Magnetic field-induced Freedericksz transition in a chiral liquid crystal
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Abstract

A wedge cell made of homeotropically treated glass plates is filled with a chirally-doped
nematic liquid crystal (LC). When a sufficiently large magnetic field is applied in the cell plane, a
bend-like distortion occurs above a Freedericksz threshold field Hi. Hi is reduced from the
achiral case because of a field-induced bend distortion that facilitates a chiral twist distortion.
Measurements of H: vs. sample thickness are reported and compare favorably with a theoretical
model presented herein. A further theoretical comparison is made between H:, and the electric-
field-induced transition in a geometry exhibiting a 2w azimuthal degeneracy. The results may

have technological implications in, for example, in-plane switching devices.

Introduction

The unique photonic and electro-optical properties of chiral liquid crystals have attracted
much attention and have made them widely used materials in many fields, including LC displays,
voltage modulated transparency eyeglasses, temperature visualization, and lasing [1-12]. The

Ill

chiral “cholesteric phase” is distinguished from the nematic phase by a helical director field

twisted along a well-defined axis perpendicular to the local director field. The spatial period over



which the director twists by 21 is called the chiral pitch p; the nematic phase correspondstop —

When an electric field is applied in an appropriate direction relative to a uniformly aligned
nematic liquid crystal filled between two substrates, there is competition between the electric
field energy and the elastic energy of the LC. The elastic energy stabilizes the uniform alignment
of the LC below a threshold field Eth that depends on the physical properties of the LC and the
cell thickness L; above the threshold field, director field fluctuations facilitate what is known as a
“Freedericksz transition” [13]. This phenomenon was the basis for some of the earliest LC
displays. Additionally, it has been shown that a magnetic field may also induce a Freedericksz
transition [13-15] due to the LC’s diamagnetic susceptibility anisotropy, which is almost always
positive.

For an appropriate geometry, the use of a chiral LC can reduce the Freedericksz threshold
electric field [16-19]. Consider a sufficiently small confinement ratio ¢ = L / p so that the director
of the cholesteric phase is untwisted to a uniform vertical (also known as homeotropic) alignment
along the z-axis normal to the cell plane. This phenomenon is an example of “surface
stabilization”. But a chiral LC prefers to undergo a twist distortion, which requires a director
component in the xy-plane. This condition can be met only if the uniform vertical alignment is
perturbed by a bend distortion, which can be achieved if the LC has a negative dielectric
anisotropy Ae < 0 and an electric field is applied along the z-axis so that it undergoes a
Freedericksz transition. Thus, the propensity of the chiral LC director to twist encourages the

appearance of a bend distortion and thus reduces the Freedericksz threshold voltage, which in



principle can even reach zero. This threshold reduction was studied by several groups [16-19],
and the behavior of the director field above the threshold voltage was also examined by [17-19].

The above surface-stabilized homeotropic geometry, a negative dielectric anisotropy
chiral LC, and an electric field normal to the cell plane is a high symmetry arrangement, as the
field-induced tilt of the director above the Freedericksz threshold is 2w azimuthally degenerate;
this has only limited practical use and is clearly different from “in-plane switching” (IPS) [20-22]
technology. We now ask the question: How might this behavior be modified if the 2n-degeneracy
is broken with an in-plane field and a positive anisotropy LC? That is, the applied field not only
induces a bend distortion, but the resulting twisted director is biased by the field to orient along
a particular direction in the cell plane. This can be achieved experimentally with a A > 0 chiral
LC and an electric field applied in the cell plane, perpendicular to the surface-stabilized director
orientation. However, an in-plane electric field suffers from spatial inhomogeneities, being
smallest midway between the electrodes and going to infinity at the electrodes [23]. LCs also
respond readily to magnetic fields. Thus, a spatially uniform in-plane magnetic field can be
applied to a positive diamagnetic susceptibility anisotropy (Ayx>0) chiral LC to achieve the desired
broken symmetry IPS experimental configuration. Results from magnetic measurements and
theory may provide important information on how one can manipulate E:;, in chiral electric field
IPS devices.

