
Proceedings of Machine Learning Research vol 168:1±13, 2022 4th Annual Conference on Learning for Dynamics and Control

Robust Data-Driven Output Feedback Control

via Bootstrapped Multiplicative Noise

Benjamin Gravell∗ BENJAMIN.GRAVELL@UTDALLAS.EDU

Iman Shames† IMAN.SHAMES@ANU.EDU.AU

Tyler Summers∗ TYLER.SUMMERS@UTDALLAS.EDU

∗The University of Texas at Dallas †The Australian National University

Editors: R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg, M. Schwager, M. Kochenderfer

Abstract

We propose a robust data-driven output feedback control algorithm that explicitly incorporates in-

herent finite-sample model estimate uncertainties into the control design. The algorithm has three

components: (1) a subspace identification nominal model estimator; (2) a bootstrap resampling

method that quantifies non-asymptotic variance of the nominal model estimate; and (3) a non-

conventional robust control design method comprising a coupled optimal dynamic output feedback

filter and controller with multiplicative noise. A key advantage of the proposed approach is that

the system identification and robust control design procedures both use stochastic uncertainty rep-

resentations, so that the actual inherent statistical estimation uncertainty directly aligns with the

uncertainty the robust controller is being designed against. Moreover, the control design method ac-

commodates a highly structured uncertainty representation that can capture uncertainty shape more

effectively than existing approaches. We show through numerical experiments that the proposed

robust data-driven output feedback controller can significantly outperform a certainty equivalent

controller on various measures of sample complexity and stability robustness.
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1. Introduction

The intersection of data-driven learning and model-based control continues to provide significant

research challenges despite its long history and vast research literature. Recent work has focused on

non-asymptotic analysis of sample complexity, regret, and robustness, in contrast to a classical focus

on asymptotics and stability. Approaches for data-driven control can be broadly divided into two

categories: ªmodel-basedº (or ªindirectº), in which a model for the system dynamics is first learned

from data and then used to design a control policy, and ªmodel-freeº (or ªdirectº), in which a control

policy is learned directly from data without explicitly learning a model for the system dynamics.

Model-based approaches can be further divided into two categories: certainty equivalent, in which

uncertainty in the learned model is ignored during control design, and robust, in which uncertainty

in the learned model is explicitly accounted for in control design.

Much recent work has considered the full state feedback setting, and some results have very

recently been obtained in the partially observed output feedback setting. Finite-sample bounds for

system identification from input-state data have been obtained in Simchowitz et al. (2018); Dean

et al. (2020) and from input-output data in Care et al. (2017); Tsiamis and Pappas (2019); Sun

et al. (2020); Jedra and Proutiere (2019); Oymak and Ozay (2021); Sarkar et al. (2021). Sample
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complexity and regret bounds for the Linear Quadratic Gaussian problem are described in Zheng

et al. (2021); Zhang et al. (2021) and Lale et al. (2020, 2021); Simchowitz et al. (2020), respectively.

In the partially observed setting, issues around robustness to model uncertainty are much more

pronounced than in the full state feedback setting, a fact long known in control theory Doyle (1978).

Certainty equivalent approaches that ignore model uncertainty can lead to fragile designs, while ex-

isting approaches the incorporate model uncertainty often utilize very coarse uncertainty represen-

tations (e.g., spectral norm balls), even when obtaining order optimal statistical sample complexity

or regret rates. A good balance between performance and robustness in practice requires carefully

constructed and structured uncertainty representations; just as much effort should go into estimating

from data the shape (not just size) of model uncertainty as the nominal model itself. This becomes

especially important as the uncertainty dimension increases: structured uncertainties may have far

less volume (in model space) than unstructured ones, thereby enabling superior performance. De-

veloping algorithms with good non-asymptotic performance and robustness properties remains a

significant challenge, both in theory and in practice. To address this challenge, Gravell and Sum-

mers (2020) proposed a data-driven robust control scheme via bootstrapped multiplicative noise for

systems with perfect full state measurements; the present work extends these ideas to the partially

observed output feedback setting.

Contributions. The contributions of the present work are as follows:

1. We propose a robust data-driven output feedback control algorithm where the model uncer-

tainty description and robust control design method both use highly structured stochastic un-

certainty representations.

