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Control of the laser-induced vacuum decay by electronic phases
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We examine the laser-assisted electron-positron pair-creation process from the quantum vacuum in the
presence of a binding potential with one optically active bound electron. If this core electron is initially prepared
in a coherent superposition state of two resonant bound states, the electronic phase properties between both
state excitations can be transferred to the positron during the pair-creation process. For example, the periodic
Rabi population exchange between both electronic states modulates the temporal growth of the pair-creation
probability and also leads to an Autler-Townes split positron energy spectra. Even more astonishing, for the case
of different phases, for which the internal electronic dynamics (in the absence of pair creation) is identical, the
positron’s creation probability is different, suggesting that the vacuum decay process can “sense” the phase and
not just the occupation number of the core electron. The field theoretical model of the laser assisted pair-creation
process with subsequent electron capture can be mapped exactly onto two mutually independent (single-electron)
ionization-like processes. This mathematical equivalency permits us to derive analytical solutions for the time
evolution of the vacuum decay process under the rotating-wave approximation.

DOI: 10.1103/PhysRevA.00.003100

There are two main and independent mechanisms in quan-
tum electrodynamics by which two fermions can affect each
other. The first mode of interaction is based on a direct
exchange of photons, leading to the Coulomb force in the
classical limit. The second mode is based on the Pauli ex-
clusion principle, which prohibits any multiple occupation of
a fermionic quantum state. Here the resulting Pauli block-
ing provides an alternative avenue by which the presence of
one fermion can affect the state of another fermion without
relying on any photons. To include the photonic exchange
into quantum field theoretical descriptions is often difficult.
For example, in nearly all models of the strong-field induced
vacuum decay processes [1], where an external electromag-
netic (or static electric) field is predicted to break down
the quantum vacuum and create electron-positron pairs [2],
the complicated photon-fermion couplings are approximated
by the classical field approximation. Here only the Pauli-
blocking mechanism induces multiparticle correlations. A
well-known example of such a blocking effect is the Klein
paradox [3,4], where an initial electron that has been injected
into the spatially localized supercritical electric field region
can suppress the positron creation probability during the scat-
tering process, as the required final states of the associated
created electron are already initially occupied (blocked) by
the scattering electron.

In this paper, we suggest that, in addition to photon ex-
changes or the occupation number-based Pauli blocking, there
is a third and nontrivial mechanism by which an already
existing electron can modify the dynamics of the field-induced
vacuum decay process. It turns out that the temporal growth

2469-9926/2022/00(0)/003100(5)
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pattern of the created electron-positron pairs can even be
controlled by the phase information of this electron [5-7].

In order to illustrate this phase transfer mechanism in its
simplest possible form, we examine the vacuum’s decay in
the presence of a highly charged nucleus, which carries an
initial core electron (see Fig. 1) and can capture the created
electrons. If this core electron is prepared in a coherent su-
perposition of the nucleus’ two resonant bound states, the
electronic phase properties between both state excitations can
be transferred to the positron during the pair-creation process
beyond the usual (occupation number-based) Pauli-blocking
mechanism [8]. In fact, the vacuum can even distinguish be-
tween those electronic phases that lead to identical occupation
numbers, and (in the absence of pair creation) would preserve
these occupation numbers at all times.

Let us begin our discussion by specifying the dynamics
of the core electron in the absence of any pair creation.
Here we assume that this optically active electron is ini-
tially prepared in the linear superposition quantum state
[exp(ig)|1) + |2)]27!/2 of the ground state |1) of energy E;
and the first excited state |2) of energy E,. The correspond-
ing time dependence of the amplitudes under the action of
the resonant laser field for the state C(z)|1) 4+ C,(¢)|2) is
described by the well-known [9,10] two-level equations i%
dC,/dt = E|C| + hQqsin(wt) C; and ihdCy/dt = E;Cy, + h
Qosin(wt)Cy, where 2y denotes the product of the electric
field amplitude and the coupling strength between the two
states. If we assume full resonance, E,—FE| = hiw, the evolu-
tion of the occupation number |C;(z)|? depends crucially on
the choice of the electron’s initial phase ¢ relative to the initial
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FIG. 1. The relevant continuum and discrete energy levels de-
scribing the laser field-induced electron-positron creation process
from the quantum vacuum in the presence of a nuclear potential,
which supports two bound states. While the created positron (hole in
the Dirac sea) can escape to infinity, the associated created electron
(green circle) is captured by the nucleus, which binds already one
resonantly driven core electron (black circle). The parameters in
our numerical simulations are E; = 0.9 mc?, E, = —0.4 mc? and the
laser’s time dependence is given by Q(t) = Qgsin(wt ) with (scaled)
amplitude Q¢ = 0.005 mc?/}i and frequency @ = 0.5 mc? /.

phase of the laser field, as we illustrate in Fig. 2 for the four
choices: ¢ =0, 7 /2, 7, and 37 /2.

