Dynamical effects of Pauli blocking on resonant multi-electron ionization
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We examine the dynamical role of the Pauli exclusion principle on resonant multi-electron
ionization. Using a simple essential state model that permits us approximate but analytical
solutions, we show that this principle can lead to several unexpected consequences. It has only a
transient effect on the resonant multi-electron dynamics and its dynamical impact decreases with
increasing Rabi frequency. Due to mutually competing mechanisms, this principle can enhance
the ionization probability, while at the same time it also decreases the probability for double
ionization. Furthermore, it can also manifest itself in the energy distribution of the ionized
electrons, but only if the energy accumulation range of the electronic detector is chosen to be

sufficiently wide.
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1. Introduction

In 1955, S. Autler and C. Townes examined the effect of a resonant laser field on the dressed
energy structure of a multi-level quantum system [1]. It was found that the effective energies of
the two resonant states were split into doublets, which were separated by the Rabi frequency
associated with the field. This light-induced splitting changed the usual singly peaked fluorescent
spectrum of these atoms and molecules into the famous Mollow triplet [2], where the usual
central peak is accompanied by two side bands.

In 1978, P.L. Knight [3] showed that this Autler-Townes effect can also lead to a splitting of
the kinetic energy of electrons in resonant two-photon photoionization, where the ground state
population can decay into the continuum via a resonant intermediate bound state. In 1993, it was
suggested by numerical simulations that this coherence effect can also be communicated from one
electron to another electron due to electron-electron correlations [4,5]. The coherence associated
with resonant oscillations of a deeply bound inner electron can be transferred to the photoelectron
spectrum of the loosely bound outer electron. This prediction was also confirmed experimentally
in 1995 by L. Di Mauro's group [6] in the two-photon ionization of calcium. The resonant
photoionization can also occur in systems of two spatially well-separated atoms, where a stepwise
behavior of the ionization probability and a Mollow-type photoelectron spectrum is obtained, as
well, when the field intensity is large enough [7,8].

Just recently, it was predicted that this Autler-Townes effect can even be transferred between
the created electrons and positrons in the laser field-induced vacuum decay process in the
presence of a highly charged nucleus [9]. Here the created electron can be captured subsequently
by the binding field of the nucleus. If the nucleus's transition frequency between two of its bare
levels matches the laser frequency, the captured electron can perform Rabi oscillations between
these two levels. The captured electron's dynamics has an immediate impact on the kinetic
energy spectrum of the created positrons. It turns out that its positronic energy distribution can
reveal split peaks whose energy separation is given precisely by the Rabi frequency of the
captured electron.

In all of these phenomena, the electronic Rabi oscillations affected a second particle, such as
the electron or the positron, but the presence of this second particle did not impact the Rabi
oscillations of the first electron. While these effects have been extensively studied during the past
decades, we will examine for the first time a multi-particle mechanism, where the presence of the

second particle directly affects the possibility for Rabi oscillations.
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The role of Autler-Townes splitting in attosecond ionization was very recently examined
theoretically and also experimentally for autoionizing states in argon [10]. Most recent state-of-
the-art calculations of the Autler-Townes effect for specific atoms or molecules [11-15] have
naturally incorporated the Pauli exclusion principle with regard to the bare energy level structure,
but to the best of our knowledge, the quantitative magnitude of its dynamical relevance has not
been investigated yet. There are even rather obvious questions that have not been addressed. For
example, it is not known, if this principle increases or decreases the overall stability towards
ionization or it affects the single and double ionization processes differently. Are there only
transient manifestations of this principle, and if so, on which time scales do they occur?

This work is organized as follows. In Section 2, we briefly review the essential state
formalism usually being employed to examine resonant ionization of a single-electron atom or
ion. In Section 3, we introduce the analytical framework that will permit us to distinguish
between the time-dependence of various observables for two-electron systems with and without
the Pauli exclusion principle. In Section 4, we present numerical examples that illustrate how this
principle can destabilize the atom by increasing its ionization probability while at the same time it
decreases the probability for double ionization. We also point out the unexpected role the
detector's energy resolution plays for the ionized electrons. We complete with an outlook on open

questions, which might motivate further studies.

2. The underlying single-electron model

In order to be able to capture the basic dynamical features of the Pauli-suppression in resonant
two-electron ionization, we purposely examine here the simplest possible model and therefore
include only the minimally necessary states and their couplings. As we neglect the impact of the

electron-electron correlations on the bare energy level structure, we can assume that one electron

is initially in the ground level |1) with energy E1 and the other electron is in the first excited state
level |2) energy E2. In Figure 1 we have sketched the relevant bare energy levels of this restricted

Hilbert space for the corresponding two decoupled single-electron systems together with the
relevant one-photon couplings. In the right sketch we display the corresponding two two-electron
systems with and without the Pauli exclusion principle. In the absence of any Pauli-exclusion

principle, the two-electron dynamics separates into two decoupled single-electron systems.
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Figure 1 Sketch of the relevant bare energy levels of the two decoupled one electron systems
(left) and the two-electron system with and without the Pauli-exclusion principle (right) together
with the relevant single-photon couplings. The subscripts + corresponds to the type of
symmetrization used. The relevant energy levels are at Ej=—1.5, E2=-0.5, o = 1.

Before we compare the two-particle dynamics with and without the Pauli principle, let us
briefly review in this Section the dynamical features of the underlying single-electron system. It

is characterized by the state

(1)) = Ci(t) [1) + Ca(t) |2) + JdE CE(t) [E) 2.1)

which is normalized according to (d(t)|¢(t)) = [C1(t)* + [C2(t)|* + [dE |CE(t)]* = 1. We assume that
the coupling matrix element between the single-particle ground state |1) and the first excited state
|2) is given by (1|H|2) = Q(t). Here Q(t) = Qo Sin(wt), where Qo denotes the product of the
amplitude of the external oscillatory field with frequency ® and the dipole moment between both
discrete states. The corresponding coupling between the first excited state |2) and the continuum
state |E) is given by (2|H|E) = y(t), where y(t) = y Sin(wt). For simplicity, we assume that the
coupling strength y to any continuum state does not depend on the energy E of the state. The

resulting Hamiltonian Ho + Hint takes therefore the form

Ho= Ei [1X1]| +E2 [2)2| + JdE E |EXE] (2.2a)
Hine = Q(t) [ [1)2] + [2X1] 1+ (1) [dE [ [EX2] + [2)(E| ] (2.2b)
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In order to find the equation of motion of the expansion coefficients Ci(t), C2(t) and Cg(t), we
insert the expansion for |¢(t)) into the Schrédinger equation, given (in atomic units) by

1d |¢) /dt= (Ho + Hint) |$p). If we use the orthogonality among all states, we obtain

idCi/dt = E1 C1 + Q(t) C2 (2.3a)
idCy/dt = E2Ca + Q(t) C1 + y(t) [dE Ck (2.3b)
idCg/dt = ECE + y(t) C2 (2.3¢)

In order to be able to study the exact predictions from Egs. (2.3) for arbitrary parameters, one

can restrict the upper and lowest energy of the continuum states, assume that they are
equidistantly separated by OE and therefore represent the continuum by NE states. The resulting
(NE+2) equations can then be solved numerically. For sufficiently large Ng and small 3E, one can
easily obtain fully converged solutions Ci(t), C2(t) and Cg(t), which are independent of the choice
for the computational parameters Ng and OE for all interaction times.

