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Abstract

Recurrent models are frequently being used in on-
line tasks such as autonomous driving, and a com-
prehensive study of their vulnerability is called for.
Existing research is limited in generality only ad-
dressing application-specific vulnerability or mak-
ing implausible assumptions such as the knowledge
of future input. In this paper, we present a general
attack framework for online tasks incorporating the
unique constraints of the online setting different
from offline tasks. Our framework is versatile in that
it covers time-varying adversarial objectives and var-
ious optimization constraints, allowing for a compre-
hensive study of robustness. Using the framework,
we also present a novel white-box attack called Pre-
dictive Attack that ‘hallucinates’ the future. The
attack achieves 98 percent of the performance of
the ideal but infeasible clairvoyant attack on aver-
age. We validate the effectiveness of the proposed
framework and attacks through various experiments.

1 Introduction
Deep neural networks (DNN) are discovered to be surpris-
ingly vulnerable to imperceptibly small input noises [Szegedy
et al., 2014; Goodfellow et al., 2015]. Many different types
of vulnerabilities of DNNs have been demonstrated in vari-
ous tasks, including classification, regression, and generative
methods [Ma̧dry et al., 2018; Gondim-ribeiro et al., 2018;
Dang-Nhu et al., 2020]. Most attacks have focused on offline
evasion attacks on non-temporal models, such as the image
classification model, where an attacker has access to the whole
input example, such as an image.

However, there are many security-critical tasks that in-
volve recurrent neural networks (RNN) performed in an on-
line fashion [Suradhaniwar et al., 2021; Pinto et al., 2021;
Huang et al., 2020]. For instance, mortality prediction [Haru-
tyunyan et al., 2019] continuously monitors hospitalized pa-
tients for early warning, and an autonomous driving agent that
uses sensors to decide the steering angle of the vehicle [Kiran
et al., 2021]. Unlike the offline setting, an attacker cannot
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Figure 1: Framework comparison for attacking an RNN of an online
task. “G”: Attack perturbation generator, “R”: Victim RNN.

observe the entire input sequence because inputs arrive as a
real-time stream to a victim and an attacker.

Previous works [Xie et al., 2020; Fawaz et al., 2019; Dang-
Nhu et al., 2020; Oregi et al., 2018] evaluated vulnerabilities
of RNNs but they implicitly assumed that future inputs are
observable, which is implausible (Figure 1-A, dashed box).
Meanwhile, [Gong et al., 2019] introduced a framework for
real-time attack (Figure 1-B) with two constraints unique to
the online problem: 1) future inputs are unobservable, and 2)
the past inputs are unchangeable. However, the framework is
rather specific to speech recognition (Figure 1-B, red boxes),
where classification is performed only once after receiving the
entire speech. Such an approach is inapplicable to dynamic
online tasks such as autonomous driving, where the agent has
to continuously decide the steering angle.

In this paper, we propose a more general framework of
online evasion attacks1 allowing a victim recurrent model to
make continuous predictions or decisions (Figure 1-C, circled
G and a round box). Our framework can accommodate vari-
ous adversarial objectives on RNN to address different attack
scenarios. In particular, our framework makes time-varying
adversarial objectives possible, unlike previous approaches
to attack at a specific time. The versatility of our framework
will allow for a comprehensive robustness study of recurrent
models. To showcase of the versatility, we reformulate the
objective of real-time attack [Gong et al., 2019], and present
novel adversarial objectives such as Time-window and Sur-
prise objectives using our framework.

As an effective solution to our framework, we propose a

1https://github.com/byunggilljoe/rnn online evasion attack. Ap-
pendix is included.

https://github.com/byunggilljoe/rnn_online_evasion_attack
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Figure 2: Attacking a vision-based autonomous driving agent to
change the steering angles. Clairvoyant Attack (A) can see all future
inputs and achieves the best attack but it is unrealizable. Predictive
Attack (B) emulates the clairvoyant by hallucinating the future using
a predictive model of the input sequence.

novel white-box attack called Predictive Attack (Figure 2-
B). An ideal solution to the online problem is the clair-
voyant attack (Figure 2-A), where an attacker does not suf-
fer from the online constraints, foreseeing the entire future
input. Thus the clairvoyant attack can find attack pertur-
bations with existing offline methods [Ma̧dry et al., 2018;
Croce and Hein, 2020]. Instead of clairvoyance, Predictive
Attack ‘hallucinate’ the future (Figure 2-B, green box) with
a trained predictive model of input sequences, mimicking the
crystal ball of a clairvoyant. Since accurate prediction can be
difficult, we propose an additional alternative attack called IID
Attack that replaces accurate prediction with IID sampling.
They perform surprisingly well, and we ascribe this to the
importance of considering the hidden states and input orders
when attacking recurrent models.

We evaluate our attacks using six datasets. Our predictive
attack approaches 98% of the performance of the clairvoyant
on average. We perform further empirical analysis of the pre-
dictive attacks demonstrating the versatility of our framework
and attack robustness. We summarize our contributions as
follows.

• We introduce a general formulation of online evasion
attacks on recurrent models, which can accommodate
various types of attack objectives and constraints, allow-
ing for a comprehensive study of robustness.

• We propose two novel white-box attacks, Predictive At-
tack and IID Attack, based on hallucination of the future
to emulate the ideal clairvoyant attacker.

• We evaluate the performance of our attacks under various
conditions using real-world data and demonstrate the
versatility and robustness of our framework and attacks.

