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Control of the laser-induced vacuum decay by electronic phases2
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We examine the laser-assisted electron-positron pair-creation process from the quantum vacuum in the
presence of a binding potential with one optically active bound electron. If this core electron is initially prepared
in a coherent superposition state of two resonant bound states, the electronic phase properties between both
state excitations can be transferred to the positron during the pair-creation process. For example, the periodic
Rabi population exchange between both electronic states modulates the temporal growth of the pair-creation
probability and also leads to an Autler-Townes split positron energy spectra. Even more astonishing, for the case
of different phases, for which the internal electronic dynamics (in the absence of pair creation) is identical, the
positron’s creation probability is different, suggesting that the vacuum decay process can “sense” the phase and
not just the occupation number of the core electron. The field theoretical model of the laser assisted pair-creation
process with subsequent electron capture can be mapped exactly onto two mutually independent (single-electron)
ionization-like processes. This mathematical equivalency permits us to derive analytical solutions for the time
evolution of the vacuum decay process under the rotating-wave approximation.
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There are two main and independent mechanisms in quan-23

tum electrodynamics by which two fermions can affect each24

other. The first mode of interaction is based on a direct25

exchange of photons, leading to the Coulomb force in the26

classical limit. The second mode is based on the Pauli ex-27

clusion principle, which prohibits any multiple occupation of28

a fermionic quantum state. Here the resulting Pauli block-29

ing provides an alternative avenue by which the presence of30

one fermion can affect the state of another fermion without31

relying on any photons. To include the photonic exchange32

into quantum field theoretical descriptions is often difficult.33

For example, in nearly all models of the strong-field induced34

vacuum decay processes [1], where an external electromag-35

netic (or static electric) field is predicted to break down36

the quantum vacuum and create electron-positron pairs [2],37

the complicated photon-fermion couplings are approximated38

by the classical field approximation. Here only the Pauli-39

blocking mechanism induces multiparticle correlations. A40

well-known example of such a blocking effect is the Klein41

paradox [3,4], where an initial electron that has been injected42

into the spatially localized supercritical electric field region43

can suppress the positron creation probability during the scat-44

tering process, as the required final states of the associated45

created electron are already initially occupied (blocked) by46

the scattering electron.47

In this paper, we suggest that, in addition to photon ex-48

changes or the occupation number-based Pauli blocking, there49

is a third and nontrivial mechanism by which an already50

existing electron can modify the dynamics of the field-induced51

vacuum decay process. It turns out that the temporal growth52

pattern of the created electron-positron pairs can even be 53

controlled by the phase information of this electron [5–7]. 54

In order to illustrate this phase transfer mechanism in its 55

simplest possible form, we examine the vacuum’s decay in 56

the presence of a highly charged nucleus, which carries an 57

initial core electron (see Fig. 1) and can capture the created 58

electrons. If this core electron is prepared in a coherent su- 59

perposition of the nucleus’ two resonant bound states, the 60

electronic phase properties between both state excitations can 61

be transferred to the positron during the pair-creation process 62

beyond the usual (occupation number-based) Pauli-blocking 63

mechanism [8]. In fact, the vacuum can even distinguish be- 64

tween those electronic phases that lead to identical occupation 65

numbers, and (in the absence of pair creation) would preserve 66

these occupation numbers at all times. 67

Let us begin our discussion by specifying the dynamics 68

of the core electron in the absence of any pair creation. 69

Here we assume that this optically active electron is ini- 70

tially prepared in the linear superposition quantum state 71