The ionization dynamics is characterized by the relationship of y, Qo, ® to E1 and E2. Under

the rotating wave approximation, solutions for the time-dependence of the amplitudes can be

obtained approximately. We briefly review this standard approach in Appendix A. For the
special case of zero detuning, i.e. E2— E1 = o, the approximate solutions for the two bound states
are {ci(t), c2(t)} = U(t) {c1(0), c2(0)}, where the four elements of the 2x2 propagator matrix U(t)

are given by

ULi(t) = Exp(—t T/4) [ Cos(Q t/2) + T Sin(Q 1/2)/(2Q) ] (2.4a)
Uia(t) = i Exp(~t I/4) Qo Sin(Q t/2)/Q) (2.4b)
U2,1(t) = i Exp(—t T/4) Qo Sin(Q 1/2)/Q (2.4¢)
Uaa(t) = Exp(—t T/4) [ Cos(Q /2) — T Sin(Q t/2)/(2) | (2.4d)
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Here we have introduced the effective Rabi frequency Q2 = Q0% — (F/2)2)1/ 2, where in our

notation we have assumed Qo > I'/2. The Fermi-Golden rule (FGR) decay rate is given by I' =27

(y/2)*.
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Figure 2 Comparison of the exact probabilities |C1(t)|, |C2(t)|* and [dE |CE(t)|> obtained
numerically from Egs. (2.3) with the approximate but analytical predictions according to
[UL1(t)%, [U2.1(t) and 1- |U1,1(t)]>— [U2.2(t)]* and given by Egs. (2.4). In the inset we show the
fast oscillations that the analytical model cannot capture.
[c1(0)=1,y=0.15,9Q0=0.1, ®=1, E1 =—1.5 and E> =—0.5. The continuum states were
discretized with 200 levels for energies 0.2 < E < 0.8]. Here the FGR rate amounts to I =
0.0353 and (2= 0.0984.

In order to test the quality of these approximate expressions for the bound state amplitudes for
our parameters studied below, we compare them in Figure 2 with the exact time evolution. We
find basically no major differences, suggesting that we can rely on the analytical expressions of
Eq. (2.4) for a qualitative analysis in the following Sections. In order to see some discrepancies,
in the inset we enlarge the data between the 50th and 60th laser cycle. It reveals that the
analytical theory cannot reproduce the superimposed very fast oscillations on the time scale

2x2m/w as well as the precise phase of the true signal, as one can expect from the rotating wave

approximation.
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3. The two-electron models with and without the Pauli-exclusion principle

As we want to focus solely on the dynamical impact of the Pauli-suppression, we neglect here
the effect of the electron-electron correlations on any possible shifts to the bare energies. This
permits us to exploit the single-particle Hilbert space structure (shown in Figure 1 above) to
construct the corresponding space for the two-electron system.

In order to evaluate quantitatively the dynamical impact of the Pauli exclusion principle, we
have to compare the predictions with a system where this mechanism is absent. This system for

comparison is characterized by the symmetrized two-electron state

[P1(t)) = [JA(t) [B(t)) + [B(1)) |A(t)) /N2 (3.1)

where [A()) = A1(t) |1) + Ax(t) |2) + [dE Ag(t) |E) and [B(t)) = B1(t) [1) + Ba(t) [2) + [dE BE(t) [E)
are the corresponding single-electron states satisfying the initial conditions |A(t=0)) =|1) and
|IB(t=0)) = |2). In order to model the indistinguishability of the two electrons, we have
symmetrized the state [V1(t)) in Eq. (3.1). While for a general symmetrization the normalization
factor depends on the relationship among the single particle states, i.e., N = (¥1|'¥1) =2
[1+](A|B>|2], here the factor N = 2 reflects the mutual orthogonality of |A) and [B). This
orthogonality is maintained at all times as two states are solutions to the same Hamiltonian of Eq.
(2.2) and differ only by their initial conditions. This means we have (A(t)|A(t)) = (B(t)|B(t)) =
IA1? +|A2P + JdE |AEP = [B1* + |B2)* + JdE |BE]* = 1 as well as (A(t)|B(t)) = A1 'B1 + A2"Ba + |dE
AE B =0.

The six types of time dependent coefficients A1(t), A2(t), Ag(t), Bi(t), B2(t) and Bg(t) are
obtained as numerical solutions from Eqgs. (2.3) with the initial condition A1(0) =1, A2(0) =

Ag(0)=0 and B1(0) = 0, B2(0) = 1 and Bg(0) = 0. In terms of these amplitudes, the state becomes

IW1(t)y = [2 A1 B1|1)|1) + (A1 B2+ B1 A2) (J1) [2) + [2)]1)) + (A1 JdE Be + Bi JdE Ag) (|1)|E)+
[E)L))

+2 A2 B2 [2)|2) + (A2 |dE Be + B2 [dE AE) (12)[E)*HE)[2))

+ [dE [dE' (Ap BE + B AE) |E') [E)]/212 (3.2)
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In order to incorporate the Pauli-exclusion principle into the dynamics, we have anti-

symmetrized the two-particle state leading to

[Pu(t) = [JA®)) [BY)) - B(O)) |A®) }/2"2 (3.3)

If we again express this state in terms of the same single-particle amplitudes, we obtain

Wn(t)y = [(A1B2—Bi1A2) (1) [2)—[2)|1)) + (A1 JdE Bg—Bi JdE Ag ) (]1) [E) — [E)|1))

+ (A2 JdE BE— B2 J[dE Ag ) (12) |[E) — [E) [2)) + [dE' [dE (AE Be— Be Ag) [E) [E) ]/2"2(3.4)

As expected, in contrast to the decoupled system given by |\P1(t)), here the doubly occupied states
1) |1), 12) |2) and |E) |E) are no longer part of the dynamics as shown in Figure 1. In Appendix B
we show that based on this reduced set of remaining two-particle states (|12)-, |2E)-, |1E)- and
|[EE")-), it is possible to derive a description in terms of a new effective two-level system.

The sets of the six types of time-dependent coefficients Ai(t), A2(t), Ag(t), Bi(t), B2(t) and
BEg(t) are the common building blocks for both |'W1(t)) and|'P1i(t)). This means we have fully
analytical solutions for both states if we use the four general propagator solutions Egs. (A.6) from
Appendix A or the easier zero-detuning equations (2.4). In particular, we have A1(t) = U,1(t),
Aa(t) = Uz,1(t), Bi(t) = U1 2(t) and Ba(t) = Uz 2(t).

It turns out that the dynamical impact of the Pauli exclusion principle manifests itself rather
differently depending on which observable is considered. In order to compare the two dynamics
described by |'Vi(t)) and |W1i(t)), we will compute the time evolution of four expectation values of
several multi-particle operators P(t) = (‘¥'(t)| P |'¥'(t)) in the Schrodinger picture. The
decomposition of the unit operator I &® I in terms of the Hilbert space states is naturally given by
nine types of direct product projections I ® I={|1)(1| +[2)(2| + [dE [EXE[} ® { |IX1|+[2)(2| +
[dE |E)E|)}. The corresponding expectation values of these nine types of product operators
represent the sum of mutually excluding probabilities to find the particles in various states.
Below we briefly introduce the expressions that permit us to calculate the time-dependence of the

probabilities that at least one electron in state |2) [denoted by P(2,t)], that both electrons are bound
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P(bb,t), that at least one electron is ionized P(f,t) and finally that both electrons are ionized P(ff.t).
We also examine the probability to detect at least one ionized electrons inside the interval [E—
AE/2, E+AE/2], denoted by P(E,t).