2 Setting
Inputs and Outputs. An input stream/sequence x of length
L is a sequence of n-dimensional vectors (x1, x2, ..., xL) ∈
RL×n where the index refers to time step. Similarly, the output
sequence y of length L is sequence of outputs (y1, y2, ..., yL)
where yi ∈ R for a regression problem and yi ∈ {1, ..., C}
for a classification problem.

Victim Task. We attack recurrent neural networks (RNN)
that continuously predict the output at each time step. For-
mally, an RNN is a pair of functions fθ and gθ. At time
t, fθ : Rn × Rm → R predicts the current output by
yt = fθ(xt, ht) using the current input xt and the hidden
state ht ∈ Rm. The dynamics of the RNN is determined by
gθ : Rn × Rm → Rm which maps (xt, ht) to the next hidden
state by ht+1 = gθ(xt, ht).

Threat Model. We assume attackers have white-box access
to a victim model. Attackers can define an attack objective and
loss and can compute the derivative of the loss with respect
to an input. Also, Attackers have access to some examples of
input streams.

3 Online Evasion Attack Framework
Problem. The attacker aims to mislead a victim RNN
model (fθ, gθ) to output the (adversarial) target labels or
values (ya1 , · · · , yaL) by using the perturbed input sequence
(x1 + δ1, · · · , xL + δL). This is done by minimizing2 the
aggregate value of the losses Ladv

1 , · · · ,Ladv
L :

δ = argmin
δ=(δ1,··· ,δL)∈∆

Agg
(
Ladv
1 , · · · ,Ladv

L

)
, where (1)

Ladv
i is the loss at time i: Ladv

i = L(fθ(xi + δi, h
δ
i ), y

a
i ), and

hδ
i is the hidden state of the RNN at time i:

hδ
i = gθ(xi−1 + δi−1, h

δ
i−1). (2)

The Agg(·) refers to a method of temporal aggregation, and
∆ refers to any constraint on the perturbation sequence. Com-
pared to previous work [Gong et al., 2019], the present formu-
lation (Equation 10∼11) is much more flexible since the loss
and the target are allowed to be time-varying. For concreteness,
we will use the temporal summation Agg(L1, · · · ,Ll) =∑L

i=1 Li and the ℓp constraint ∆ = {∥δi∥p ≤ ϵ, ∀i} by
default:

δ = argmin
∥δi∥p≤ϵ, ∀i

L∑
i=1

Ladv(xi, y
a
i , δi, h

δ
i ). (3)

Online Constraints. Critically different from the much-
studied offline attacks, an online attack has to follow physical
constraints [Gong et al., 2019]. Firstly, an attacker cannot
perturb the future or the past input but only the current input.
Therefore, to solve Equation 3 an attacker has to solve

δt = argmin
∥δt∥p≤ϵ

L∑
i=t

Ladv(xi, y
a
i , δi, h

δ
i ) (4)

at each time step t = 1, · · · , L, which is the core of the
general online attack. Since the losses of the past (i < t) are
unchangeable they do not appear in the sum of the losses.
An important thing to note is that the current perturbation δt
affects all future losses Ladv

t+1,Ladv
t+2, · · · due to the nature of

RNNs, which we call victim model dynamics property. A

2The current description is for targeted attacks but we can also
perform untargeted attacks as well.
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Figure 3: Comparison of attack methods: reference (A and B) and
proposed (1, 2). Please refer to Method for details.

successful online attack therefore has to exploit this property.
Furthermore, the sum can be rewritten as

δt = argmin
∥δt∥p≤ϵ

Ladv(xt, y
a
t , δt, h

δ
t )︸ ︷︷ ︸

(A) Current

+
L∑

i=t+1

Ladv(xi, y
a
i , δi, h

δ
i )︸ ︷︷ ︸

(B) Future, not observed.

.

(5)

As the equation shows, this optimization problem cannot be
solved directly due to the second constraint of the online attack:
we do not know the future inputs xt+1, xt+2, · · · . Although
seemingly impossible, we make it possible by exploiting the
temporal dependence of the inputs in a stream, on which
the decisions of RNN depend ultimately. (Details in the next
section.) To mount a successful attack, an online attacker has to
exploit both victim model dynamics and temporal dependence.

3.1 Greedy and Clairvoyant Attack
We propose two reference attacks that exemplify a crude attack
and an ideal attack. These attacks can help us understand the
other attacks in the following sections. Greedy Attack (Fig-
ure 3-A) provides a lower bound of attack performance which
does not consider the victim model dynamics and the temporal
dependency. This attack only considers the current loss (A)
of Equation 5. Clairvoyant Attack (Figure 3-B) is an ideal,
unrealizable attack that assumes the full observability of the
future part of an input sequence; thus can fully use the victim
model dynamics (Figure 3-B, red line), and temporal depen-
dence (Figure 3-B, blue line). The Clairvoyant provides the
upper bound of performance an attack can achieve.

4 Method
4.1 Attacks using Future Hallucination
Since the ideal Clairvoyant Attack is impossible, we replace
the true future with a ‘hallucination’ of it. We propose two
methods for the hallucination: using a predictive recurrent

Algorithm 1 Predictive Attack at time t.
1: count← 0
2: while count < MAX COUNT do
3: Ltotal(δt)← Ladv(xt, y

a
t , δt, h

δ
t )

. +
∑t+K

i=t+1 EQϕ(xi|x:i−1)[Ladv(xi, y
a
i , δi, h

δ
i )]

. using Monte-Carlo to compute EQϕ
[·].

