realistic 

system, we can consider the He+ one-electron ion, where the ground state (1s) energy is at –2 a.u., 

while the first excited state (2p) is at –0.5 a.u.  In the absence of any correlations, the combined 

He 1s2p state would therefore have the energy –2.5 a.u., while its actual correct value (–2.12 a.u.) 

[16] is apparently higher by 15.2% due to the positive electron-electron repulsion energy.  For 

several studies of the photoionization from |1s, npñ states, with spin couplings in He and helium-

like atoms, see [17-20].  Instead of He atoms, other highly-charged helium-like ions such as 

U90+could be employed, where the electron-electron correlation is of minor relevance.  However, 

such a less correlated system is experimentally more difficult to prepare.  

 Due to its fundamental character, the dynamical impact of the Pauli suppression on correlated 

fermion systems has become an active research area.  For example, in a recent PRL [21] its effect 

on strongly interacting continuum states was observed leading to Pauli crystals.  These low-

temperature structures emerge when the particles become quantum degenerate. 

 As we have indicated in the introduction, our main motivation for this study was the 

exploration of the laser induced positron-electron pair creation process in the presence of a highly 

charged nucleus, whose (initially unoccupied) bound states can be in resonance with the laser 

field.  Here the dynamics is similar as modeled in this work, except that it is time-reversed, as 

Rabi oscillations become relevant only after the created electrons have been captured by the 

nuclear bound states.  We expect that some of the findings of this work, can be translated directly 

and find their dynamical impact also on these highly relativistic interactions.  
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APPENDIX A 

 In this appendix we discuss the approximate solution to the set of coupled equations for Eqs. 

(2.3).  There are numerous independent approaches possible [22].  We focus here on the approach 

that is based on the rotating wave approximation and the dominant approximation for the 

continuum states.   

 

            i d C1 / dt   =  E1 C1  +  W0/(2i) [Exp(iwt) –[Exp(–iwt)] C2 (A.1a) 

            i d C2 / dt   =  E2 C2  + W0/(2i) [Exp(iwt) –[Exp(–iwt)] C1   

                                             + g0/(2i) [Exp(iwt) –[Exp(–iwt)] òdE CE   (A.1b) 

            i d CE / dt   =  E CE  + g/(2i) [Exp(iwt) –[Exp(–iwt)]  C2 (A.1c) 

 

If we include the new amplitudes C1(t) º Exp(–i E1 t) D1(t), C2(t) º Exp(–i E2 t) D2(t),  

CE(t) º Exp(–i E t) DE(t), this set of equations becomes  

 

   i d D1 / dt   =   W0/(2i) [Exp(iwt) –[Exp(–iwt)] Exp(i E1 t) Exp(–i E2 t) D2(t) (A.2a) 

   i d D2 / dt   =   W0/(2i) [Exp(iwt) –[Exp(–iwt)] Exp(i E2 t) Exp(-i E1 t) D1(t) (A.2b) 

                         + g/(2i) [Exp(iwt) –[Exp(–iwt)] òdE  Exp(i E2 t) Exp(–i E t) DE(t)  

   i d DE / dt   =  g/(2i) [Exp(iwt) –[Exp(–iwt)] Exp(i E t) Exp(–i E2 t) D2(t) (A.2c) 

 

If we assume that w – (E –E2) << w + (E –E2) and the detuning D º w – (E2 –E1) is small, we can 

neglect the rapidly oscillating terms (rotating wave approximation) and obtain:   

 

 i d D1 / dt   =   W0/(2i) Exp(i D t) D2(t) (A.3a) 

 i d D2 / dt   =   – W0/(2i) Exp(–i D t) D1(t) + g/(2i) òdE  Exp(iwt) Exp(–i [E–E2] t) DE(t) (A.3b) 

 i d DE / dt   =  –g/(2i) Exp(-iwt)] Exp(i [E–E2]t) D2(t) (A.3c) 

 