For example, the probability that at least one electron is in the first excited state |2)
corresponds to the operator containing the three projections P(2) = 2)(2| ® I + 1 & [2)(2| — |2)2|®

|2)(2|, where the last subtracted term is required to avoid double counting. We obtain for our two

systems
PI(2,t) = (Yi(t)| PQQ) [¥1(t)) = |Aa(t)]? + [Ba(t)]* — 2|A2(t) Ba(t)]? (3.5a)
Pi(2,t) = (Pu(t) PQ) [Pu(t)y = |Ax(t)]* + [Ba(t)]? (3.5b)

As a side issue, we should briefly use the example of this expectation value to illustrate the
impact of the indistinguishability of both particles. Had we chosen a state [\Vo(t)) = |A(t)) [B(t)),
where both particles are distinguishable (and also not constrained to (A|B) = 0), then the resulting
expectation value (Wo(t)| P(2) [Po(t)) would become Po(2,t) = |A2)> + |B2]* — [A2 B2]>. So we have
the interesting result that 0 < Py(2,t) < Po(2,t) < Pri(2,t) < 1. This means that for (A|B) = 0, the
symmetrization (anti-symmetrization) of a system usually decreases (increases) the probability to
find at least one particle in certain state compared to that for a system of distinguishable particles.
We should also remark that due to the assumed orthogonality (A[B) = 0, the probabilities |Aa(t)|>
and |B2(t)|2 are highly correlated with each other, such that |A2(t)|2 + |B2(‘[)|2 <1 at all times. Due
to the different initial conditions of the underlying two single-particle systems, Pi(2,t) remains
positive at all times, despite the minus sign in Eq. (3.5a).

The probability that both particles are in state |2) is P1(22,t) = 2|A2(t) Bz(t)|2 for system I and
naturally vanishes for system II. This means that double occupation probability can also be found
by the difference P1(22,t) = P1i(2,t) — P1(2,t). We will discuss its dynamical relevance as a
quantitative signature of the impact of Pauli-suppression in Section 3.

A second quantity of interest is the probability that both electrons are bound. It is associated
with the operator P(bb) = [1)(1] ® [1){1| + [1){1] ® |2)2| + [2)(2| & [1){1| + |2)(2| ® |2)(2|. The
expectation value of its complementary operator P(f) = I ® I — P(bb), would obviously correspond

to the probability that at least one particle is ionized.
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Pi(bb,t) = (Wi(t)| P(bb) |¥(t))
=2|A1]|B1]> + 2|A2)|Ba> + |A1]* |B2]> + A1"B1 B2" A2 + Bi"A1 A" Ba+ |A2f [BI?  (3.6a)
Pr(bb,t) = (Yu(t)| P(bb) [Yu(t))

= |A1]? |B2[>+ |A2]? |B1]>— A1"B1 B2 A2 — Bi"A1 A2 B2 (3.6b)

The third quantity of interest is the double ionization probability, i.e., the probability that both
particles have ionized. This one is associated with the operator P(ff) = [dE' [dE [E')(E'| ® |[EXE]|.

We obtain for our two systems

Pi(ff) = (Wi(t)| P(F) [Pi(t)) = (1/2) [dE' JdE |AE B + Ag Bi? (3.7a)
Pu(ff, t) = (Pu(t)| P [Pu(t)) = (1/2) [d E' JdE |AE Be — Ap Bg] (3.7b)

The final quantity of interest is the probability P(E,t) to detect at least one electron in the
energy interval [E-AE/2, E+AE/2] centered around energy E with a width AE. It can be obtained
from the expectation value P(E,t) = (‘¥(t)| P(E) |\Y(t)), where the corresponding projector is
given by
P(E) = [p-apn" "2 dE' [E'WE| @ T+ 1@ Jp-apn™ "2 dE' [EE - [g-ap2" 72 dE' E'NE| ® [

E+AE/2 dE'

AE/2 |[E"E'|, where the last subtracted term avoids again the double counting. If we

compute the expectation value, we obtain

PI(E,t) _ jE—AE/ZEJrAE/z dEV|AE'|2 + jE—AE/2E+AE/2 dE' |BE'|2

— Jeapn® P2 4B | AR [E-apnt A2 dE" Berf - “E—AE/ZEJrAE/ 2dE' AE” Bp |2 (3.8a)

Pu(E,t) = [papn®™E? dE'IAE'I2 + Jpapnt A2 gE! |BE'|2

. IE—AE/2E+AE/2 dE' |AE'|2 jE—AE/ZEJrAE/z dg" |BE"|2 + |.[E—AE/2E+AE/2 dE' AE'* Be |2

=PiE.t) +2 |le-apn"F2 dE' Ap” Be |2 (3.8b)
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In the limit of AE — oo, we can use the normalizations [ ™ dE |Ag|> = 1- |A1]> — |A2, | -«™ dE
IBE|> = 1- [B1[?> — |B2f? and the orthogonality |« dE AE" BE=— A1 B1 —A2" Ba to show that
each of these two expressions simplify consistently to P(E,t) — P(f,t) = 1 — P(bb,t), where the
probability P(bb,t) that both electrons are bound is given by Egs. (3.6).

In order to examine the time-dependences of P(2,t), P(f,t), P(ff,t) and P(E,t) for both systems,

we have to evaluate these expressions numerically, which we perform in the next sections.

4. The impact of the Pauli exclusion principle on the ionization dynamics
In the following sections, we illustrate how the Rabi-frequency o and the resulting

possibility for resonant Rabi oscillations between the two bound states |1) and |2) will affect the
ionization dynamics differently, depending on whether the Pauli-exclusion principle is present or
not. We can therefore consider Qo as a dynamical control field to reveal dynamical differences
associated with the presence or absence of Pauli-blocking.

In particular, we will show in Section 4.1 that for the probability to find at least one electron
in state |2) the impact of the Pauli-exclusion principle is only of transient nature. In Section 4.2,
we examine the time-dependence of the single ionization probability and predict that the
dynamical signature of the Pauli-suppression is the removal of the original Rabi-frequency
dependence of the ionization rate, which characterizes the corresponding dynamics of the
underlying single electron system. In Sections 4.3 and 4.4, we predict that -quite unexpectedly at
first- the Pauli-suppression increases the single ionization probability, while it decreases the
probability for double ionization. In Section 4.5, we show that the Pauli-exclusion principle
manifests itself in the energy distribution of the ionized electrons, but only if the energy

accumulation range of the electronic detector is chosen to be sufficiently wide.

4.1 The probability to detect at least one electron in state |2)

We have to show first that any dynamical differences between systems I and II are solely
induced by the Rabi frequency Q0. Therefore, we consider the special case of Qo = 0 first. In this
limit, the ground state |1) is entirely decoupled from the dynamics for both systems, and we obtain
|A(t)) = Exp(—i Eit) |1), such that Ai(t) = Exp(—i Eit) and A2(t) = Ag(t) = 0. Similarly, in the

second system we have Bi(t) = 0 for all times. As a consequence of the different behaviors of the
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corresponding single-electron systems, the two probabilities Pi(2,t) = Pii(2,t) = |Bz(t)|2 remain
identical at all time, as one could have expected. We also obtain consistently Pi(bb,t) = Pri(bb,t) =
IB2(t)[?, which is also identical to 1 — JdE [Bg(t)|?, such that P(f,t) = [dE |B(t)|> and P(ff,t) = 0.