4: ∀i ∈ [t, t+K],
5: δi ←− Π∥δi∥p≤ϵ[δi − αsign(∇δiLtotal(δt)]
6: δi ←− clip(xi + δi)− xi

. It forces a valid range of perturbed inputs.
7: count←− count+ 1
8: end while
9: return δt

model (Predictive Attack), and random data substitution (IID
Attack).

Predictive Attack. Predictive Attack (Figure 3-1) uses a fu-
ture predictive model to mimic Clairvoyant Attack. We define
the attack objective of Predictive Attack as follows:

δt =argmin
∥δt∥p≤ϵ

Ladv(xt, y
a
t , δt, h

δ
t )︸ ︷︷ ︸

(A) Current

+ Ep(xt+1:|x:t)

[
t+K∑
i=t+1

Ladv(xi, y
a
i , δi, h

δ
i )

]
︸ ︷︷ ︸

(B) Future, xt+1: depends on x:t.

.
(6)

Due to linearity the second term can be simplified as

t+K∑
i=t+1

Ep(xi|x:t)

[
Ladv(xi, y

a
i , δi, h

δ
i )
]
. (7)

Instead of directly modeling the distribution p(xt+1:|x:t), we
undertake the easier task of generating the future input with a
(stochastic) generative model Qϕ(xt+1|x:t) that predicts the
next input xt+1 given x:t (Figure 3-1, blue). We restrict the
number of the prediction steps to K, called lookahead since
we cannot consider all future inputs with finite resources.

We use another RNN to model the generator Qϕ to pre-
dict the next input xt+1 from x:t, using examples of input
sequences as a training dataset. (Model details are in Experi-
ments and Appendix B.)

Algorithm 1 describes Predictive Attack’s update rule for
δt, which is a variant of [Ma̧dry et al., 2018]. The hyper-
parameters MAX COUNT and α determine the number of
updates and the step size of an update. We elaborate more on
this in Appendix A.

IID Attack. Hallucinating the future based on an accurate
Qϕ can be difficult due to the test-time cost of the prediction
or the training-time cost of Qϕ. To relieve this, we present a
heuristic, IID Attack, to replace the prediction model. IID At-
tack (Figure 3-2) simply ignores the temporal dependence and
predicts the future using IID sampling of the input data (Fig-
ure 3-2, green), that is, using Ep(xi)[·] instead of Ep(xi|x:t)[·]
in Equation 6. Practically, this can be done by collecting a suf-
ficient number of past input data and randomly choosing one



Victim Clean
Dataset Task n L Performance

MNIST C-2 28 28 0.96 (Acc.)
FashionMNIST C-10 28 28 0.71 (Acc.)

Mortality C-2 76 48 0.86 (AUC.)
User C-22 3 50 0.61 (Acc.)

Udacity R 4096 20 0.05 (MSE)
Energy R 22 50 0.01 (MSE)

Table 1: Summary of datasets. “C-N” means N-class classification,
and “R”means Regression. “n” is a dimension of xi.

of them as an IID example. Even with the incorrect prediction
of IID, it is still using the victim model dynamics (Figure 3-2,
red). Such a consideration makes a big difference compared
to the current-only greedy perturbation δt as we will see.

4.2 Incorporating Different Objectives
The general form of the framework (Equation 10) allows var-
ious attacks through the choice of Agg(·) and the constraint
∆. To showcase our framework’s versatility, we choose γi-
weighted sum as an instance of Agg(·):

δ = argmin
∥δi∥p≤ϵ, ∀i

L∑
i=1

γiLadv(xi, y ∈ {yi, yai }, δi, hδ
i ). (8)

In the following, we present three example attacks possible
with this aggregation.
Real-time Attack. The real-time attack [Gong et al., 2019]
is a special case of this formulation when γi = 0 for i < L
and γL = 1, which aims to mislead the last victim output.
Time-window Attack. This attack causes misclassifica-
tion/prediction at only at specific times interval [a, b]. This
can be useful when 1) the attack has a more impact at specific
times, or 2) the attacker has to avoid detection for a time inter-
val where the victim is vigilant. We can implement this attack
by setting y = yai , γi = 1 if i ∈ [a, b] and y = yi, γi = τ(> 0)
otherwise in Equation 8.
Surprise Attack. Surprise Attack induces untargeted error

abruptly by maximizing the difference between the maximum
error and the mean error over time:

argmin
∥δi||p≤ϵ, ∀i

[
1

L

∑
i

Ladv(xi, yi, δi, h
δ
i )

−max
j
Ladv(xj , yj , δj , h

δ
j)

]
.

(9)

This attack prevents a victim from reacting properly, thus
causing more damage with the same error. For example, an
abrupt steering angle change will be more damaging to an
autonomous vehicle than a smooth angle change over time.

5 Experiment
We evaluate our attacks to answer the following research ques-
tions. RQ1. How much does Predictive Attack improve the
attack performance?, RQ2. How versatile is our online evasion
attack framework? RQ3. How robust is Predictive Attack?
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Figure 4: Target label and values of attacks.
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Figure 5: Performance evaluation of Predictive Attack and baselines.

Datasets. We use six datasets for classification and regres-
sion in our evaluations as summarized in Table 1.

• MNIST [LeCun et al., 1998]: Given a column sequence
(vertical lines) of a digit image, predict the correct label
of each column. Two classes, 3 and 8, are selected.

• FashionMNIST [Xiao et al., 2017]: The same format
as MNIST but containing clothing images. We use 10
classes for a harder classification problem.

• Mortality [Harutyunyan et al., 2019]: Given a sequential
medical record, predict a patient’s mortality every hour.

• User [Casale, 2014]: Given a sequence of x-y-z accelera-
tions from a user, predict the user of the sequence.