If the introduce the new amplitudes D1(t) º Exp(i D/2 t) c1(t), D2(t) º Exp(–i D/2 t) c2(t) and 

DE(t) º Exp(–iwt) Exp(i [E–E2] t) Exp(–i D/2 t) c(E,t), we obtain the final time-independent 

equations in the rotating wave approximation 
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                          i d c1 / dt   =   D/2 c1  + W0/(2i) c2 (A.4a) 

                          i d c2 / dt   =  –D/2 c2 – W0/(2i) c1  + g/(2i) òdE cE (A.4b) 

                          i d cE / dt  =  (E – E2 – w – D/2) cE  –  g/(2i) c2 (A.4c) 

 

At this stage we apply the usual adiabatic approximation to the continuum amplitudes, i.e. we 

assume i d cE / dt  = 0.  This means we can solve for cE =  c2 g/(2i) / (E – E2 – w – D/2) and  

insert this expression back into Eq. (4.b).  We obtain 

 

                          i d c1 / dt   =   D/2 c1  + W0/(2i) c2 (A.5a) 

                          i d c2 / dt  =   –D/2 c2 – W0/(2i) c1  – c2 i G/2 (A.5b) 

 

where the simplified the integral –c2(g2/4) òdE 1/(E – E2 – w – D/2)  is equal to  – c2 i G/2, where 

we used òdE (E – E2 – w – D/2)–1 = i p.  This means the (Fermi Golden rule) decay constant can be 

derived as G º 2p (g/2)2.   

 The time-evolution operator Exp[-i H t] such that {c1(t), c2(t)}  =  Exp[-i H t] {c1(0), c2(0)} 

can be easily obtained analytically.  Using abbreviation for the complex parameter Q º [ (G–

2iD)2– 4 W0
2]1/2, we obtain for the four matrix elements  

 

U1,1(t) = Exp[–(G+Q) t/4] /(2Q) [ G Exp(Q t/2) – G + 2 i D + Q + Exp(Q t/2) (Q – 2iD)] (A.6a) 

U1,2(t) = – 2 W Exp[–G t/4] Sinh(Q t/4) / Q  (A.6b) 

U2,1(t) = – 2 W Exp[–G t/4] Sinh(Q t/4) / Q  (A.6c) 

U2,2(t) = Exp[–(G+Q) t/4] /(2Q) [ – G Exp(Q t/2) + G – 2 i D + Q + Exp(Q t/2) (Q + 2iD)] (A.6d) 

 

 From now on we will focus our attention to the limiting case of zero detuning, such that the 

four matrix elements simplify for W0 > G/2 = p g2/4 to  

 

                 U1,1(t)  =  Exp(–t G/4) [ Cos(W t/2) + G Sin(W t/2)/(2W) ] (A.7a) 
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                 U1,2(t)  =  i Exp(–t G/4) W0 Sin(W t/2) /W  (A7.b) 

                 U2,1(t)  =  i Exp(–t G/4) W0 Sin(W t/2) /W   (A.7c) 

                 U2,2(t)  =  Exp(–t G/4) [ Cos(W t/2) – G Sin(W t/2)/(2W) ]   (A.7d) 

 

where we have introduced the effective Rabi frequency W º (W0
2 – (G/2)2)1/2.  For the other 

overdamped limit W0 < G/2, the expressions can be rewritten as  

 

                 U1,1(t)  =  Exp(–t G/4) [ Cosh(k t/2) +  G Sinh(k t/2)/(2k) ] (A.8a) 

                 U1,2(t)  =  i Exp(–t G/4) W0 Sinh(k t/2) /k  (A.8b) 

                 U2,1(t)  =  i Exp(–t G/4) W0 Sinh(k t/2) /k   (A.8c) 

                 U2,2(t)  =  Exp(–t G/4) [ Cosh(k t/2) – G Sinh(k t/2)/(2k) ]   (A.8d) 

 

where k º ((G/2)2 – W0
2)1/2.  In the limit W0 << G/2, these expressions become 

 