The direct comparison with the probabilities obtained
from the rotating-wave approximation (RWA) shows that this

exact
o=n RWA
1
2
ICi(®)]
3m/2
[ e e AR
/2
0
0
0 20 40 60 80 120

t/T

FIG. 2. The time evolution of the probability |C;(¢)|* to find the
core electron in state |1). For the initial excitation amplitudes we
chose C;(t = 0) = exp(i¢)/2"/? and C,(t = 0) = 1/2'/2, with the
four phases ¢ = 0, 7 /2, 7, and 37 /2. The predictions based on the
rotating-wave approximation are indicated by the open circles. The
time is in units of the laser period T = 2 /w with all parameters as
in Fig. 1.

assumption is valid for our parameters. In fact, here we would
derive |ci(¢)|* = [1-sin(Rt)1/2, 1/, [1 + sin(Qot)]/2 and
15, for the four choices: ¢ =0, /2, m, and 37 /2, respec-
tively. We have used the lowercase letter ¢; for the rotating
frame. We note that the constant population |c;(¢)|> = 1/, for
¢ = /2 (and similarly for 37 /2) can be explained by the fact
that this initial state matches exactly one of the two dressed
states, and not a superposition of both.

Next, we include the vacuum decay process, where we
assume that the created electron can be captured by the bound
state |1), while the associated created positron can escape
to infinity. If the vacuum’s decay rate is less then €2y, then
at early times the pair-creation process affects the dynamics
of the core electron only minimally. This means that the
created electrons find their final state partially occupied with
a time-dependent occupation number |c;(¢)|>. If the Pauli
blocking was the only interaction mode between the initially
bound core electron and the vacuum decay process, then this
mechanism would suggest that for times close to a quarter of
the Rabi period 7 /(2€2) the initial electronic phase ¢ =0
would increase the positron creation probability as the block-
ing population (proportional to |c;(¢)|?) decreases. Similarly,
the initial increase of |c; (¢)|? for the other phase ¢ = 7 should
decrease the positron creation. The most important question in
this paper, however, is whether the positron’s creation proba-
bility can even detect any difference between those two phase
choices (¢ = /2 and 37 /2), for which the “Pauli-blocking”
occupation number |c; (¢)|> = 1/ is identical and even remains
so at all times.

To address this intriguing question, we have to change
from the simple quantum-mechanical approach, which was
sufficient to describe the single-particle dynamics of the core
electron, to a fully quantum field theoretical formalism in
order to predict the vacuum decay process. In the framework
of computational quantum field theory [11], all dynamical
features of the pair-creation process are modeled by the
electron-positron field operator W, whose space-time evolu-
tion is obtained by the Dirac equation i1 dW /9t = HW, with
the usual Hamiltonian [1] given by

H=ca-[p—eA, 1)/cl+mB+eV(r). (1)

The energy eigenstates of the Hamiltonian Hy = ca - p +
mczﬂ + eV (r) in the absence of the time-dependent field A,
defined by Hy|a) = E,|a), can be categorized according to
their energy into three groups. If E, > mc?, we denote these
positive continuum energy states as |p), if their energy is in-
side the mass gap —-mc?> < E, < mc?, we denote these discrete
electronic bound states as [i), and if their energy E, < —mc?
is part of the negative energy continuum, we denote these
states as |n). If we introduce the sets of (anticommuting)
creation operators (B,", B;', D,") and annihilation operators
(B,, B, D,) asscociated with these states, the mode expansion
of the quantum field operator is given by

(1) = X,B,(t)|p) + ZiBi()li) + Z,D,(t)"|n)
= 3,B,|p1)) + T;Bili(t)) + T,D,"In(t)), (2)

where |a(t)) is the single-particle solution to ik d|a)/dt =
H|a) with the initial state |a(r = 0)) = ). We note that this
particular mode expansion is different from the traditional
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approach [11], where one usually uses field-free states of Hy
with A =V = 0, labeled by their (conserved) momentum. If
we use the orthogonality among the dressed eigenstates, we
can find for the time evolution of the operators

B,(t) = ,By(p|p' (1)) + TiBi(pli(t)) + =D, (pIn(t)),

(3a)

Bi(t) = ZpBy(i|p' (1)) + ZiBi (i [i (1)) + Z,D," (i In(0)),
(3b)
D, ()" = ZyBy (n|p/ (1)) + TiBi(ni(t)) + Sy Dy’ (n|n' (1))
(3c)

We see that the matrix elements Uy, ,(t) = (| (¢)) of the
unitary time evolution operator are the basic building blocks
of computational quantum field theory.