• Udacity [Gonzalez et al., 2017]: Given a sequence of
camera images, predict steering angles. We resized the
images to 64 x 64 and sequence duration is 0.67s.

• Energy [Candanedo et al., 2017]: Given a sequence of
27 weather sensors, predict electricity consumption of a
building.

Model Parameters. All models, except for Udacity, con-
sist of one LSTM layer followed by two linear layers with
ReLU activations. For Udacity, we use CNN-LSTM as a vic-
tim model, and CrevNet [Yu et al., 2020] as Qϕ to deal with the
high-dimensional images. More model details are in Appendix
B.We the Adam optimizer for training with a learning rate of
1e-4. Table 1 summarizes victim’s clean performances. We
use ROC-AUC for Mortality to be comparable to the original
reports [Harutyunyan et al., 2019].
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Attack Target and Performance Metric. To evaluate the
proposed framework and the attack, we use time-varying target
outputs for both classification and regression as depicted in
Figure 4. It is intended to simulate the dynamic nature of
real online attacks better. Appendix F contains more results
with other target patterns. An effective attack should achieve
high TASR and low TMSE. TASR (Targeted Attack Success
Ratio) is the number of time steps where a victim model yields
targeted labels, over the total number of time steps L. TMSE
(Targeted Mean Squared Error) is the mean squared error
between victim model outputs and the targeted values. We use
temporal summation as an attack objective (Equation 3) if not
specified.

Miscellaneous. The input values range from 0 to 1, and we
use ℓ∞ norm constraints for all tests. We set MAX ITERS =
100, and α = 1.5ϵ/MAX ITERS. We report average results of
three experiment repetitions retraining a victim model initial-
ized with random weights. Predicted inputs and the perturbed
inputs of our attack are presented in Appendices D and E.

5.1 Performance Evaluation
In Figure 5, we answer RQ1 by comparing the performance of
Predictive Attack with Greedy and Clairvoyant. The x-axis is ϵ,
ℓ∞ norm of a perturbation, and the y-axis is the performance
metric. On average at maximum ϵ of each plot, the perfor-
mance of Predictive Attack (straight blue) approaches 98% of
Clairvoyant Attacks’s TASR (green). Predictive Attack also
performs 138% of Greedy Attack’s TASR (red). In particular,
it is worth noting that safety-critical tasks such as Mortality
and Udacity are more prone to attacks than the toy datasets,
MNIST and Fashion MNIST.
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Figure 8: Comparison of attacks with Real-time Attack’s objective.

IID Attack’s comparable performance (93% of Predictive
Attack on average) to that of Predictive Attack shows the im-
portance of victim model dynamics. In particular, in Mortality,
IID Attack shows the closest performance to Predictive Attack.
We surmise the victim model is more dependent on model
dynamics to solve the mortality prediction task. For example,
a patient’s current severity may depend on a medical record
several hours ago, not on the current medical record.

For a qualitative analysis, we visualize the results in Fig-
ure 6. We chose (a) Udacity, (b) Mortality, and (c) Energy for
visualization. In each figure section, the three rows correspond
to benign examples, corresponding adversarial examples, and
victim model outputs, respectively. The x-axis is time. We can
see that Predictive Attack (blue) closely follows the target val-
ues or labels (dashed black) much better than Greedy Attack
(red) can.

In Figure 7, we investigate the effect of lookahead K. The
x-axis is ϵ, and the y-axis is attack performance. The color of
a bar represents a different K. As a result, we find that there
is an optimal K. We attribute this to the limitation of Qϕ. By
increasing K until Qϕ can predict accurately, the attack can
use the longer temporal dependence and victim model dynam-
ics, leading to the performance improvement. However, if K
exceeds the limit, the attack performance decreases because
of incorrect future inputs and their wrong perturbations. An
attack time should be short to perturb more inputs in a lim-
ited time interval. We measured the time per a time step for
Predictive Attack to reach 90% of the saturated performance
(when MAX ITERATION is used). For Mortality and Energy,
the time is short enough, 0.03 secs and 0.05 secs, considering
3600 secs and 600 secs of each dataset’s time step duration.
For Udacity, it takes 0.25 secs, which is longer than usual
duration of camera input, 0.03 secs. However, we believe that
the time can be reduced by using a dedicated hardware or
compressing the predictor model.
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Figure 9: Effect of using the Time-window Attack objective whose
purpose is to restrict the error to the interval [3/4L,L]. Note that
non-window attacks cause error before this interval.
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cause a sudden error and disrupt the victim from responding properly.

5.2 Versatility of the Attack Framework
Evaluating the effectiveness of different objectives from our
framework, we answer RQ2, versatility of our framework.

Real-time Attack. In Figure 8, we test a real-time attack
objective [Gong et al., 2019] as a special case of our frame-
work. A real-time attacker aims to mislead the last output of
a victim model and is untargeted; thus, y-axis is “Fool Rate”
that means a frequency of wrong victim decisions. Imitation
learning-based real-time attack [Gong et al., 2019] is reimple-
mented, referring to the public codes3 (See Appendix K for
detail explanations.). Predictive Attack surpasses the imitation
learning-based attack (88∼100% vs. 24∼94% of experts’ per-
formance). Note that this gain of Predictive Attack comes at
the cost of solving PGD, unlike the imitation learning-based
attack that depends on a pre-trained agent. Predictive Attack is
good for achieving a high attack performance, while imitation
learning-based attack is suitable for fast attacks.