                 U1,1(t)  =  Exp(–t G/4) [ Cosh(k t/2) +  G Sinh(k t/2)/(2k) ] (A.9a) 

                 U1,2(t)  =  i Exp(–t G/4) W0 Sinh(k t/2) /k  (A.9b) 

                 U2,1(t)  =  i Exp(–t G/4) W0 Sinh(k t/2) /k   (A.9c) 

                 U2,2(t)  =  Exp(–t G/4) [ Cosh(k t/2) – G Sinh(k t/2)/(2k) ]   (A.9d) 

 

 This means, for the A system, where {c1(0), c2(0)} = {1,0}, we have A1(t) = U1,1(t), A2(t) = 

U2,1(t) and SE |AE(t)|2 = 1 – |U1,1(t)|2 – |U2,1(t)|2.  Similarly, for the B system, where {c1(0), c2(0)} 

= {0,1}, we have B1(t) = U1,1(t), B2(t) = U2,1(t) and  SE |BE(t)|2 = 1 – |U1,2(t)|2 – |U2,2(t)|2. 
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APPENDIX B 

 The focus of the discussion in the main text is to establish the dynamical impact of the Pauli-

exclusion principle.  To be able to compare two systems I and II requires a theoretical framework 

that was based on the underlying single-electron systems given by |A(t)ñ and |B(t)ñ. 

 Due to the restricted two-particle Hilbert space for system II, it is also possible to derive a 

more efficient but formally identical description for this system, which we summarize here.  It has 

also the advantage, that it can provide us with a more intuitive understanding of its predicted 

dynamical features.  This minimal set is given by the two-electron wave function 

 

     |Y(t)ñ =  C12(t) |1,2ñ + òdE C1E(t) |1,Eñ  +  òdE C2E(t) |2,Eñ  + òdE' òdE CEE'(t) |E,E'ñ   (B.1) 

 

where the notation such as |1,2ñ represents the antisymmetrized states.  These are coupled by the 

effective Hamiltonian H0 + Hint with 

 

 H0   =  (E1 + E2) |1,2ñá1,2|  + òdE (E1 + E) |1,Eñá1,E| + òdE (E2 + E) |2,Eñá2,E| + 

                + òdE' òdE (E + E') |E,E'ñáE,E'|  (B.2a) 

  Hint   =  g(t) òdE |1,Eñá1,2| + W(t) òdE |2,Eñá1,E| + g(t) òdE' òdE  |E',Eñá2,E|  +  h.c.   (B.2b) 

 

 In order to find the equation of motion of the four types of expansion coefficients C12(t), 

C1E(t), C2E(t) and CEE'(t), we insert the expansion for |Y(t)ñ into the Schrödinger equation, given 

by  i d/dt |Yñ = (H0 + Hint) |Yñ.  If we use the orthogonality among all states, we obtain 

 

            i d C12 /dt     =  (E1+E2) C12  +  g(t) òdE C1E  (B.3a) 

            i d C1E /dt    =  (E1+E) C1E  +  g(t) C12  + W(t) C2E (B.3b) 

            i d C2E /dt    =  (E2+E) C2E  +  W(t) C1E + g(t) òdE' CE'E (B.3c) 

            i d CE'E /dt   =  (E'+E) CE'E +  g(t) C2E (B.3d) 

 

Similarly to the discussion in Appendix A, we can again eliminate approximately the faster time 

scales and obtain in the rotating frame a new set of equations, which no longer have an explicit 
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time-dependence.  If we introduce the new sets of amplitudes C12  º c12, C1E  º Exp(– iwt) c1E, 

C2E  º Exp(–i2wt) c2E and CE'E  º Exp(– i3wt) cE'E after the rotating wave approximation we 

obtain  

 

             i d c12/dt    =  (E1+E2) c12  +  g/(2i) òdE c2E  (B.4a) 

                  i d c1E /dt   =  (E1+E–w) c1E  +  W0/(2i) c2E  – g/(2i) c12   (B.4b) 

                  i d c2E /dt   =  (E2+E –2w) c2E –  W0/(2i) c1E  + g/(2i) òdE'  cE'E  (B.4c) 

                  i d cE'E /dt   =  (E+E' –3w) cE'E  –  g/(2i) c2E   (B.4d) 

 

This set of equations suggests the following two-electron picture based on a sequential coupling 

of a four-step ladder-like system comprised of one discrete and three sets of continuum states.  