[exp(iφ)|1〉 + |2〉]2–1/2 of the ground state |1〉 of energy E1 72

and the first excited state |2〉 of energy E2. The correspond- 73

ing time dependence of the amplitudes under the action of 74

the resonant laser field for the state C1(t )|1〉 +C2(t )|2〉 is 75

described by the well-known [9,10] two-level equations ih̄ 76

dC1/dt = E1C1 + h̄�0sin(ωt ) C2 and ih̄ dC2/dt = E2C2 + h̄ 77

�0sin(ωt )C1, where �0 denotes the product of the electric 78

field amplitude and the coupling strength between the two 79

states. If we assume full resonance, E2–E1 = h̄ω, the evolu- 80

tion of the occupation number |C1(t )|2 depends crucially on 81

the choice of the electron’s initial phase φ relative to the initial 82
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FIG. 1. The relevant continuum and discrete energy levels de-
scribing the laser field-induced electron-positron creation process
from the quantum vacuum in the presence of a nuclear potential,
which supports two bound states. While the created positron (hole in
the Dirac sea) can escape to infinity, the associated created electron
(green circle) is captured by the nucleus, which binds already one
resonantly driven core electron (black circle). The parameters in
our numerical simulations are E1 = –0.9mc2, E2 = –0.4mc2 and the
laser’s time dependence is given by �(t ) = �0sin(ωt ) with (scaled)
amplitude �0 = 0.005mc2/h̄ and frequency ω = 0.5mc2/h̄.

phase of the laser field, as we illustrate in Fig. 2 for the four83

choices: φ = 0, π/2, π , and 3π/2.84

The direct comparison with the probabilities obtained85

from the rotating-wave approximation (RWA) shows that this86

FIG. 2. The time evolution of the probability |C1(t )|2 to find the
core electron in state |1〉. For the initial excitation amplitudes we
chose C1(t = 0) = exp(iφ)/21/2 and C2(t = 0) = 1/21/2, with the
four phases φ = 0, π/2, π , and 3π/2. The predictions based on the
rotating-wave approximation are indicated by the open circles. The
time is in units of the laser period T = 2π/ω with all parameters as
in Fig. 1.

assumption is valid for our parameters. In fact, here we would 87

derive |c1(t )|2 = [1–sin(�0t )]/2, 1/2, [1 + sin(�0t )]/2 and 88

1/2, for the four choices: φ = 0, π/2, π , and 3π/2, respec- 89

tively. We have used the lowercase letter c1 for the rotating 90

frame. We note that the constant population |c1(t )|2 = 1/2 for 91

φ = π/2 (and similarly for 3π/2) can be explained by the fact 92

that this initial state matches exactly one of the two dressed 93

states, and not a superposition of both. 94

Next, we include the vacuum decay process, where we 95

assume that the created electron can be captured by the bound 96

state |1〉, while the associated created positron can escape 97

to infinity. If the vacuum’s decay rate is less then �0, then 98

at early times the pair-creation process affects the dynamics 99

of the core electron only minimally. This means that the 100

created electrons find their final state partially occupied with 101

a time-dependent occupation number |c1(t )|2. If the Pauli 102

blocking was the only interaction mode between the initially 103

bound core electron and the vacuum decay process, then this 104

mechanism would suggest that for times close to a quarter of 105

the Rabi period π/(2�0) the initial electronic phase φ = 0 106

would increase the positron creation probability as the block- 107

ing population (proportional to |c1(t )|2) decreases. Similarly, 108

the initial increase of |c1(t )|2 for the other phase φ = π should 109

decrease the positron creation. The most important question in 110

this paper, however, is whether the positron’s creation proba- 111

bility can even detect any difference between those two phase 112

choices (φ = π/2 and 3π/2), for which the “Pauli-blocking” 113

occupation number |c1(t )|2 = 1/2 is identical and even remains 114

so at all times. 115

To address this intriguing question, we have to change 116

from the simple quantum-mechanical approach, which was 117

sufficient to describe the single-particle dynamics of the core 118

electron, to a fully quantum field theoretical formalism in 119

order to predict the vacuum decay process. In the framework 120

of computational quantum field theory [11], all dynamical 121

features of the pair-creation process are modeled by the 122

electron-positron field operator �, whose space-time evolu- 123

tion is obtained by the Dirac equation ih̄ ∂�/∂t = H�, with 124

the usual Hamiltonian [1] given by 125

H = c α · [p − eA(r, t )/c] + mc2β + eV (r). (1)