In order to better understand the effect due to the indistinguishability of both particles and the
Pauli exclusion principle on the probability P(2,t), we first examine briefly the special but

illustrative case y = 0, where none of the two particles can ionize. As derived above in Eq. (3.5)
and below, here we have simple expressions for Po(2,t), P1(2,t) and Pri(2,t) in terms of Bi(t) and
Ba(t). While the single-particle system probabilities |B1(t)|2 and ]Bz(t)|2 oscillate with period
27t/Q0 between 0 < \Bi(‘[)\2 <1, we find that Po(2,t) and P1(2,t) oscillate doubly as fast with half
that period, i.e. 2/Q, but with a smaller elongation, i.e., 0 < Po(2,t) <0.75 and 0 < P1(2,t) <0.5.
One could (incorrectly) expect that the up and down transitions between states |2) and |1) could
somehow cancel out, such that Po(2,t) = Py(2,t) remains unity at all times, but this is not observed.
The reason is that for both systems, the double occupation of level |1) is permitted dynamically,
whose excitation does not contribute to P(2,t). In fact, after a quarter of the Rabi period t1/4 =
(21/Q0)/4, we have [Ba(t)]> = |Aa(t)]* = 1/2, leading to Po(2,t1/4) = 0.75 and P1(2,t1/4) = 0.5.
Therefore, P(2,t) can decrease in time. On the other hand, for the system with Pauli suppression,

the probability Pri(2,t) remains indeed unity at all times, as any double occupation is suppressed.
After the discussion of the two special limits y = 0 or Qo = 0, we will now examine the most
interesting case where both y and ()¢ are nonzero. In Figure 3 we compare Pi(2,t) with Pri(2,t) for

Qo =0.1 andy=0.15.
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As expected, during early times, the probability Pi(2,t) decreases more rapidly than Pri(2,t). Here
in system I the electron (initially in state |2)) has two decay channels and it is coupled to both the
continuum states |E) as well as to level |1). However, the same electron in system II, cannot
perform a down-ward transition to state |1), as this one is already occupied by the other electron
and therefore this transition is blocked by the Pauli principle. As a result, it can only couple to the
continuum states. We would therefore predict P1(2,t) < Pri(2,t), which is nicely confirmed by the
structure of Egs. (3.5). In fact, this equation predicts that P1(2,t) < Pri(2,t) is even valid at all
times. However, it is quite astonishing that after an interaction time of about 20 optical cycles,
both probabilities become graphically indistinguishable from each other, suggesting that the

impact of the Pauli suppression on system II is only of transient nature.

Referring back to the Hilbert space analysis in the right of Figure 1, we remark that while an
occupation all of the two-electron states |12)+, |22)+, and |2E)+ contribute to P1(2,t), in system II
only the states |12)- and |2E)- contribute to Pi(2,t). In this view of the larger space of available
states, the rigid inequality P1(2,t) < Pri(2,t) for all times is not easy to be understood.

Formally, the quantitative difference between the bound state dynamics of both systems is
given by the term P(22,t) = 2|A2(t) Bz(‘[)|2 in Eq. (3.52). This is proportional to the probability

that the first excited state |2) is doubly excited. In other words, the probability that both particles
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are in state |2) for system I is a direct measure of the dynamical impact of the Pauli suppression in
system II. The transient nature of the difference between P1(2,t) and Pri(2,t) in Figure 3 therefore
suggests, that the double occupation probability should decay much more rapidly than Pi(2,t) or
Pr(2,t). In the inset of Figure 3 we compare P1(2,t) and Pri(2,t) with P(22,t) on a logarithmic
scale. Our conjecture that the probability P(22,t) decays with an effective rate at least twice of
that of either P1(2,t) or Pi(2,t) is quite apparent. This different decay pattern is also obvious from
the different functional dependence on the corresponding amplitudes of the single-particle system.
For example, if we assume for simplicity that for long times the largest values of Ax(t) = B2(t) are
given by Exp[-I't/4], then according to Egs. (3.5) we have Pi(2,t) ~ Exp[-I't/2], while P(22,t) =
Exp[-Tt], so the latter decays much faster.

From a physical perspective, the transient nature of the impact of the Pauli-suppression due to
the ionization channel is also apparent. At early times, the inner electron in the ground state |1)
prohibits the outer electron in the first excited state to perform a Rabi-oscillation. However, as
later times, when the total bound state probability has been reduced, the ground state is only

partially occupied and therefore permits Rabi oscillations from level |2).

4.2 Pauli enhancement of the single ionization probability with an Qo independent rate

We will next examine the impact of the Pauli principle on the time-dependence of the
probability that at least one electron has ionized the atom. In order to set the stage to examine
two-electron effects, we review first how a sufficiently large Rabi frequency can halve the

effective ionization probability for the single electron system from the first excited state [2). As
derived in Appendix A, in the limit of Qo = 0 the ionization probability P(f,t) can be
approximated by a simple monotonic growth P(f;t) = 1 — Exp(—I" t). Here the decay constant can
be derived from Fermi's Golden rule as I' = 2x (y/2)2. As Qo is increased, the growth of P(f}t) is

halted during those moments in time, when the ground state |1) becomes fully excited, resulting in

an overall quasi-stepwise growth of P(f,t). This halt occurs precisely after odd multiples of half
of the effective Rabi period, which is given by 2n/Q. In the limit of large Qo, the growth returns

to a simple exponential form again, but this time with an effective halved rate I'/2, reflecting that
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only half of the time the decay channel (through state |2)) is open. We have illustrated this

transition of the effective decay from I" to I'/2 with increasing o in Figure 4.
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Figure 4 The ionization probability P(f,t) for the single electron system from the initial state
|2) for four Rabi frequencies 20 =0, 0.01, 0.1 and 0.4 together with the two reference lines
(dashed)

1 - Exp(—T't) and 1 — Exp(-I/2 t) for comparison. (y = 0.1, @=1 to Ei =1.5 and E» = —0.5)

The best curve to understand the universal behavior of all data is the one for Qo= 0.01 as it
provides the clearest separation of the two relevant time scales. For early times less than the Rabi
period, P(f,t) follows 1 — Exp(—I" t) until a time when the accompanying downward transition to
state |1) has depleted level |2) and therefore halts the ionization. Once the first excited state gets
populated again, the ionization channel opens again, but from this moment on the curve for P(f,t)
oscillates around the second growth curve associated with 1 — Exp(— I'/2 t), as the level |2) is
populated effectively only half of the time. This universal long-time oscillatory growth pattern

with a time-average given by the half-rate decay reference curve as apparent for all data for Qo >

0.01.

Let us now return to the two-electron system. As is obvious from the arguments laid out
above, for the special Qo = 0, the Pauli suppression does not have any dynamical impact on the
ionization process and we have the same ionization probabilities Pi(f,t) = Pi(f,t), where both
curves can be well approximated by 1 — Exp(— T t).