In this paper we report the magnetic response of a chiral nematic mixture having Ay >0,
initially surface-stabilized in the homeotropic configuration. By applying an in-plane magnetic
field perpendicular to the director, we measure a Freedericksz threshold field H: at which the

sample begins to undergo a combination of bend and twist distortions. This Hzx is lower than for



the achiral nematic. (Note that, for now, we write Hs as the generic threshold field for both
experimental Hex and theoretical Hrheor threshold field.) We present a theoretical model for this
symmetry-broken configuration, finding good agreement with experiment. Additionally, the

results are compared to the electric field 2n-degenerate experiments.
Experimental

Experimental details will now be presented. First, the LC cells and their assembly will be
described, followed by the experimental apparatus and results. Microscope glass slides of size 1
x 1 cm were cleaned with detergent and water, acetone, and then ethanol. A thin alignment layer
of the polyimide SE1211 (Nissan Chemical Industries) was deposited by spin-coating at 3000 rpm
for 30 s to promote homeotropic alignment, and then soft baked at 80 °C for 30 min and hard
baked at 180 °C for 1 h. A pair of wedge cells were prepared, each consisting of two such slides
separated on one end by Mylar spacer of nominal thickness 25 um and cemented together with
epoxy. The actual thickness L of the empty cells was determined as a function of position by
interferometry [24] and the uniformity by observation of Newton’s rings.

Two cells were filled in the isotropic phase, one with pure liquid crystal 4-cyano-4'-
pentylbiphenyl (5CB; EM Industries), and the other with a mixture of (0.73 + 0.03) wt-% chiral
dopant CB15 (EM Industries) in 5CB. Both were allowed to cool to room temperature where the
nematic phase was observed. The natural pitch of the doped LC was determined by the condition
¢ = 1, where the LC was no longer surface stabilized [14,17-19], and where we found p = (17 %
0.5) um. (This will be discussed in more detail later). Each sample was placed in an electromagnet
with transverse optical access and where the magnetic field H was oriented parallel to the cell

(Fig. 1, inset). Light from a 5 mW He-Ne laser passed consecutively through a polarizer, a focusing



lens, the sample, an analyzer, a light chopper used to remove effects of extraneous light, a
Babinet—Soleil compensator, and into a detector. The detector output was input to a lock-in
amplifier referenced to the chopper frequency. To improve the sensitivity of the optical
retardation measurements, the compensator was adjusted so that the optical retardation was
approximately w/4, and thus the optical intensity varied approximately linearly with sample
retardation. We then measured the magnetic threshold field for the Freedericksz transition of
the two wedge samples on slowly ramping up the field, and the results are shown in see Fig. 1.

(The lines show the theoretical values, as will be explained later.)
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Figure 1: Experimental and theoretical threshold field as a function of the sample thickness L. The
chiral and achiral data are shown as red circles and black squares, respectively. Typical error bars are
shown. The inset shows a schematic representation of the sample cross section above the Freedericksz

threshold field.



Theory

A theoretical model explaining these results will now be presented. Consider a chiral
nematic liquid crystal in a cell of constant thickness L with strong homeotropic anchoring at the
two surfaces z = L /2. The chiral nematic has spontaneous twist q,, elastic twist and bend
constants K,, and K3, respectively, and positive magnetic susceptibility anisotropy Ay. Subject
to a constant magnetic field H= HX, and omitting splay distortions that are expected to vanish

in this configuration near the Freedericksz transition, the free energy density is

K32 K33

f= (n Vxn+q0) + = |n><V><n| ——(H M2, Q)

where qo is the inverse pitch, viz., g, =27/p. We now assume a director field that is

independent of the lateral coordinates x,y, and take a single Fourier component, with
wavenumber ”/L in 8(z) (as a result of the homeotropic anchoring) and an arbitrary
wavenumber g in ¢(z). Choosing the phase to respect the n-rotation-about-X symmetry owing

to the magnetic field, and assuming a small perturbation away from i = Z, we obtain

fi=(a cos(”Z/L) cos(qz),a cos(”Z/L) sin(qz),1) + 0(a?). (2),

where a is the perturbation parameter. Substituting Eq. 2 into Eg. 1 and integrating, we obtain

the free energy per unitarea F = f f dz.To write the result in a compact way we first define