Time-window Attack. We demonstrate the attack with tem-
poral specificity. We chose the interval [a = 3/4L, b = L] as
the intended window of error. In Figure 9, we present the per-
formance of Predictive Attack with/without the Time-window
objective. The x-axis is time. We set the y-axis as “Fool Rate”
and “Fool MSE” (MSE between true values and victim out-
puts) . An ideal attack should cause non-zero values only
in [3/4L,L]. Predictive Attack fulfills this objective and in-
creases the error after t=a in contrast to non-window attacks.
We also find τ controls the trade-off between attack perfor-
mance and compliance with the time-window.

Surprise Attack. We conduct Surprise Attack experiment
with the autonomous driving task from Udacity, where Sur-
prise Attack can be practically important. We define Surprise

3https://github.com/YuanGongND/realtime-adversarial-attack

Predictive Greedy
Dataset ϵ K η = 0 η = 0.4

MNIST 0.08 8 0.66 0.64 0.56
FashionMNIST 0.30 8 0.76 0.74 0.63

Mortality 0.15 32 0.85 0.80 0.52
User 0.30 10 0.34 0.25 0.28

Udacity (MSE) 0.05 16 0.35 0.37 0.41

Table 2: Predictive Attack against incorrect future prediction.

Dataset ϵ K Whitebox Graybox

MNIST 0.3 28 0.86 0.64
FashionMNIST 0.5 28 0.88 0.47

Mortality 0.15 32 0.85 0.75
User 0.5 10 0.54 0.21

Udacity (MSE) 0.06 16 0.30 0.47

Table 3: Predictive Attack when model parameters are unknown.

Error as maxi|yi− f(xi, h
δ
i )|−meani|yi− f(xi, h

δ
i )|. In Fig-

ure 10, Predictive Attack with Surprise objectives achieves
about 2.09 times higher Surprise Error than a naive Predictive
Attack and Greedy at ϵ = 0.08.

5.3 Robustness Evaluation
To answer RQ3, we evaluate Predictive Attack under a variety
of unseen situations in our attack framework.
Incorrect Future Prediction. We investigate the perfor-

mance of Predictive Attack under degraded Qϕ. To control the
prediction quality, we replace a predicted future input xt with
xη
i = (1− η)xi+ ηe, where e is a uniform random variable in

the valid input range. In Table 2, although slightly decreased
as the noise is added (η = 0.4), Predictive Attack performs
better than Greedy Attack, using the victim model dynamic as
consist with the case of IID Attack in Figure 5.
Unknown Model Parameters. To evaluate the robustness

under limited victim information, a transfer attack [Liu et al.,
2017] is conducted (Table 3). We assume a gray-box threat
model where an attacker knows a victim model’s architecture
but not model parameters. Adversarial examples generated
from an attacker-trained surrogate model are transferred to
the actual victim model. Transfer attack achieves average 63%
performance of white-box attack in the classification tasks, up
to 88% in Mortality.

6 Conclusion
This paper introduces a general framework for online evasion
attacks on recurrent models. Our framework can accommo-
date various time-varying attack objectives and constraints,
allowing a comprehensive robustness analysis. Based on our
framework, we propose Predictive Attack and IID Attack.
The success of these attacks highlights the new surface of
attack for recurrent models, which need to be addressed. How-
ever, defense in the online setting has not been fully stud-
ied yet, while existing offline defenses [Ma̧dry et al., 2018;
Zhang et al., 2019] are not suitable for online tasks. We leave
it as future work to investigate online defense methods.

https://github.com/YuanGongND/realtime-adversarial-attack
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Appendices
A Algorithm Details
We elaborate on the details of the proposed attack algorithm.
Algorithm 2 is the same Algorithm 1 in the main paper. It
is repeated for readability. This algorithm describes how a
current perturbation δt is generated.

Algorithm 2 Predictive Attack at time t (Repeated for expla-
nation).

1: count← 0
2: while count < MAX COUNT do
3: Ltotal(δt)← Ladv(xt, y

a
t , δt, h

δ
t )

. +
∑t+K

i=t+1 EQϕ(xi|x:i−1)[Ladv(xi, y
a
i , δi, h

δ
i )]

. using Monte-Carlo to compute EQϕ
[·].

4: ∀i ∈ [t, t+K],
5: δi ←− Π∥δi∥p≤ϵ[δi − αsign(∇δiLtotal(δt)]
6: δi ←− clip(xi + δi)− xi

. It forces a valid range of perturbed inputs.
7: count←− count+ 1
8: end while
9: return δt

Line 1, 2, 7: δt is computed for MAX COUNT iterations,
and count is an iteration counter.
Line 3: Total adversarial loss is computed. To that end, we
predict future inputs (xi, ∀i ∈ [t + 1, t + K]) based on the
past and predicted observations x:i−1 with a predictive model
Qϕ. Furthermore, if we use a stochastic predictive model, we
can use a mean of adversarial losses computed from multiple
predictions (Monte-Carlo). The initial perturbations (δi, ∀i ∈
[t+ 1, t+K]) are zero vectors.
Line 4, 5: For each i, we update δi based on Projected Gradient
Descent. Π restricts the p-norm of δi to be less than ϵ.
Line 6: In addition, δi is needed to be in a valid input range.
For instance, a range of pixels of image inputs is [0, 1] or [0,
255].

B Model Parameters
We provide detailed information about the parameters for
models (fθ, gθ) and Qϕ. The model structure is shared for
MNIST, FashionMNIST, and Mortality, while Udacity uses a
different model for high dimensional inputs.

B.1 MNIST
Victim RNN (fθ, gθ)

• Input: xt ∈ R28, ht ∈ R4.