The initial ground state |1,2ñ can decay into the first continuum |1,Eñ with coupling strength g.  

The first continuum |1,Eñ is then Rabi-coupled to the second continuum |2,Eñ, which is then can 

decay again into the third continuum |E,E'ñ.  The absence of W0 in Eq. (B.4a) also directly 

supports the finding discussed in the main text that the probability |c12|2 decays basically 

monotonic and independently of W0.   

 In fact, the easy structure of these equations permits also an access to an analytical solution 

under some additional simplifying approximations.  We can adiabatically eliminate the sets of 

states |1,2ñ as well as |E,E'ñ.  As a first step, if we put the time derivative in Eq. (B4.b) equal to 

zero, we can solve for c1E =  –  W0/(2i) c2E  (E1+E–w)–1 + g/(2i) (E1+E–w)–1 c12.  As an additional 

approximation, we neglect the W0-dependent term, such that we obtain c1E =  g/(2i) (E1+E–w)–1 

c12.   

If we insert this expression into Eq. (B.4a), we obtain 

 

                            i d c12/dt    =  (E1+E2) c12  – i G/2 c12    (B.5) 

 

where, similarly to Appendix A, we have once again assumed òdE (E1+E–w)–1 = i 2p, such that G 

º 2p (g/2)2.  The resulting equation (B.5) can be solved leading to c12(t) = Exp[–i (E1+E2)t – G/2 

t ]. 
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 Second, we put also the time derivative in Eq. (B.4d) equal to zero, we can solve for cE'E(t) =  

(E+E' –3w)–1 g/(2i) c2E.  If we insert the solution c12(t) into Eq. (B.4b) and cE'E(t) into Eq. (B.4c), 

we obtain  

 

 i d/dt c1E    =  (E1+E–w) c1E   +  W0/(2i) c2E  – g/(2i) Exp[–i (E1+E2)t – G t /2]   (B.6a) 

 i d/dt c2E    =   (E2+E –2w) c2E – W0/(2i) c1E  – i G/2 c2E   (B.6b) 

 

 The structure of these two approximate equations suggests an illustrative picture of an 

effective discrete two-level system for the continuum amplitudes for each energy E, where the 

lower level is excited by an exponentially decaying source term and the upper level is 

exponentially damped.  Note that there are no longer any energy integrals required.  Due to the 

simple structure of these two equations, they can be solved analytically.  However, the structure 

of these solutions is rather complicated and not very informative.  Instead, we present in Figure 9 

the validity of the model Eqs. (B.6) with the exact solutions for òdE |c1E(t)|2 and òdE |c2E(t)|2. 

 

Figure 9   Comparison of the predictions for òdE |c1E(t)|2 and òdE |c2E(t)|2 of the approximate 
model Eqs. (B.6) and the exact solutions based on Eqs. (B.3).  W0 = 0.02, g = 0.1, G = 0.0157. 

 

We see that the two sets of ionization probabilities are graphically indistinguishable, justifying the 

assumptions leading to Eqs. (B.6).  We first see the built up of òdE |c1E(t)|2 followed with a 

delayed growth of òdE |c2E(t)|2.  As the laser frequency w (=E2 – E1) was chosen such that the 

energy difference of the upper continuum and the lower continuum state, (E2+E –2w) – (E1+E–
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w), vanishes, the Rabi-period 2p/W0 is identical for the resonant level pairs.  But we do not see the 

periodic exchange of populations, as G was comparable to W0. 
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