However, as Qg is increased, the outer electron of system I can perform a downward
transition. Each of the two bound-bound two-electron states |1) |1) and |2)|2) are coupled to the

initial state (|1) |2) + |2)] 1))/2"2. The excitation of each of these can momentarily halt of the
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ionization process after a characteristic time shown in Figure 5. At first, this observation seems to
be reminiscent of the decay rate halving mechanism, which characterises the single-electron

system (see Figure 4).
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Figure 5 The probabilities Pi(f,t) (blue) and Pri(f,t) (red) to ionize at least one electron for four

Rabi frequencies Qo =0, 0.01, 0.02, 0.03 and 0.1 together with the two reference lines (dashed)
1 — Exp[-T"t] and 1 — Exp[-I/2 t] for comparison. (y = 0.1, =1 to E1 =1.5 and E2 =-0.5)

However, in contrast to the single-particle dynamics, after a longer time the probability Pi(f.t)
does not oscillate around the growth curve 1 — Exp(— /2 t), but returns back to the faster
decaying curve 1 — Exp(—I" t). The explanation for this contrasting behavior is fully consistent
with the discussion in Section 4.1 for P1(2,t) and Pri(2,t). The return to 1 — Exp(— I t) is again
related to the fact that the life time of the two doubly excited states |1) |1) and |2)|2) is much

shorter than that of the state (|1) |2) + |2)) 1))/2"2. Therefore, in the limit of large Qo, the

ionization probability Pi(f,t) becomes identical to the one for vanishing Qo.
On the other hand, the data for system II suggest the universal and non-oscillatory growth
Pu(f,t) =1 — Exp(— I't) for any time and any Qo. This means that, for the entire range of Rabi-

frequencies, the Pauli-exclusion principle makes the dynamics completely immune to any
reduction of the ionization decay channel due to Rabi oscillations. Quite interestingly, this means
that the dynamical signature of the Pauli-suppression manifests itself by the removal of the
original Rabi-frequency dependence of the ionization rate, which was characteristic of the single

electron dynamics.

The observed complete independence of Pri(f,t) on any Qo can also be easily understood from

the perspective of the available Hilbert space states for [\W1i(t)). In Eq. (3.4) we saw that the initial
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state (|1)]2) — |2)] 1))/2"2 can only couple to those states for which at least one electron is in state

|E) and therefore ionized. This leads also to an effective modeling of the dynamics for system II

as we outline in Appendix B.

4.3 Pauli suppression of the double ionization probability with an Qo-dependent rate

We have also compared the double ionization probabilities Pi(ff,t) and Pr(ff;t). In contrast to
the remarkably robust single ionization probability, we find here that Pri(ff,t) does change
significantly with increasing Qo. Both Pi(ff,t) and Pii(ff;t) vanish identically in the limit of Qo =
0. This should be obvious as in this limit the inner electron is trapped and Ag(t) =0 in Egs. (3.7).

This also means that the Rabi frequency acts as the main enabler for the possibility of double

ionization.
This is shown in Figure 6. For small Qg (= 0.02) the early growth of the probability Pr(ff,t) is
delayed relative to Pi(ff,t), as the inner electron is initially Pauli-blocked from the upward

transition. However, after a time of about 40 laser cycles the probability has caught up when its
probabilty for double ionization reaches 60%. We also note that the Pauli-exclusion principle is

dynamically relevant only for smaller values of the Rabi-frequency and only for early times.
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Figure 6 The double ionization probabilities Pi(ff,t) and Pyi(fft) for four Rabi frequencies Qg
=0.01, 0.02, 0.03 and 0.1 together with the reference line 1 — 2 Exp[-T" t/2] + Exp[-T t] for
comparison. (y = 0.1, =1 to E1 =1.5 and E> =-0.5)
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We note that in direct contrast to the relationship between Pi(f,t) and Pr(f,t), where we found

that Pi(f,t) < Pr(f.t), here we find here the reverse, Pr(ff,t) < Pi(ff,t). This means that the Pauli
exclusion principle decreases double ionization process, while at the same time it enhances the
probability for single ionization. This decrease could be inferred from the possible couplings
among the two-level states, which were sketched in the right Figure 1. While the initial state and
|12)- has only a single unique pathway to reach the doubly excited continuum states |E'E)- via the
states |1E)-, the initial state |12)+ can excite this continuum |E'E)+ via two routes. In addition to
involving the states |1E)+ it has also an alternative route involving the intermediate states [22)+.
On the other hand, level |12)+ is also coupled to state |11)+, which is energetically very far apart
from [E'E)+. So it remains difficult to find an easy and intuitive explanation for the observed
inequality Pri(ff;t) < Pi(fft).

For Qo > 0.1, the data for Py(ff,t) and Pri(ff,t) become graphically indistinguishable from each
other. Furthermore, in the limit of large Qo, the probabilities become independent of Q¢ and take
the universal form Pi(ff;t) = Pu(ff;t) = [1 — Exp(—Ft/2)]2. This particular expression can be easily
interpreted as the double ionization probability is equal to the product of the probabilities that no
electron is in state |1) and that no electron is in state for |2). In the limit of large Qo, the two
probabilities to find at least one electron in |1) (and |2), respectively) are identical P(1,t) = P(2,t) =
Exp(-T't/2).

The expression Pi(ff,t) = Pu(ff,t) = 1 — 2 Exp(-I't/2) + Exp(-I't) grows only quadratically for
early times P(ff;t) = (F2/4) t>. This delay reflects the sequential nature of the required two

consecutive ionization steps. In the opposite long-time limit, P(ff,t) grows on the time-scale given
by the half-decay rate I'/2, as one might expect due to the large Rabi frequency from the two

decoupled single-particle systems (see the discussion in Sec. 4.2).

4.4 The ionized electron spectra and the role of the detector's resolution

In the prior sections we found that the Pauli-suppression had only a transient impact on the
dynamics and its effect decreased with increasing Rabi frequency. In this section, we will
examine if the transient effect of the Pauli-suppression can actually lead to a more permanent

signature with regard to the energy distribution of the ionized electrons. After the ionization is
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completed, final spectra can sometimes provide features associated with the entire historical
record of the evolution.

It is well known that for the single-particle system the usual single Lorentzian-shaped peak of
photo-electron spectrum centered at energy E = E2 + o and width I" can be split into two peaks at
locations E = Ex + @ £ Qo/2. This Autler-Townes splitting can be easily understood in terms of

the two dressed bound states, defined as the eigen vectors of the 2 x2 interaction Hamiltonian

matrix in the subspace of the bound Hilbert states. In the rotating frame, it has two dressed states
with eigenvalues E + = + [Q0%+A2]"%/2, where each is coupled to one group of continuum states.

In Egs. (3.8) we have derived the formal expressions for the probability P(E,t) that at least one

electron has ionized into the energy interval [E-AE/2, E+AE/2] with an accumulation range AE.
The similar structure of these equations for the states |\Y1(t)), and |'\P1i(t)) reveals the inequality

Pi(E,t) < Pri(E,t) for all times. This is interesting as it reveals that the Pauli-exclusion principle

enhances the probability to detect at least one electron inside any energy range. This is consistent

with the prior finding, where we predicted that the Pauli-exclusion principle would destabilize the
atom favoring a more rapid ionization, i.e. Pi(f,t) < Pr(f;t). In fact, as we argued above, for large
accumulation ranges, we have lim AE»« Pi(E,t) = Pi(f,t) and lim AE—»« Pri(E,t) = Pu(ft).

If we extend the energy width AE to co and assume sufficiently long times such that both
electrons are ionized, i.e. A1 = A2=B1=B2 =0, we can use the normalization condition [~*dE
|AE(t—0)|? = [~ dE |BE(t—0)]> = 1 as well as the orthogonality (A[B) = [~ dE' AE(t—>)"
Bg(t—>®) = 0. In this case, we obtain Pi(E, t—>w) = Pri(E, t—>w) = 1.

In the opposite limit, if we assume that the energy width AE is much smaller than the energy

variation of the amplitudes A and BE, we can approximate the integrals Jg-ap2" %2 dE' |Ag|? =

|AE|2 AE + O(AE®) and similarly for Bg' to obtain the simpler form

PI(E,t) = (JAE? + |BE/®) AE — 2 |Ag® |BE® AE? + O(AE?) (4.1a)

Pu(Et) = (JAg+ |BE]?) AE + O(AE?) (4.1b)
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This is very interesting as it predicts that for sufficiently small energy intervals AE the dynamical
impact of the Pauli-principle vanishes completely, i.e., lim AE—0 Pi(E,t) = lim AE—0 Pui(E,t).