• Output: ŷt ∈ R2.

1. LSTM (in=28, hidden=4)

2. Linear (in=8, out=10, bias=True)

3. ReLU

4. Linear (in=10, out=2, bias=True)

Predictor RNN Qϕ
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Figure 11: Prediction performance of Qϕ on MNIST and FashionMNIST.

• Input: xt ∈ R28, ht ∈ R128.
• Output: x̂t+1 ∈ R28.

1. LSTM (in=28, hidden=128)
2. Linear (in=128, out=150, bias=True)
3. Dropout (drop probability=0.3)
4. ReLU
5. Linear (in=150, out=28, bias=True)

B.2 FashionMNIST
Victim RNN (fθ, gθ)

• Input: xt ∈ R28, ht ∈ R8.
• Output: ŷt ∈ R10.

1. LSTM (in=28, hidden=8)
2. Linear (in=8, out=10, bias=True)
3. ReLU
4. Linear (in=10, out=10, bias=True)

Predictor RNN Qϕ

• Input: xt ∈ R28, ht ∈ R128.
• Output: x̂t+1 ∈ R28.

1. LSTM (in=28, hidden=128)
2. Linear (in=128, out=150, bias=True)
3. Dropout (drop probability=0.3)
4. ReLU
5. Linear (in=150, out=28, bias=True)

B.3 Mortality
Victim RNN (fθ, gθ)

• Input: xt ∈ R76, ht ∈ R16.
• Output: ŷt ∈ R2.

1. LSTM (in=76, hidden=16)
2. Linear (in=16, out=10, bias=True)
3. ReLU
4. Linear (in=10, out=2, bias=True)

Predictor RNN Qϕ

• Input: xt ∈ R76, ht ∈ R128.
• Output: x̂t+1 ∈ R76.

1. LSTM (in=76, hidden=128)

2. Linear (in=128, out=150, bias=True)
3. Dropout (drop probability=0.3)
4. ReLU
5. Linear (in=150, out=76, bias=True)

B.4 User
Victim RNN (fθ, gθ)

• Input: xt ∈ R3, ht ∈ R256.
• Output: ŷt ∈ R22.

1. LSTM (in=3, hidden=256)
2. Linear (in=256, out=200, bias=True)
3. ReLU
4. Linear (in=200, out=200, bias=True)
5. ReLU
6. Linear (in=200, out=200, bias=True)
7. ReLU
8. Linear (in=200, out=22, bias=True)

Predictor RNN Qϕ

• Input: xt ∈ R3, ht ∈ R128.
• Output: x̂t+1 ∈ R3.

1. LSTM (in=3, hidden=128)
2. Linear (in=128, out=150, bias=True)
3. Dropout (drop probability=0.3)
4. ReLU
5. Linear (in=150, out=3, bias=True)

B.5 Udacity
Victim RNN (fθ, gθ)

• Input: xt ∈ R64×3, ht ∈ R256.
• Output: ŷt ∈ R.

1. Conv. (in-channel=3, out-channel=16, kernel-size=16,
stride=1)

2. ReLU
3. Conv. (in-channel=16, out-channel=16, kernel-size=16,

stride=2)
4. ReLU
5. Conv. (in-channel=16, out-channel=2, kernel-size=8,

stride=2)



6. LSTM (in=50, hidden=32)

7. Linear (in=32, out=50, bias=True)

8. ReLU

9. Linear (in=50, out=1, bias=True)

Predictor RNN Qϕ

Qϕ consists of two models: 1) Revertible Encoder, and 2)
Frame Predictor. The Revertible Encoder is a revertible func-
tion that maps an input image to a feature vector. The Frame
Predictor is a recurrent model that predicts a feature vector
of the next time step, based on the current feature vector and
a hidden state. After that, the Revertible Encoder reverts the
predicted feature vector and obtains the predicted next input.
Please refer to the original paper of CrevNet [Yu et al., 2020]
and the public implementation4 for details.

• Input: xt ∈ R64×64×3, ht ∈ R512.

• Output: x̂t+1 ∈ R64×64×3.

1. Revertible Encoder (in=64× 64× 3, out=512)

2. Frame Predictor (in=512, out=512)

B.6 Energy
Victim RNN (fθ, gθ)

• Input: xt ∈ R27, ht ∈ R16.

• Output: ŷt ∈ R.

1. LSTM (in=27, hidden=16)

2. Linear (in=16, out=200, bias=True)

3. ReLU

4. Linear (in=200, out=200, bias=True)

5. ReLU

6. Linear (in=200, out=200, bias=True)

7. ReLU

8. Linear (in=200, out=1, bias=True)

Predictor RNN Qϕ

• Input: xt ∈ R27, ht ∈ R128.

• Output: x̂t+1 ∈ R27.

1. LSTM (in=27, hidden=1024)

2. Linear (in=1024, out=150, bias=True)

3. ReLU

4. Linear (in=150, out=27, bias=True)

C Mathematical Formation of Metrics in
Experiments

We provide mathematical formation of attack performance
metric for each type of task.

4https://github.com/gnosisyuw/CrevNet-Traffic4cast.git
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Figure 13: Prediction performance of Qϕ on Mortality. 76 dimensions
of one-hot encoding and real-valued data, L = 48.

Classification Tasks. We measure Targeted Attack Success
Ratio (TASR), a fraction of time steps where predicted labels
are matched to target labels (yai ) over the number of total time
steps (L). 1[·] is an indicator function.

TASR =

∑L
i=1 1[fθ(xi + δi, h

δ
i ) = yai ]

L

Regression Tasks. We measure Targeted Mean Squared Er-
ror (TMSE) between predicted values and target values.