The initial quantum field theoretical state is given
here by the superposition |®(r =0)) = [Bfexp(i(b) +
B,"1272|vac). Here |vac) denotes the vacuum  state,

defined as Bp|vac) = BjJvac) = D,|vac) =0. In its
quantum-mechanical (single-particle) analog, the field
theoretical state |®(r =0)) would correspond to the

one-electron quantum state given by the superposition
[exp(ig)|1) + |2)1/2'/? as discussed above.

The total number of electrons N(e™,t) and positrons
N(et, t) follow from the quantum field theoretical expectation
values:

N(e™,t) = (Dt = 0)|X,B,(t)'B,()
+ ZiBi()'Bi(1)| (1 = 0)), (4a)
N(et, 1) = (®(t = 0)|Z,D,(t)'D,(1)|®(t = 0)), (4b)

where we consistently have N(e™,t) = N(e™,t) + 1 as the
result of the total charge conservation. If we insert the specific
initial state |®(t = 0)) = [BlTexp(i¢) + B,"1271/2|vac) into
these expressions and use the solutions Eqgs. (3), we obtain
N(e7,t)=N(e", 1,t) +N(e",2,t) + XpXn|Up,(t)|2, where
the occupation numbers of the two electronic bound states | 1)
and |2) can be derived as

N(e™, 1,1) = (®(0)[B; (1) By (1)|P(0))
= lexp(i $)U, 1 (t) + Uy 2(t)|*/2

+ ZalUpa (O, (5)
N(e™,2,t) = (®(0)|B2(t)" B> ()| (0))
= lexp(i 9)Us,1(t) + Un o (t)*/2
+ Uz (). (5b)

These expressions rely on all transition matrix elements
Uyn(t) and U, ;(t) and therefore illustrate the complex
many-body character of the vacuum. For example, in this
description, the vacuum state is formally described by all
states |n) with energy E < —mc? to be initially fully occupied
(see the Dirac sea in Fig. 1).

If we assume that the nucleus is highly charged such that
the two electronic states are deeply bound, we can neglect the
creation of any uncaptured electrons, i.e., & pZn|Up, n(t)|> ~
0 and the total number of created positrons can be obtained
as N(et,t) =N(e, 1,t) + N(e,2,t)-1. Furthermore, due

to the resulting completeness of the basis states, we have
T |Up ()17 = 1=|Uy 1 (t)|~|U1.2(2)]?, such that we derive for
the two occupation numbers the final remarkably simple ex-
pressions:

N(e™, 1, t;¢) = 1 — lexp(i ¢) Uy,1 (t) — Uy 2(1)[*/2,
(6a)

N(e™, 2, t;¢) = 1 — |exp(i §) U, 1 (t) — Un2(1)|* /2.
(6b)

As the computation of the time evolution of each of the
continuum energy states |n(¢)) is no longer required, the
vacuum decay can be obtained solely from the time evo-
lution of the two initial states |1) and |2). This means we
have successfully mapped the vacuum decay process to the
(mathematically fully equivalent) description in terms of two
mutually independent (single-electron) “ionization-like” pro-
cesses with two different sets of initial conditions. We use
the initial conditions {C;(0) =1, C,(0) = 0} to determine
{U1.1(@), Uz, 1(¢)} = {C1(2), C2(¢)} and the second set {C; (0) =
0, C3(0) = 1} to determine {U; »(¢), Uz’z(l)} ={Ci (1), C(1)}.
Note that the knowledge of the important phase ¢ (characteris-
tic of the quantum field theoretical initial state) is not required
at this particular first calculational stage.

The required set of amplitudes can be obtained as solutions
to the following set of Dirac equations:

ihdCy(t)/dt = ExCy(t) + R Qp sin (wt)C(2), (7a)
ihdC(t)/dt = E\Ci(t) + h Qq sin (wt)Cy(t)

+ /7 dE sin(wt)k(E)Cg(t), (7b)

ihdCg(t)/dt = E Cg(t) + sin (wt) k (E)Cy (1), (7c)

where the energy-dependent factor k(E) =

koll + (E + mc*)?/(m*c*)]"' models the density of the
negative continuum states and their coupling strength to the
ground state. We also neglected any multiphoton transitions.

In Fig. 3 we present our main results. We show the resulting
number of created positrons N(et,t;¢) = N(e™, 1,t;¢) +
N(e™,2,t;¢)-1 as a function of time for the four differently
prepared superposition states of the initial core electron.

The observed largest growth of the positron number
N(e™, t) occurs for the phase ¢ = 0. This is fully consistent
with our expectation as here the Rabi oscillation depletes
the level |1); therefore, the amount of the Pauli blocking de-
creases, which increases the capture probability for the created
electron. The opposite pattern is observed for ¢ = m, where
the growth of the positron’s creation probability N(e*, r;¢ =
) comes even momentarily to a halt after a time of about
7 /(2€29), when the occupation number of the ground state
|c1(¢)|? approaches unity and we have perfect Pauli blocking.