2. We present a novel semi-parametric bootstrap algorithm for quantifying structured paramet-

ric uncertainty in state space models obtained from subspace identification algorithms using

input-output data.

3. We show via numerical experiments that the proposed robust data-driven output feedback

controller can significantly outperform a certainty equivalent controller on various measures

of sample complexity and stability robustness. We make open-source code implementing the

algorithms and experiments freely available.

The algorithm has three components: (1) a subspace identification nominal model estimator; (2) a

novel semi-parametric bootstrap resampling method that quantifies non-asymptotic variance of the

nominal model estimate; and (3) a non-conventional robust control design method using an optimal

linear quadratic coupled estimator-controller with multiplicative noise. This approach provides a

natural interface between several highly effective methods from system identification, statistics, and

optimal control theory.

1.1. Notation

Symbol Meaning

R
n×m Space of real-valued n×m matrices

ρ(M) Spectral radius (greatest magnitude of an eigenvalue) of a square matrix M
∥M∥F Frobenius norm (Euclidean norm of the vector of singular values) of a matrix M
vec(M) Vectorization of matrix M by stacking its columns

M ≻ (⪰) 0 Matrix M is positive (semi)definite

An ordered sequence of vectors is denoted in the compact notation x0:T = [x0, x1, . . . , xT ].
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2. Problem Formulation: Data-Driven Output Feedback Control

We consider data-driven control of the discrete-time linear dynamical system

xt+1 = Axt +But + wt, (1)

yt = Cxt + vt (2)

where xt ∈ R
n is the system state, ut ∈ R

m is the control input, yt ∈ R
p is the measured output,

and wt and vt are i.i.d. process and measurement noises with zero mean and covariance matrices W
and V , respectively. The system matrices (A,B,C) and noise covariances (W,V ) are grouped into

the true model M = (A,B,C,W, V ) which is assumed unknown.1 Given only on a single training

trajectory of finite length T of input-output data DT = (ytrain
0:T , u

train
0:T−1) generated by the true system

(1), (2), a data-driven input-output history-dependent control policy ut = π(y0:t, u0:t−1) is to be

designed. We assume that the input signal that produced the training trajectory was persistently

exciting to avoid identifiability issues (see Definition 5 of Van Overschee and De Moor (2012)).

The performance of an arbitrary policy π is characterized by the infinite-horizon time-averaged

linear-quadratic output-input criterion

H(π) := lim
T →∞

1

T
E

[

T −1
∑

t=0

y⊺t Y yt + u⊺tRut

]

(3)

where Y ≻ 0 and R ≻ 0 are penalty matrices, ut = π(y0:t, u0:t−1), the initial state x0 is a

random vector with zero mean and identity covariance independent of the noises wt and vt, and

the expectation is taken with respect to the process and measurement noise sequences and the initial

state. Notice that this formulation permits one to choose the output penalty Y ≻ 0, which can

be specified even if the true underlying state xt and system model are unknown. The output-input

performance criterion (3) is equivalent, up to a shift by a problem-dependent constant, to a state-

input performance criterion with a penalty matrix Q = C⊺Y C ⪰ 0, such that

J(π) := lim
T →∞

1

T
E

[

T −1
∑

t=0

x⊺tQxt + u⊺tRut

]

= H(π)− Tr(Y V ) (4)

so that minimization ofH is tantamount to minimization of J , which is shifted by a positive constant

Tr(Y V ) that does not depend on the policy.

We focus on a sequential design pipeline, in which the data is first used to identify a system

model M̂(DT ) and then an output feedback control policy π
M̂(DT ) is designed based on the iden-

tified model; note that the identified model M̂(DT ) is more generic and may have alternative or

additional structure compared to the true model M. A linear dynamic compensator is a policy

which combines a linear state estimator with a linear state estimate feedback in the form

x̂t+1 = Fx̂t + Lyt, ut = Kx̂t. (5)

Such a compensator is fully specified by the triple (F,K,L), and the specification need not depend

on the state xt or system matrices (A,B,C) of the underlying system. The optimal cost is the con-

stant J∗ = minπ J(π) = J(πM), which is achieved when the true model M is known and used in