L/2

the following dimensionless parameters:



_ 4K,,L _ L | Ay 2Ky, L L 2K,,
F = F, H=— H, a = a, jg=—gq, do = — .
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Whence,
=  7m%q5 2 s sinc(md)] 772 & ~4
F = > +(1+q ddo [1+ =T ]H ) . + o0(a*). (3)

The stability of each mode corresponds to the sign of the @?-coefficient in Eq. 3 (negative is

unstable and positive is stable). Thus, we obtain the threshold magnetic field for each mode §:

~2 ~~ _ 1+3%*-ddo
HTheor(CI) = 1+sinC(ﬂ-ﬁ) (4)
1-g2

In Fig. 2 we show the calculated threshold field Hypeor Vs. all possible modes §, calculated
from Eq. 4, over a range of chiral concentrations g,. The most unstable mode for each is marked
with a dot and corresponds to the theoretical threshold field for the Freedericksz transition. The
director field of the homeotropically-aligned LC remains uniform for all H less than this most

unstable value of Hyp,or, but undergoes a Freedericksz transition at H = Hrpeor-

In principle, Eq. 4 admits a solution for which ﬁth — 0 for g, =2 and the resulting mode
g=1. Also note that in the limit p > o and/or L > 0, Eq. 4 reduces to the traditional

Freedericksz result H, . :’z—j(KB/A)() [26]. As discussed above, an analogous vanishing



electric field threshold was examined previously [16, 17, 19] in a Ae < 0 LC with the field applied
along the z-axis. In that case there was 2n-degenerate symmetry in the xy-plane, unlike our
current magnetic field configuration in which this symmetry is broken. (An inverse experiment
using a positive dielectric anisotropy to unwind a pitch in a large confinement parameter c=L/p

also has been reported [14]).
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Figure 2: Threshold field of every Fourier mode § for different values of the chiral dopant-induced
wavenumber (. The most unstable mode is marked with a dot and corresponds to the threshold field for

the Freedericksz transition.

Discussion

With this theoretical background, the results can now be better understood. When a
given sample was subjected to a field H < Hgxp, the photodetector intensity was effectively zero
(within noise), but increased sharply above Hexp, Which is a classic Freedericksz intensity result.

Figure 1 shows the experimental threshold Hexp and the theoretical threshold Hrueor values (from



Eq. 4 and Fig. 2) as a function of the sample thickness L. Here we used the parameters p =17 um,
K22 = 0.29 x 10° dyne, K33 = 0.75 x 10° dyne and Ay = 1.06 x 107 c.g.s. units [25]. Figure 1 shows
good agreement between the experimental and theoretical results, with inconsequential effects
due to finite anchoring conditions and cell thickness [24]. The black dashed line and the squares
represent, respectively, the theoretical and experimental threshold values for the achiral sample.
On the other hand, the chiral data are represented by the red dashed line for the theoretical and
by the red points for the experimental results.

The above estimate of the pitch p = (17 £ 0.5) um, obtained from the surface stabilization
condition ¢ = L/p = 1 [14, 17-19] is different from that obtained using the helical twisting power
(HTP) literature values (stated without error bars [27]). From a Cano-wedge experiment [28], we
would have obtained a longer pitch p ~ 18.7 um with error bars of at least 6% due to possible
(but unstated) uncertainties in the literature HTP value, in addition to errors due to uncertainties
of about +4% in our chiral dopant concentration. Our own attempt at the Cano-wedge technique
with our prepared sample resulted in even larger error bars. Thus, we have chosen to use our
more reliable determination of p by exploiting the ¢ = 1 surface stabilization criterion.