The energy eigenstates of the Hamiltonian H0 ≡ cα · p + 126

mc2β + eV (r) in the absence of the time-dependent field A, 127

defined by H0|α〉 = Ea|α〉, can be categorized according to 128

their energy into three groups. If Eα � mc2, we denote these 129

positive continuum energy states as |p〉, if their energy is in- 130

side the mass gap –mc2 < Eα < mc2, we denote these discrete 131

electronic bound states as |i〉, and if their energy Eα � –mc2
132

is part of the negative energy continuum, we denote these 133

states as |n〉. If we introduce the sets of (anticommuting) 134

creation operators (Bp
†,Bi

†,Dn
†) and annihilation operators 135

(Bp,Bi,Dn) asscociated with these states, the mode expansion 136

of the quantum field operator is given by 137

�(t ) = 	pBp(t )|p〉 + 	iBi(t )|i〉 + 	nDn(t )†|n〉
= 	pBp|p(t )〉 + 	iBi|i(t )〉 + 	nDn

†|n(t )〉, (2)

where |α(t )〉 is the single-particle solution to ih̄ ∂|α〉/∂t = 138

H |α〉 with the initial state |α(t = 0)〉 = α〉. We note that this 139

particular mode expansion is different from the traditional 140
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approach [11], where one usually uses field-free states of H0141

with A = V = 0, labeled by their (conserved) momentum. If142

we use the orthogonality among the dressed eigenstates, we143

can find for the time evolution of the operators144

Bp(t ) = 	p′Bp′ 〈p |p′(t )〉 + 	iBi〈p |i(t )〉 + 	nDn
†〈p |n(t )〉,

(3a)

Bi(t ) = 	p′Bp′ 〈i |p′(t )〉 + 	i′Bi′ 〈i |i′(t )〉 + 	nDn
†〈i |n(t )〉,

(3b)

Dn(t )† = 	p′Bp′ 〈n |p′(t )〉 + 	iBi〈n |i(t )〉 + 	n′Dn′ †〈n |n′(t )〉.
(3c)

We see that the matrix elements Uα′,α (t ) ≡ 〈α′|α(t )〉 of the145

unitary time evolution operator are the basic building blocks146

of computational quantum field theory.147

The initial quantum field theoretical state is given148

here by the superposition |
(t = 0)〉 = [B1
†exp(iφ) +149

B2
†]2–1/2|vac〉. Here |vac〉 denotes the vacuum state,150

defined as Bp|vac〉 = Bi|vac〉 = Dn|vac〉 = 0. In its151

quantum-mechanical (single-particle) analog, the field152

theoretical state |
(t = 0)〉 would correspond to the153

one-electron quantum state given by the superposition154

[exp(iφ)|1〉 + |2〉]/21/2 as discussed above.155

The total number of electrons N (e–, t ) and positrons156

N (e+, t ) follow from the quantum field theoretical expectation157

values:158

N (e−, t ) = 〈
(t = 0)|	pBp(t )†Bp(t )

+	iBi(t )
†Bi(t )|
(t = 0)〉, (4a)

N (e+, t ) = 〈
(t = 0)|	nDn(t )†Dn(t )|
(t = 0)〉, (4b)

where we consistently have N (e–, t ) = N (e+, t ) + 1 as the159

result of the total charge conservation. If we insert the specific160

initial state |
(t = 0)〉 = [B1
†exp(iφ) + B2

†]2–1/2|vac〉 into161

these expressions and use the solutions Eqs. (3), we obtain162

N (e–, t ) = N (e–, 1, t ) + N (e–, 2, t ) + 	p	n|Upn(t )|2, where163

the occupation numbers of the two electronic bound states |1〉164

and |2〉 can be derived as165

N (e−, 1, t ) ≡ 〈
(0)|B1(t )†B1(t )|
(0)〉
= |exp(i φ)U1,1(t ) +U1,2(t )|2/2

+	n|U1,n(t )|2, (5a)

N (e−, 2, t ) ≡ 〈
(0)|B2(t )†B2(t )|
(0)〉
= |exp(i φ)U2,1(t ) +U2,2(t )|2/2

+	n|U2,n(t )|2. (5b)