We might note that the simultaneous scaling of Pi(E,t) and Pri(E,t) with AE and higher powers
in AE is not so unusual for multi-particle probabilities. For example, for two uncorrelated random
variables E1 and E2 that are both uniformly distributed inside [0,1], the probability to find at least
one variable inside the interval [E-AE/2, E+AE/2] (for AE/2 <E <1 — AE/2) is given by 2 AE —
AE?, which also reflects different powers in AE.

Equations (4.1) have also a direct classical mechanical analogue in the long-time limit when

both electrons are ionized. Let us assume the two-particle energy probability density is described
by a general symmetric and continuous function p(E1, E2) = p(E2, E1) and p(E) = JdE2 p(E,E2)
denotes the corresponding marginal density. Then the probability to detect at least one electron

with energy inside the interval [E-AE/2, E+AE/2] is given by

P(E,AE) =2 jE—AE/2E+AE/2 dE' p(E') o jE—AE/2E+AE/2 jE—AE/2E+AE/2 dE' dE" p(Ev,Eu) (42)

If we apply the Taylor expansion around AE = 0 together with the Leipzig product rule we obtain
for small AE

P(E,AE) = 2 p(E) AE — p(E.E) AE* + O(AE®) (4.3)

This general expression has a remarkably similar structure as Egs. (4.1a). This means that for
small energy accumulation ranges AE the probabilities P(E,AE) for any classical (possibly highly
correlated) two-particle systems [that share the same marginal density p(E)] will differ by the
same Pauli-term p(E,E) AE? as predicted in Eq. (4.1). Furthermore, the formal similarity permits
us also to associate (|AE|2+|BE|2)/2 with the (identical!) marginal energy density p(E) for systems I
and 11 and 2|Ag/|Bg> with the diagonal element of the joint energy density for system I in the
long-time limit.

In order to examine how the Pauli-principle affects the energy spectra more quantitatively, we

have to examine the dynamics for specific parameters. In Figure 7 we compare the photo-electron
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spectra Pi(E,t) and Pi(E,t) at various stages of the evolution for the two energy accumulation
ranges AE=0.001 and AE=0.02.
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Figure 7 Comparison of the time-evolution of the photo-electron energy spectra Pi(E,t) (blue)

and Pri(E,t) (red) for different Rabi frequencies Qo and a small (top) and wider (bottom) energy
accumulation range AE. All energies are in atomic units. (y=0.1, o=1to E1 =1.5 and E2 =—

0.5)

There are several observations with regard to the impact of the Pauli principle on the spectra
as function of time, Qo0 and AE. For spectra recorded by the high-resolution detector (top row in
Fig. 7) we observe Pi(E,t) = Pri(E,t) and therefore no impact of the Pauli principle, which is, of
course, consistent with Egs. (4.1). For the detectors with less resolution (bottom row), we find
that at early times the spectra Pi(E,t) and Pri(E,t) are identical whereas at later times they begin to
differ. Most importantly, in direct contrast to the ionization probabilities (see Figure 5), for which
any contrast between Pi(f,t) and Pri(f,t) is only of transient nature, we observe here that the
differences between Pi(E,t) and Pri(E,t) prevail for long times. This means that the Pauli-

exclusion principle leads to a permanent signature manifest in the final energy distribution of the

ionized electrons, if the detector's energy resolution is not too fine.

Finally, we examine if there exits an optimum accumulation range AEopt for which the
differences between the two spectra Pi(E,t) and P1i(E,t) are most significant. Returning to the

simplest possible system of two uniformly distributed energies given by pi(E1,E2) =1 for 0 <E; <
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1 and 0 < E2< 1, we can compare the spectra Pi(E) with a distribution pi(E1,E2) = N pi(E1,E2)

H(E1-E2), where the additional Pauli-suppression function H(E1—E2) = 1—Exp(—(E1—E2)2/(2w2)]
lowers the likelihood of two matching energies. Here N is the normalization factor and w models

the energetic range on which the Pauli suppression can act. We found that independent of this

"hole width" w, the largest differences Pri(E) — Pi(E) occur for the optimum accumulation range

AE = 0.5, which is proportional to the total energy range covered by Ei and E».
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Figure 8 The difference between the final photo-electron energy spectra Pri(E,t) — Pi(E,t) for
00 =0.03 and various energies E at time t = 100x27/c as a function of the accumulation range

AE. The locations of the maxima are indicated by the open circles. All energies are in atomic
units. (y=0.1, ® =1 to E1 =1.5 and E> =-0.5)

In order to examine the same idea for our actual dynamical system, we have graphed in Figure

8 the difference Pri(E,t) — Pi(E,t) at time t = 100x21/® for several central detector energies E as a
function of AE. If the central energy E is located between the two energy peaks, i.e., (E2+ o) —
Qo/2 <E < (E2+ o) + Qo/2, then it turns out that the optimal AE to maximize the visability of the

Pauli-principle does not depend on the energy E at all. It occurs precisely at AEopt = Qo, as we
indicate by the vertical dashed line in the Figure. For energies E that are smaller than this range,

i.e., E <(E2+ o) — Qo/2 the optimum AEqpt grows slightly with decreasing detector's central
energy. We found that here AEopt seems to decrease linearly with E and can be well described by
the dependence AEopt = 2(E2 + ®)-2E, which is even independent of (9. This means that
consistent with the findings above, the optimum AEopt is close to the actual total effective energy

range of the energies, which can be approximated by the peak-to-peak spacing given by Q.
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5. Conclusions and outlook to future work

In this work, we have shown that the Pauli-exclusion principle has a transient as well as
permanent effect on the resonant multi-electron ionization dynamics. While the model system
was remarkably simple, this principle's dynamical implications were surprisingly complex and, in
some cases, even unexpected. Due to mutually competing mechanisms, it enhances the ionization

probability, which is characterized by a rate that becomes independent of Qo, while at the same

time it also decreases the probability for double ionization (with an Qo-dependent rate). It

manifests itself also in the final energy distribution of the ionized electrons, but only if the
accumulation range of the detector is chosen sufficiently wide. The fact that a detector with less
energy resolution is more suited to detect any spectral implications of the Pauli-exclusion
principle is possibly the most unexpected result. This is rather counter-intuitive at first, as one
normally would have expected a better discrimination for those detectors that have the highest
energy resolution. In fact, the spectral implications of the Pauli-principle are largest, if the
detector covers the energy spacing of the two Autler-Townes peaks.

In order to be able to focus on the key dynamical differences due to the transient Pauli
suppression of certain transitions, we have purposely chosen a model with minimal complexity
with regard to the energy structure, the couplings and also the field configuration. There were
two benefits, it allowed for an unambiguous comparison and also analytical solutions for any
time-dependent observables to be obtained.

The simplicity of our model was facilitated by the fact that we neglected any possible energy
level shifts due to electron-electron correlations and excluded possible bound state degeneracies
as well as off-resonant states. Furthermore, the coupling strength to the continuum state was
chosen independently of the final energy and we examined a cw-monochromatic laser field whose
frequency matched exactly the bound-bound state resonance. If the intensity of the resonant laser
field is chosen sufficiently large, then the magnitude of the laser induced energy shifts are
significantly larger than the energy shifts (which we neglect in our model) due to electron-
electron correlations, even if two electrons happen to share similar energy levels. For example, in
our case the ratio of the original bare energy spacing to the laser induced Autler-Townes splitting

can serve as a quantitative measure of the relative importance of the laser-dressing. For the data
of most Figures, this ratio Qo/(E2-E1) amounts to 10%, which, for typical atoms or molecules, is

larger than the corresponding corrections to the bare energies due to spin, relativistic or electron
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correlation effects, even when the electrons happen to share the same energy level. We note that
each of the two-electron energies in the effective description in Egs. (B.3) has enough flexibility
that they can easily incorporate these atomic level shifts.