1. We assume the order n of the underlying system is known; future work will address systems with unknown order.
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the canonical linear quadratic Gaussian (LQG) control policy πM, a linear dynamic compensator

with F = A + BK − LC and gain matrices (K,L) computed (separately) as the solution to two

decoupled algebraic Riccati equations, which can be accomplished via several well-known meth-

ods such as the dynamic programming techniques of policy iteration and value iteration Bertsekas

(2012), convex semidefinite programming Boyd et al. (1994), and specialized direct linear algebraic

methods Laub (1979). Therefore, we restrict attention to the class of linear dynamic compensators

in (5). Using a compensator (F,K,L), the closed-loop system dynamics become the autonomous

stochastic difference equation
[

xt+1

x̂t+1

]

=

[

A BK
LC F

] [

xt
x̂t

]

+

[

I 0
0 L

] [

wt

vt

]

(6)

Denote the following augmented closed-loop matrices

Φ =

[

A BK
LC F

]

, Q′ =

[

Q 0
0 K⊺RK

]

, W ′ =

[

W 0
0 LV L⊺

]

. (7)

The stability of the closed-loop system is characterized by the spectrum of the matrix Φ, namely if

ρ(Φ) < 1 then the closed-loop system is stable in the sense that the covariance of the augmented

state [xt x̂t]
⊺ converges to a finite positive definite matrix as t → ∞. With such stability, the

steady-state value matrix P ′ and the steady-state covariance S′ of [x⊺t x̂
⊺

t ]
⊺ are found by solving the

discrete-time Lyapunov equations

P ′ = Φ⊺P ′Φ+Q′, S′ = ΦS′Φ⊺ +W ′. (8)

With a slight abuse of notation, the performance criterion (4) can be expressed and computed as

J(F,K,L) = Tr(P ′W ′) = Tr(S′Q′). (9)

Denote the performance criterion and closed-loop system matrix under a linear dynamic compen-

sator (F̂T , K̂T , L̂T ) designed with the T -step data record DT as JT = J(F̂T , K̂T , L̂T ) from (9)

and ΦT from (7), respectively. The quantity of primary interest is JT
J∗ ∈ [1,∞), which represents

the normalized infinite-horizon performance at time T . Since the policy is computed based on a

model identified from noisy finite data, the ratio JT
J∗ is a random variable. We are interested in its

finite sample behavior and finiteness (which relates to stability robustness); in particular, we would

like to know not only in how the mean or median scale with the data length T , but also how the

upper tails scale. These properties depend on whether and how inherent uncertainty in the identified

model is accounted for in the controller design. Certainty equivalent approaches ignore the model

uncertainty altogether, which may lead to serious finite sample robustness issues. Here we aim

to explicitly incorporate the model uncertainty in the controller design. In particular, we propose

a robust data-driven output feedback control algorithm that explicitly accounts for finite-sample

model uncertainty in an identified model using a multiplicative noise framework, estimated via the

bootstrap.

3. Robust Control via Bootstrapped Multiplicative Noise

Our robust data-driven control algorithm is summarized in Algorithm 1, The algorithm has three

main components: (1) a subspace identification nominal model estimator; (2) a bootstrap resam-

pling method that quantifies non-asymptotic variance of the nominal model estimate; and (3) a

non-conventional robust control design method using an optimal LQG with multiplicative noise.
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Algorithm 1 Robust Data-Driven Output Feedback Control

Input: single trajectory data DT = (ytrain
0:T , u

train
0:T−1), number of bootstrap resamples Nb, model

uncertainty scaling parameter γ, penalty matrices Y ≻ 0, R ≻ 0
1: (ÂT , B̂T , ĈT , ŴT , V̂T , ÛT , ŵ0:T , v̂0:T ) = SubspaceID (y0:T , u0:T−1)
2: (Σ̂AT

, Σ̂BT
, Σ̂CT

) = BootstrapModelCovariance (y0:T , u0:T−1, ÂT , B̂T , ĈT , ŵ0:T , v̂0:T , Nb)
3: (F̂T , K̂T , L̂T ) = MultiNoiseLQG(ÂT , B̂T , ĈT , ŴT , V̂T , ÛT , Ĉ

⊺

T
Y ĈT , R, Σ̂AT

, Σ̂BT
, Σ̂CT

, γ)