It is of interest to compare lower symmetry theoretical magnetic field result with the

higher symmetry theoretical electric field result of Crandall, et al [16]. For the case of the electric

field, where 2t symmetry was present, it was shown that the critical thickness L. = pK,, /2K,

at which E, — 0 for a chiral LC depends linearly on the pitch p [16]. For L < L, Ref. 16 shows
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The normalized value of L[?Etheo” Vs. L? is plotted as the solid blue line in Fig. 3, where the
normalization factor is its extrapolated value as L = O.

To compare Eqg. 5 with our magnetic field theory, we plot in Fig.3 the normalized electric
field results Vin? (i.e., (LE:m)? vs. L?, (left y-axis)) [13], where the normalization factor corresponds
to the value as L - 0. Thus, the normalized value of L?E:»? equals unity at L = 0. We also plot the
experimental L?H?, and the theoretically calculated L2H?rheor normalized values as a function of
the square of the cell thickness L? (right y-axis), again normalized to the value above when L - 0,
where Heyp = Hrheor. (Because of these normalizations, the magnetic (Ay) and dielectric (Ag)
anisotropies do not appear explicitly and the results from the two types of fields therefore can
be compared.) On the other hand, the chiral data are represented by the red dashed line for the

theoretical and by the red points for the experimental results.
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Figure 3: The chiral normalized experimental L?H?e, and normalized theoretical L?H*mheor magnetic field

results (red, right y-axis), as well as the normalized theoretical electric field L?E*meor (blue, left y-axis), as



a function of L? and using a pitch p = 17 um. The achiral normalized magnetic data and theory are shown

in black. Typical error bars are shown.

As expected, the electric field quantity is linear in L2, as per Eq. 5, whereas the magnetic
thresholds are not. The normalized quantities are both equal to unity at L? = 0 by design, and the
normalized L?H?rheor and L?E?rheor both vanish at the same extrapolated critical thickness L. = 22
um. (For this LC it is not possible to reach the limit L = L, as surface director stabilization breaks
down well below L¢; however, a LC with a larger K22/Ks3 ratio could make this viable. See, e.g.,
Eq. 5.) The theoretical L. result can be understood by noting that, by definition, both Erneor and
Htheor vanish at L., and therefore the geometry for both cases is 2n degenerate. However,
between the two limits of L2 =0 and L? = L2 the dependence of L?H?7heor ON the sample thickness
differs from that of L?E?meor, suggesting that the additional broken symmetry configuration
present in our samples plays an important role for the chiral LC. From Fig. 3 we see that our
experimental magnetic field data are consistent with the curvature of the chiral magnetic
Freedericksz transition presented above. We note, however, that if a longer pitch estimate (e.g.,
18.7 um) had been used in our magnetic field model calculations, L. would have been
approximately 23.5 um, and the agreement between chiral experimental magnetic field results

and theoretical predictions would have been weaker.

Conclusions

In summary, we studied the Freedericksz transition in a chirally-doped nematic LC in a

surface-stabilized homeotropic geometry by applying a spatially uniform, in-plane magnetic field



(i.e., normal to the director). This geometry results in a breaking of the 2n-degeneracy, as a
sufficiently large magnetic field induces a bend distortion such that the resulting twisted director
is biased to orient along the field direction in the cell plane. Our results show that both the
experimental and theoretical Freedericksz threshold fields Hexp and Hrneor decrease as the LC pitch
p decreases, i.e., at higher chiral dopant concentrations. Our theoretical model takes into account
the broken symmetry configuration, and demonstrates good agreement with our experimental
results. We also showed that the magnetic response of a chiral nematic mixture with a broken
symmetry differs qualitatively from that of the 2n-degenerate electric field response, although
relatively weakly. Although this geometry for a spatially-uniform magnetic field Freedericksz
transition is not likely to have any direct device applications, the results suggest that an electric
field arising from in-plane electrodes (which is inherently spatially nonuniform) may be used in,
e.g., in-plane switching (IPS) display devices to good effect: The threshold field E:» can be reduced

with a chiral dopant and the optics of the twisted director field may be exploitable.
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