TSME =
1

L

L∑
i=1

(fθ(xi + δi, h
δ
i )− yai )

2

D Prediction Performance
To demonstrate the performance of Qϕ, which is important for
the Predictive Attack, we present the prediction results in Fig-
ure 11, 13, 14, 15, and 16. Given a partial early observations
of a sequence x, Qϕ predicts the rest of the sequence. For
MNIST, FashionMNIST, and Mortality, we restrict the obser-
vation to the first half (L/2). We find Qϕ performs well on the
datasets. Especially, Qϕ finds a natural extension of observed

https://github.com/gnosisyuw/CrevNet-Traffic4cast.git


Figure 14: Prediction performance of Qϕ on User. 3 dimensions of
real values, L = 50.

strokes of a digit. Qϕ also seems to learn the symmetric prop-
erty of clothing. Qϕ finds the characteristics of Mortality: the
composition of one-hot encoding (top-part) and real-valued
(bottom-part) data. It produces realistic data, although some
one-hot encoding is not correct due to its randomness.

For Udacity, Qϕ observes the first five frames of road scenes
and predicts the rest. We can see that Qϕ captures the dynamics
of near vehicles and shadows.

E Adversarial Examples

To demonstrate the imperceptibility of perturbations, we
present adversarial examples generated by Predictive Attack in
Figure 17, 18, 19, 20, and 21. We verify that the perturbations
are hard to notice, although they fool the victim RNNs, achiev-
ing 0.83, 0.80, 0.38 and 1.16 evaluation metric, respectively
for MNIST, FashionMNIST, Mortality, and Udacity.

F Attack Performance with Different Targets

In order to evaluate the attack performance in more diverse
targets, we increase the speed of target change. “Target fre-
quency” refers to the speed at which the target changes. For
example, the targets in Figure 4 of the main paper correspond
to frequency 2. By increasing the target frequency from 1 to
12, the results are summarized in Figure 12. It is confirmed
that Predictive Attack shows performance close to Clairvoyant
Attack even when the target frequency is changed.

Overall, in the case of the classification task, the attack per-
formances tend to decrease as the target frequency increases.
We guess this is because the frequent target changes make the
adversarial objective more difficult to achieve. On the other
hand, Udacity and Energy, which are regression tasks, showed
different results. We guess y ranges of each training dataset
affect the results. We assume it is easier to mislead a victim to
yield an observed value in training than an unobserved value.
As the target frequency increases too fast to follow, misleading
a victim model to yield y = 0 would be advantageous as it
can reduce the average TMSE. However, in the case of Energy,
attacks would suffer from more difficulty since the zero is not
observed in the y range of the Energy training dataset. y value
of Energy is an energy consumption that has only positive val-
ues, while y of Udacity is a steering angle, and it has positive
and negative values crossing zero.

G Variability of the Achieved Results.
Figure 22 is Figure 5 of the main paper with 1 sigma perfor-
mance range (−σ/

√
n ∼ +σ/

√
n, n = 3). We exclude IID

Attack to improve readability. We can check that Predictive
Attack’s performance ranges do not overlap with Greedy At-
tack’s but overlap with Clairvoyant Attack’s. It validates that
Predictive Attack performs well in several trials consistently.
Relatively, the ranges in FashionMNIST and Udacity are close
compared with the other datasets. However, the actual per-
formances of Greedy and Predictive are not close. In other
words, the higher the performance of Greedy is, the higher the
performance of Predictive is, and vice versa. To support that,
we compute the performance correlations between Greedy
and Predictive at the largest ϵ, which are 0.99 and 0.75 in
FashionMNIST and Udacity, respectively.

H Additional Transferability Test
We evaluate the effectiveness of Predictive Attack in a black-
box threat model, in addition to the gray-box assumption in
the main paper. The attacker trains a surrogate model with a
different architecture from the victim model and generates ad-
versarial examples on the surrogate model. Then, the attacker
applies the adversarial examples to a victim model.

We prepare two experiments regarding the structure of the
surrogate model: 1) Different architecture in the number of the
last linear layers, and 2) Different architecture in the dimen-
sion of LSTM’s hidden state. We show the results on MNIST
in Figure 23. We measured relative attack performance com-
pared to the white-box performance on the surrogate model.
Predictive Attack is at least 45% and 30% effective for each
case, even with the different architectures.

I Impact of the Number of Sequences in
Monte-Carlo Computation

To fully demonstrate the correctness of our approach (Equa-
tion 6) of Predictive Attack , we present attack performances
with multi-samplings. We train new stochastic Qϕ that in-
cludes stochastic latent variables and, thus, produces different
predictions for each sampling trial.5 Regardless of the number
of sampling trials, the attack performances are very similar.
We ascribe it to the task characteristic of MNIST that is almost
deterministically predictable: the next column of a digit is
almost identical to the current column. We show this charac-
teristic in Figure 25. Multiple predictions of MNIST produce
similar images.

J Impact of MAX COUNT.
Figure 26 illustrates speed of convergence in terms of attack
performances. x-axis is MAX COUNT, and y-axis is attack
performance. We can check the gradients of Predictive At-
tack’s attack performances, which mean speed of convergence,
are close to those of Clairvoyant Attack’s.

5Chung , J. et al. 2015, “A Recurrent Latent Variable Model for
Sequential Data”
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Figure 15: Prediction performance of Qϕ on Udacity.

Figure 16: Prediction performance of Qϕ on Energy. 27 dimensions
of real values, L = 50.