As in a real atom the Pauli-exclusion principle cannot be directly turned on and off, as we did
with our two-electron model systems, a corresponding experimental comparison would be more
involved and requires more degrees of freedom. For example, the system could be realized in
excited two-electron atoms/ions like He(1s,2p). When the 1s ground-state electron and the 2p
excited electron couple their spins to a singlet (antiparallel spins), then the spatial wavefunction is
symmetric and no Pauli blocking occurs. Conversely, if a spin triplet state is formed (parallel
spins), the spatial wave function is antisymmetric and Pauli blocking is active. Such atoms might
thus offer a natural realization of the problem under consideration.

As an example, for the possible large impact of electron-electron correlations on a realistic
system, we can consider the He" one-electron ion, where the ground state (1s) energy is at —2 a.u.,
while the first excited state (2p) is at —0.5 a.u. In the absence of any correlations, the combined
He 1s2p state would therefore have the energy —2.5 a.u., while its actual correct value (-2.12 a.u.)
[16] is apparently higher by 15.2% due to the positive electron-electron repulsion energy. For
several studies of the photoionization from [1s, np) states, with spin couplings in He and helium-
like atoms, see [17-20]. Instead of He atoms, other highly-charged helium-like ions such as

U could be employed, where the electron-electron correlation is of minor relevance. However,

such a less correlated system is experimentally more difficult to prepare.

Due to its fundamental character, the dynamical impact of the Pauli suppression on correlated
fermion systems has become an active research area. For example, in a recent PRL [21] its effect
on strongly interacting continuum states was observed leading to Pauli crystals. These low-
temperature structures emerge when the particles become quantum degenerate.

As we have indicated in the introduction, our main motivation for this study was the
exploration of the laser induced positron-electron pair creation process in the presence of a highly
charged nucleus, whose (initially unoccupied) bound states can be in resonance with the laser
field. Here the dynamics is similar as modeled in this work, except that it is time-reversed, as
Rabi oscillations become relevant only after the created electrons have been captured by the
nuclear bound states. We expect that some of the findings of this work, can be translated directly

and find their dynamical impact also on these highly relativistic interactions.
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APPENDIX A
In this appendix we discuss the approximate solution to the set of coupled equations for Egs.
(2.3). There are numerous independent approaches possible [22]. We focus here on the approach

that is based on the rotating wave approximation and the dominant approximation for the

continuum states.

idCi/dt = Ei C1 + Qo/(2i) [Exp(iot) -[Exp(-imt)] C2 (A.la)
idCa/dt = Ez Ca + Qo/(2i) [Exp(iot) —[Exp(—imt)] Ci

+v0/(2i) [Exp(imt) —-[Exp(—iot)] [dE CE (A.1b)
idCp/dt = ECE +y/(2i) [Exp(iot) —[Exp(-iot)] C2 (A.lc)

If we include the new amplitudes Ci(t) = Exp(—i E1 t) Di(t), Ca(t) = Exp(—i E2 t) D2(t),

CEg(t) = Exp(—i E t) Dg(t), this set of equations becomes

idD1/dt = Qo/(2i) [Exp(iot) —[Exp(—imt)] Exp(i E1 t) Exp(—i E2t) Da(t) (A.2a)

idD2/dt = Qo/(21) [Exp(iot) —[Exp(—imt)] Exp(i E2t) Exp(-1 E1t) Di(t) (A.2b)
+7/(21) [Exp(iot) —[Exp(—iot)] JdE Exp(i E2t) Exp(—i E t) DE(t)
idDg/dt = y/(2i) [Exp(iot) -[Exp(—imt)] Exp(i E t) Exp(—i E2 t) D2(t) (A.2¢)

If we assume that ® — (E —E2) << o + (E —E2) and the detuning A = ® — (E2 —E1) is small, we can

neglect the rapidly oscillating terms (rotating wave approximation) and obtain:

idDi/dt = Qo/(2i) Exp(i A t) Da(t) (A.3a)
1dD2/dt = —Qo/(2i) Exp(—1 A t) Di(t) +y/(21) [dE Exp(iot) Exp(—i [E-E2] t) DEg(t) (A.3b)
idDg/dt = —y/(2i) Exp(-iot)] Exp(i [E-E2]t) D2(t) (A.3¢)

If the introduce the new amplitudes Di(t) = Exp(i A/2 t) ci(t), D2(t) = Exp(—i A/2 t) c2o(t) and

DE(t) = Exp(—iwt) Exp(i [E-E2] t) Exp(—i A/2 t) ¢(E,t), we obtain the final time-independent

equations in the rotating wave approximation
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idci/dt = A2c1 +Q0o/(21) c2 (A.4a)
idca/dt = —A2 ca—Qo/(2i) c1 +v/(2i) [dE cE (A.4b)

idcg/dt = (E-E2—o—-A/2)ce — y/(21) c2 (A.4c)

At this stage we apply the usual adiabatic approximation to the continuum amplitudes, i.e. we
assume i d cg / dt = 0. This means we can solve for cg = c2 y/(2i) / (E — E2— o —A/2) and

insert this expression back into Eq. (4.b). We obtain

idci/dt = A2c1 +Q0/(21) c2 (A.5a)

idex/dt = A2 c2—Qo/(2i)c1 —c21 /2 (A.5b)

where the simplified the integral —02(72/4) [dE 1/(E — E2— @ —A/2) is equal to — c2i /2, where
we used JdE (E — E2— @ —A/2) ' =i n. This means the (Fermi Golden rule) decay constant can be
derived as I' =2n (y/2)2.

The time-evolution operator Exp[-i H t] such that {ci(t), c2(t)} = Exp[-i H t] {c1(0), c2(0)}
can be easily obtained analytically. Using abbreviation for the complex parameter © = [ (I'—

2iA)2— 4 Qoz]l/ 2, we obtain for the four matrix elements

UL1(t) = Exp[~(T+©) /4] /(20) [ T Exp(® t/2) - T + 2 i A+ © + Exp(® t/2) (© — 2iA)]  (A.6a)
Ui 2(t) =—2 Q Exp[-T t/4] Sinh(® t/4) / © (A.6b)
U2,1(t) = — 2 Q Exp[-T t/4] Sinh(® t/4) / © (A.6¢)
Uaa(t) = Exp[<(T+©) /4] /(20) [ — T Exp(® t/2) + T — 2 i A+ © + Exp(® t/2) (® + 2iA)] (A.6d)