These expressions rely on all transition matrix elements166

Uα,n(t ) and Uα,i(t ) and therefore illustrate the complex167

many-body character of the vacuum. For example, in this168

description, the vacuum state is formally described by all169

states |n〉 with energy E < –mc2 to be initially fully occupied170

(see the Dirac sea in Fig. 1).171

If we assume that the nucleus is highly charged such that172

the two electronic states are deeply bound, we can neglect the173

creation of any uncaptured electrons, i.e., 	p	n|Up, n(t )|2 ≈174

0 and the total number of created positrons can be obtained175

as N (e+, t ) = N (e–, 1, t ) + N (e–, 2, t )–1. Furthermore, due176

to the resulting completeness of the basis states, we have 177

	n|U1,n(t )|2 = 1–|U1,1(t )|–|U1,2(t )|2, such that we derive for 178

the two occupation numbers the final remarkably simple ex- 179

pressions: 180

N (e−, 1, t ; φ) = 1 − |exp(i φ)U1,1(t ) −U1,2(t )|2/2,

(6a)

N (e−, 2, t ; φ) = 1 − |exp(i φ)U2,1(t ) −U2,2(t )|2/2.

(6b)

As the computation of the time evolution of each of the 181

continuum energy states |n(t )〉 is no longer required, the 182

vacuum decay can be obtained solely from the time evo- 183

lution of the two initial states |1〉 and |2〉. This means we 184

have successfully mapped the vacuum decay process to the 185

(mathematically fully equivalent) description in terms of two 186

mutually independent (single-electron) “ionization-like” pro- 187

cesses with two different sets of initial conditions. We use 188

the initial conditions {C1(0) = 1, C2(0) = 0} to determine 189

{U1,1(t ),U2,1(t )} = {C1(t ),C2(t )} and the second set {C1(0) = 190

0, C2(0) = 1} to determine {U1,2(t ), U2,2(t )} = {C1(t ), C2(t )}. 191

Note that the knowledge of the important phase φ (characteris- 192

tic of the quantum field theoretical initial state) is not required 193

at this particular first calculational stage. 194

The required set of amplitudes can be obtained as solutions 195

to the following set of Dirac equations: 196

i h̄ dC2(t )/dt = E2C2(t ) + h̄�0 sin (ωt )C1(t ), (7a)

i h̄ dC1(t )/dt = E1C1(t ) + h̄�0 sin (ωt )C2(t )

+
∫ −mc2

−∞
dE sin (ωt ) κ (E )CE (t ), (7b)

i h̄ dCE (t )/dt = E CE (t ) + sin (ωt ) κ (E )C1(t ), (7c)

where the energy-dependent factor κ (E ) = 197

κ0[1 + (E + mc2)2/(m2c4)]–1 models the density of the 198

negative continuum states and their coupling strength to the 199

ground state. We also neglected any multiphoton transitions. 200

In Fig. 3 we present our main results. We show the resulting 201

number of created positrons N (e+, t ; φ) = N (e–, 1, t ; φ) + 202

N (e–, 2, t ; φ)–1 as a function of time for the four differently 203

prepared superposition states of the initial core electron. 204

The observed largest growth of the positron number 205

N (e+, t ) occurs for the phase φ = 0. This is fully consistent 206

with our expectation as here the Rabi oscillation depletes 207

the level |1〉; therefore, the amount of the Pauli blocking de- 208

creases, which increases the capture probability for the created 209

electron. The opposite pattern is observed for φ = π , where 210

the growth of the positron’s creation probability N (e+, t ; φ = 211

π ) comes even momentarily to a halt after a time of about 212

π/(2�0), when the occupation number of the ground state 213

|c1(t )|2 approaches unity and we have perfect Pauli blocking. 214

For this paper, the most important observation is that 215

N (e+, t ; φ) is different for those two phases (φ = π/2 and 216

φ = 3π/2), which originally led to an identical occupation 217

|c1(t )|2 = 1/2 for κ0 = 0 (see Fig. 2). This unexpected re- 218

sponse suggests that—even if the underlying Pauli-blocking 219

strength is identical—the decay of the quantum vacuum 220

state can “sense” the electronic phase φ. Quite interestingly, 221

while for k0 = 0 the solution |c1(t )|2 = 1/2 is valid for any 222
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FIG. 3. The time dependence of the created positrons as a func-
tion of time (in units of the laser period T = 2π/ω) N (e+, t ) =
N (e–, 1, t ) + N (e–, 2, t )–1. Here the initially bound electron was
in the superposition state [exp(iφ)|1〉 + |2〉]/21/2 with four differ-
ent initial phases φ. All other parameters as in Fig. 1, except that
κ0 = 0.1m1/2c. The open circles represent the predictions based on
the rotating-wave approximation and the crosses are the analyti-
cal predictions based on Fermi golden rule given by Eqs. (6) and
(9), where the vacuum decay constant is � ≡ 2π [κ (Er )/2]2/h̄, with
Er = –1.4mc2.