K Validation of Real-time Attack
Implementation

We reimplement an imitation learning-based real-time at-
tack [Gong et al., 2019] based on the public implementation6

because the original implementation has problem-specific con-
straints such as perturbation being restricted to five subsets of
the entire time periods, while we consider the entire period for
an attack. We replace the problem-specific expert [Storn and
Price, 1997] originally used for audio data with the general
expert Clairvoyant (K=L). To verify our implementation is
correct, we measured the relative performance of the attack
to an expert. In particular, the performance is measured at ϵ
where a performance of the expert converged (Figure 27). The
average relative performance of our implementation (right yel-
low, 57%) is higher than that of the public implementation (left
straight lines, 40∼41%). This difference comes from the num-
ber of time steps where perturbations are generated. While the

6https://github.com/YuanGongND/realtime-adversarial-attack

original implementation allowed only five perturbation steps,
our implementation generates perturbations for all time steps
(L).

L Online Evasion Attack on Online Training
It is meaningful to consider online training in an online evasion
attack since it is frequently used to overcome the inefficiency
of offline training in online tasks. Theoretically, we show
online evasion attack on a victim changing with online training
is the same as attacking a victim without online training. From
a practical point of view, we also examine the challenge of
attacking a recurrent model that changes its parameter.

Assuming the whitebox threat model as in the main paper,
we assume that an attacker knows the parameter update rule
U(xi, θi) : Rn × RN → RN of the victim’s online training
where N is the number of model parameters. In this setup, an
online evasion attack can be similarly formulated by incorpo-
rating U to the original problem.

δ = argmin
δ=(δ1,··· ,δL)∈∆

Agg
(
Ladv
1 , · · · ,Ladv

L

)
, where (10)

Ladv
i is the loss at time i: Ladv

i = L(f(xi + δi, h
δ
i , θi), y

a
i ),

and:

hδ
i = g(xi−1 + δi−1, h

δ
i−1), (11)

θi = U(xi−1 + δi−1, θi−1). (12)

From this point of view, parameter θi can be considered as
an additional hidden state. If we denote (hδ

i , θi) with hδ′

i and
denote g and U as g′, we can rewrite the equation 2 and 3
as hδ′

i = g′(xi−1 + δi−1, hδ′

i−1). It reduces to the original
problem (Equation 1 ∼ 2 of the main paper). As long as we
can predict future inputs, we can compute an exact model

https://github.com/YuanGongND/realtime-adversarial-attack
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Figure 17: Adversarial examples of Predictive Attack on MNIST and FashionMNIST. ℓ∞ ϵ = 0.15.
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Figure 18: Adversarial examples of Predictive Attack on Mortality.
ℓ∞ ϵ = 0.15.

Figure 19: Adversarial examples of Predictive Attack on User.
ℓ∞ ϵ = 0.3.

parameter θi as well as hidden state hδ
i ; thus, we can conduct

the proposed online evasion attack.

M Possible Defense
We propose a simple idea of using adversarial training [Ma̧dry
et al., 2018], which is an effective defense against offline
evasion attacks, as a defense against online evasion attacks.
Firstly, we assume that the length of the input (the number
of time steps) is a constant L. Under this assumption, we
can consider the L-step unfolded recurrent victim model as
an offline model. Therefore, as with adversarial training on
an offline model, we can perform adversarial training on the
unfolded victim model against L-step adversarial examples,
using a PGD attack that minimizes an adversarial loss at each
time step.

However, this defense would not be effective against attacks
over L-step. The reason is that the adversarial error on hidden
states of a victim model accumulates as an attack continues.
The attacker would eventually succeed in manipulating hid-
den states to produce wrong victim outputs. A victim might
initialize a hidden state to a value (e.g., zero vector) to prevent
the accumulation; however, it would degrade victim’s clean
task performance.
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Figure 20: Adversarial examples of Predictive Attack on Udacity. ℓ∞ ϵ = 0.05.

Figure 21: Adversarial examples of Predictive Attack on Energy.
ℓ∞ ϵ = 0.02.
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Figure 22: Variability of the achieved results (Figure 5 in the main
paper). We visualize 1σ ranges of the results.

0.50 0.54
0.45

0.61 0.55

0.00

1.00

3 4 5 6 7

Relative 
Performance

# of  fully connected layers

0.43
0.31 0.30 0.31

0.00

1.00

8 12 16 20

Relative 
Performance

Dimension of hidden state of LSTM

Figure 23: The relative performance of transferred adversarial ex-
amples compared to white-box attack fool rates on MNIST. Attack-
ing a surrogate model with ϵ = 0.3 constraints, Predictive Attack
(K = 28) generated the adversarial examples. Whitebox fool rate on
the surrogate model is 0.98. We find Predictive Attack can achieve
30∼61% of white-box performance although the victim model has
different architectures. Performances of five trials are averaged.
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Figure 24: Impact of the number of sequences in Monte-Carlo simula-
tion. Since there is no uncertainty in the dataset, so does its stochastic
Qϕ. Therefore, the performance does not depend on the number of
samples.
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Figure 25: Prediction performance of a stochastic Qϕ on MNIST. We
can see that multiple sampling produces similar digits.
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Figure 26: Impact of MAX COUNT. Predictive Attack’s attack
performances converge as fast as those of Clairvoyant Attack.
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Figure 27: Implementation validation of the imitation learning-based
real-time attack. We demonstrate how the relative performances of
imitation learning-based attacks to that of an expert are computed.
Our implementation (right, yellow) achieves higher performances,
compared to the original implementation (left, straight lines), because
of the larger number of perturbation steps.
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