From now on we will focus our attention to the limiting case of zero detuning, such that the

four matrix elements simplify for Qo >1/2=n 72/4 to

Ur1(t) = Exp(~t T/4) [ Cos(Q t/2) + T Sin(Q t/2)/(2Q) ] (A.7a)
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Uia(t) = i Exp(—t T/4) Qo Sin(Q t/2) /Q (A7.b)
U2.1(t) = i Exp(—t T/4) Qo Sin(Q t/2) /Q (A.7c)
Uaa(t) = Exp(-t [/4) [ Cos(Q /2) — T Sin(Q t/2)/(2Q) ] (A.7d)

where we have introduced the effective Rabi frequency Q= (Qo” — (I72)%)". For the other

overdamped limit Qo < I/2, the expressions can be rewritten as

ULi(t) = Exp(—t T/4) [ Cosh(x t/2) + T Sinh(x t/2)/(2x) ] (A.8a)
Uia(t) = i Exp(—t T/4) Qo Sinh(k t/2) /x (A.8b)
U2,1(t) = i Exp(~t T/4) Qo Sinh(k t/2) /x (A.8¢)
Ua2(t) = Exp(—t T/4) [ Cosh(x t/2) — T" Sinh(k t/2)/(2k) ] (A.8d)

where k = ((1“/2)2 — 00?2, In the limit Qo << I'/2, these expressions become

ULi(t) = Exp(—t T/4) [ Cosh(x t/2) + T Sinh(x t/2)/(2x) ] (A.9a)
Uia(t) = i Exp(~t T'/4) Qo Sinh(k 1/2) /x (A.9b)
U2,1(t) = i Exp(~t ['/4) Qo Sinh(x t/2) /x (A.9¢)
Uaa(t) = Exp(—t T/4) [ Cosh(x t/2) — T" Sinh(x t/2)/(2k) ] (A.9d)

This means, for the A system, where {c1(0), c2(0)} = {1,0}, we have A1(t) = U1,1(t), A2(t) =
Us.1(t) and 2k |AE(H)]? = 1 — [U11(t)]> — [U2.1(t)]>. Similarly, for the B system, where {c1(0), c2(0)}
= {0,1}, we have B1(t) = Up.1(t), B2(t) = U2.1(t) and =g |BE(H)]> = 1 — [U12(t)]? — |U22(t)*.
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APPENDIX B

The focus of the discussion in the main text is to establish the dynamical impact of the Pauli-
exclusion principle. To be able to compare two systems I and II requires a theoretical framework
that was based on the underlying single-electron systems given by |A(t)) and |B(t)).

Due to the restricted two-particle Hilbert space for system 11, it is also possible to derive a
more efficient but formally identical description for this system, which we summarize here. It has
also the advantage, that it can provide us with a more intuitive understanding of its predicted

dynamical features. This minimal set is given by the two-electron wave function

(1)) = Cia(t) |1,2) + [dE Cig(t) |LLE) + JdE Cag(t) |2,E) + JdE' JdE CEg(t) |E,E") (B.1)

where the notation such as |1,2) represents the antisymmetrized states. These are coupled by the

effective Hamiltonian Ho + Hint with

Ho = (Ei +E2)|1,2X1,2| +JdE (E1 + E)|1,EX1,E| + JdE (E2 + E) [2,E)X2,E| +
+ [dE' [dE (E + E") |E,E'NE,E (B.2a)

Hint = y(t) JdE |LLEX1,2| + Ot) |dE |2,EX1,E| + y(t) [dE' [dE |E'EX2,E| + h.c. (B.2b)

In order to find the equation of motion of the four types of expansion coefficients Ci2(t),
Cig(t), C2E(t) and Cgg(t), we insert the expansion for |\Y(t)) into the Schrédinger equation, given

by id/dt|¥) = (Ho + Hint) |'¥). If we use the orthogonality among all states, we obtain

idCi2/dt = (E1+E2) Ci2 + y(t) JdE Cig (B.3a)
idCig/dt = (E1+E) Cig + y(t) Ci2 + Q(t) C2E (B.3b)
idCop/dt = (Ex+E) Cae + Q(t) Cig + y(t) JAE' Ce (B.3¢)
idCgg/dt = (E4E) Cege + y(t) C2E (B.3d)

Similarly to the discussion in Appendix A, we can again eliminate approximately the faster time

scales and obtain in the rotating frame a new set of equations, which no longer have an explicit
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time-dependence. If we introduce the new sets of amplitudes Ci2 = ci2, Cig = Exp(— imt) CIE,

C2e = Exp(—i2wt) c2r and CEE = Exp(— i3mt) cgE after the rotating wave approximation we

obtain

idcio/dt = (E1+E2) ci2 + y/(2i) JdE cop (B.4a)
idcie/dt = (EitE-m) cig + Qo/(21) c2E —7/(21) c12 (B.4b)
idcg/dt = (Ex+E —20) 28— Qo/(2i) cie +v/(2i) JdE' ceE (B.4¢)
idcgg/dt = (E+E'-3m) ceE — V/(2i) c2E (B.4d)

This set of equations suggests the following two-electron picture based on a sequential coupling
of a four-step ladder-like system comprised of one discrete and three sets of continuum states.
The initial ground state |1,2) can decay into the first continuum |1,E) with coupling strength y.

The first continuum |1,E) is then Rabi-coupled to the second continuum |2,E), which is then can
decay again into the third continuum |E,E'). The absence of Qg in Eq. (B.4a) also directly
supports the finding discussed in the main text that the probability |c12|*> decays basically

monotonic and independently of Q.

In fact, the easy structure of these equations permits also an access to an analytical solution
under some additional simplifying approximations. We can adiabatically eliminate the sets of

states |1,2) as well as |[E,E'). As a first step, if we put the time derivative in Eq. (B4.b) equal to
zero, we can solve for cig = — Qo/(21) c2E (E1+E—w)_1 + v/(21) (E1+E-0)"! c12. As an additional
approximation, we neglect the Qo-dependent term, such that we obtain cig = v/(2i) (E1+E-w)!

C12.

If we insert this expression into Eq. (B.4a), we obtain

idcip/dt = (E1t+E2)ci2 —iT/2 c12 (B.5)

where, similarly to Appendix A, we have once again assumed [dE (E1+E—O))_1 =12m, such that I’
=2n (y/2)2. The resulting equation (B.5) can be solved leading to c12(t) = Exp[—i (E1+E2)t — /2
t].
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Second, we put also the time derivative in Eq. (B.4d) equal to zero, we can solve for cgg(t) =

(E+E' —30))_1 v/(21) c2. If we insert the solution ci2(t) into Eq. (B.4b) and cg'E(t) into Eq. (B.4c),

we obtain
id/dtcie = (EitE-®) cig + Qo/(2i) c2E —y/(21) Exp[-i (E1+E2)t—T"t /2] (B.6a)
id/dtcae = (E2+E 2m) c2E—Qo/(21) c1g —117/2 coE (B.6b)

The structure of these two approximate equations suggests an illustrative picture of an
effective discrete two-level system for the continuum amplitudes for each energy E, where the
lower level is excited by an exponentially decaying source term and the upper level is
exponentially damped. Note that there are no longer any energy integrals required. Due to the
simple structure of these two equations, they can be solved analytically. However, the structure

of these solutions is rather complicated and not very informative. Instead, we present in Figure 9

the validity of the model Egs. (B.6) with the exact solutions for JdE |cir(t)|* and [dE |car(t)[2.

0.6

Probability
=
N

o
o

00 : : : :
0 20 40 60 80 100

t/ [2m/w]
Figure 9 Comparison of the predictions for [dE |ClE(t)|2 and [dE \CZE(t)|2 of the approximate
model Egs. (B.6) and the exact solutions based on Egs. (B.3). Qo =0.02,y=0.1,T =0.0157.

We see that the two sets of ionization probabilities are graphically indistinguishable, justifying the

assumptions leading to Egs. (B.6). We first see the built up of [dE |cie(t)? followed with a
delayed growth of [dE |c2e(t)*. As the laser frequency o (=E2— E1) was chosen such that the

energy difference of the upper continuum and the lower continuum state, (E2+E —2m) — (E1+E-
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o), vanishes, the Rabi-period 21/Q) is identical for the resonant level pairs. But we do not see the

periodic exchange of populations, as I was comparable to Q.
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