For this paper, the most important observation is that
N(e™,t;¢) is different for those two phases (¢ = 7 /2 and
¢ = 3w /2), which originally led to an identical occupation
le1()]> =1 for kg =0 (see Fig. 2). This unexpected re-
sponse suggests that—even if the underlying Pauli-blocking
strength is identical—the decay of the quantum vacuum
state can “sense” the electronic phase ¢. Quite interestingly,
while for kg = 0 the solution |c;(¢)|> = !/, is valid for any
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1
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FIG. 3. The time dependence of the created positrons as a func-
tion of time (in units of the laser period T = 27 /w) N(et,t) =
N(e,1,t)+ N(e",2,t)-1. Here the initially bound electron was
in the superposition state [exp(i¢)|1) + |2)]/2"/? with four differ-
ent initial phases ¢. All other parameters as in Fig. 1, except that
ko = 0.1m'%c. The open circles represent the predictions based on
the rotating-wave approximation and the crosses are the analyti-
cal predictions based on Fermi golden rule given by Eqs. (6) and
(9), where the vacuum decay constant is I' = 27 [k (E,)/2]?/k, with
E, = -1.4mc*.

Qy, the detected difference between N(e™,t;¢ = 7 /2) and
N(e",t;¢ = 37 /2) does depend on . This reflects the cru-
cial importance of the time dependence of the actual phase of
the complex amplitude ¢ (t) = exp[i¢(t)]2’1/ 2 in contrast to
the mere occupation number |c; (¢)|?.

In order to shine some more light on this observed
phase dependence, we examine its robustness with regard to
two standard theoretical approximation schemes. In Fig. 3
the exact predictions for N(e™,t;¢) were compared with
those obtained based on the rotating-wave approximation to
Eqgs. (7). The good agreement of the data in Fig. 3 (especially
for ¢ = 0 and ¢ = ) suggests that the RWA can describe the
positron number N(e*, r; ¢) very well.

The third set of comparative data (crosses) was obtained
under the additional single-pole (Fermi golden rule) approx-
imation, which permits even a fully analytical solution for
N(et,1;¢). If we solve Eq. (7¢) under the RWA for cg(z)
as a function of ¢;(¢), and insert this solution into the RWA
version of Eq. (7b), we obtain the set of integrodifferential
equations:

ilidey/dt = —h Qo/(2i)er (1), (8)

ifidey/dt = —h 20/ Qi)ea(t) + ko*/ (4ik)

—ﬂlCz t
X / dE ,o(E)/ dt
—00 0

x exp[—i(E — E)(t —1)/h]ci(r),  (8b)

where the resonant continuum energy is E, = E—hw. Un-
der the usual single-pole approximation, we can assume
that the integration kernel in Eq. (8b) is real and propor-
tional to fim§(t—1). This simplifies Eq. (8b) to ik dc;/dt =
hQ0/(2i)ca(t)—ihT /2 ¢1(¢), where the Fermi golden rule
(FGR) inverse timescale I" = 271(K(E,)/2)2/h is the vac-
uum’s decay rate. The resulting set of two coupled equations
can be solved analytically, leading to

up1(t) = exp (—T't/4)[cos (R /2) — ' sin (2t /2)/(2RQ)],
(9a)

w12(t) = up,1 (1) = exp (~T1/4) Qo sin (/2)/Q,  (9b)

uyo(t) = exp (—=TI't/4)[cos (2t /2) 4+ I' sin (2¢/2)/(22)],
9¢)

where the vacuum decay process modifies the Rabi fre-
quency to = [Q°—(I'/2)*]'/?. While these analytical
solutions (crosses in Fig. 3) approximate N(e',t;¢ = 0)
and N(e", ;¢ = ) remarkably well, they incorrectly pre-
dict N(eT,t;¢p =m/2) =N(et,t;¢ =37 /2). This means
that the important observed sensitity of the vacuum, to
be able to distinguish between the two phases ¢ = m /2
and 37 /2, has disappeared under this standard (FGR) ap-
proximation, which is usually rather accurate in ionization
applications. This sheds also some light on the dynamical
significance of the imaginary part of the integration kernel in
Eq. (8b).

In summary, as this study has introduced a phase-based
mechanism by which a coherently prepared electron can af-
fect the vacuum decay process, it provides naturally many
challenges. For example, as the phase ¢ has a clear temporal
impact on N(e',1), we would also expect energetic impli-
cations with regard to the positronic spectrum beyond the
Autler-Townes splitting [12—14], by which the core electron’s
coherence manifests itself in the positron’s momenta and an-
gular distributions as well as other electron-positron and likely
spin-related correlation properties.
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