�0, the detected difference between N (e+, t ; φ = π/2) and223

N (e+, t ; φ = 3π/2) does depend on �0. This reflects the cru-224

cial importance of the time dependence of the actual phase of225

the complex amplitude c1(t ) = exp[iφ(t )]2–1/2 in contrast to226

the mere occupation number |c1(t )|2.227

In order to shine some more light on this observed228

phase dependence, we examine its robustness with regard to229

two standard theoretical approximation schemes. In Fig. 3230

the exact predictions for N (e+, t ; φ) were compared with231

those obtained based on the rotating-wave approximation to232

Eqs. (7). The good agreement of the data in Fig. 3 (especially233

for φ = 0 and φ = π ) suggests that the RWA can describe the234

positron number N (e+, t ; φ) very well.235

The third set of comparative data (crosses) was obtained236

under the additional single-pole (Fermi golden rule) approx-237

imation, which permits even a fully analytical solution for238

N (e+, t ; φ). If we solve Eq. (7c) under the RWA for cE (t )239

as a function of c1(t ), and insert this solution into the RWA240

version of Eq. (7b), we obtain the set of integrodifferential241

equations:242

i h̄ dc2/dt = −h̄�0/(2i)c1(t ), (8a)

i h̄ dc1/dt = −h̄�0/(2i)c2(t ) + κ0
2/(4ih̄)

×
∫ −mc2

−∞
dE ρ(E )

∫ t

0
dτ

× exp [−i(E − Er )(t − τ )/h̄] c1(τ ), (8b)

where the resonant continuum energy is Er ≡ E1–h̄ω. Un- 243

der the usual single-pole approximation, we can assume 244

that the integration kernel in Eq. (8b) is real and propor- 245

tional to h̄πδ(t–τ ). This simplifies Eq. (8b) to ih̄ dc1/dt = 246

h̄�0/(2i)c2(t )–ih̄�/2 c1(t ), where the Fermi golden rule 247

(FGR) inverse timescale � ≡ 2π (κ (Er )/2)2/h̄ is the vac- 248

uum’s decay rate. The resulting set of two coupled equations 249

can be solved analytically, leading to 250

u1,1(t ) = exp (−�t/4)[cos (�t/2) − � sin (�t/2)/(2�)],

(9a)

u1,2(t ) = u2,1(t ) = exp (−�t/4) �0 sin (�t/2)/�, (9b)

u2,2(t ) = exp (−�t/4)[cos (�t/2) + � sin (�t/2)/(2�)],

(9c)

where the vacuum decay process modifies the Rabi fre- 251

quency to � ≡ [�0
2–(�/2)2]1/2. While these analytical 252

solutions (crosses in Fig. 3) approximate N (e+, t ; φ = 0) 253

and N (e+, t ; φ = π ) remarkably well, they incorrectly pre- 254

dict N (e+, t ; φ = π/2) = N (e+, t ; φ = 3π/2). This means 255

that the important observed sensitity of the vacuum, to 256

be able to distinguish between the two phases φ = π/2 257

and 3π/2, has disappeared under this standard (FGR) ap- 258

proximation, which is usually rather accurate in ionization 259

applications. This sheds also some light on the dynamical 260

significance of the imaginary part of the integration kernel in 261

Eq. (8b). 262

In summary, as this study has introduced a phase-based 263

mechanism by which a coherently prepared electron can af- 264

fect the vacuum decay process, it provides naturally many 265

challenges. For example, as the phase φ has a clear temporal 266

impact on N (e+, t ), we would also expect energetic impli- 267

cations with regard to the positronic spectrum beyond the 268

Autler-Townes splitting [12–14], by which the core electron’s 269

coherence manifests itself in the positron’s momenta and an- 270

gular distributions as well as other electron-positron and likely 271

spin-related correlation properties. 272
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