3.1. Subspace Identification for Nominal Model Estimation

The first component of the algorithm is a subspace identification algorithm to estimate the unknown

system matrices from input-output trajectory data. Subspace identification algorithms have been

developed and studied for several decades Van Overschee and De Moor (2012). There are sev-

eral variations, which all involve constructing block Hankel matrices from the data and estimating

certain subspaces via singular value decompositions, from which the system matrices and noise

covariances can be retrieved. Any of these can be used within the proposed framework, but for

concreteness we use the so-called N4SID algorithm Van Overschee and De Moor (1994). Based

on the input-output data (ytrain
0:T , u

train
0:T−1), the subspace identification algorithm produces a nominal

estimate of the system state space matrices and the process and measurement noise covariances:

(ÂT , B̂T , ĈT , ŴT , V̂T , ÛT ) = SubspaceID(ytrain
0:T , u

train
0:T−1). (10)

Due to space constraints we refer readers to the literature, e.g. ªCombined Algorithm 1º in Chapter

4 of Van Overschee and De Moor (2012), for details of the subspace identification algorithm.

Due to non-uniqueness of state space representations, the system matrices are estimated within a

similarity transformation of an underlying unknown representation. Based on the input-output data

and the estimated system matrices, subspace algorithms generate residuals of the process and mea-

surement noises {ŵτ}
t−1
τ=0, {v̂τ}

T−1
τ=0 from which sample average covariance estimates

[

ŴT ÛT

Û⊺

T V̂T

]

are produced. Because the estimated system matrices (ÂT , B̂T , ĈT ) do not share a state coordinate

system with the true system matrices (A,B,C), even though the true cross-covariance between

wt and vt is assumed zero, the cross-covariance of the estimates disturbances ŵt and v̂t may be

non-zero and must be estimated and accounted for in the compensator design.

3.2. Bootstrap Resampling to Quantify Non-Asymptotic Model Uncertainty

There are inevitably errors in model estimates obtained from subspace identification using any finite

data record, due to the process and measurement noises. It is difficult to analytically characterize

non-asymptotic uncertainty in these estimates. Quantifying uncertainty in subspace identification

estimates has been considered in Viberg et al. (1991); Bauer et al. (1999); Bauer and Jansson (2000);

Reynders et al. (2008), which focus on asymptotic results. Bootstrapping has been used to quan-

tify non-asymptotic uncertainty in Bittanti and Lovera (2000) for input-output quantities such as

frequency response or pole locations. However, to our best knowledge, these uncertainty quantifi-

cations have not been used for control design.

To quantify non-asymptotic uncertainty in the model estimate, we propose a novel semi-para-

metric time series bootstrap resampling procedure. In semi-parametric methods, bootstrap data are

simulated from the nominal model with the process and measurement noise sampled i.i.d. with
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replacement from residuals calculated with the nominal model HÈardle et al. (2003). Dependence in

the data is preserved by construction. There are also purely parametric and non-parametric versions

of the bootstrap. Generally, the semi- and nonparametric bootstraps are less sensitive to assumptions

about the model and the noise distribution, while the semi- and pure parametric bootstraps have

better small sample performance when the model is correctly specified. The bootstrap resamples

allow for various estimates of finite-sample uncertainty associated with the nominal model; here,

we will utilize an estimate of the covariance of the model parameters. For concreteness, a semi-

parametric bootstrap with resampled residuals discussed above is summarized in Algorithm 2.

State-space Alignment

Due to non-uniqueness of state space representations, the uncertainty representation should not be

obtained directly from a sample covariance of the bootstrap resamples. Instead, for each resample

we first find a similarity transformation that minimizes the total squared error to the nominal state

space model, and then compute a sample covariance in the transformed coordinates. For brevity,

we defer detailed discussion of the state-space alignment to the supplement Gravell and Summers

(2021). The coordinate transformation problem is

min
T∈Rn×n

d(T ) = ψA∥TĀ− ÂT∥2F + ψB∥TB̄ − B̂∥2F + ψC∥C̄ − ĈT∥2F (11)

which can be solved readily and results in an invertible transformation matrix T . Then the trans-

formed system matrices are computed as

Ã = TĀT−1, B̃ = TB̄, C̃ = C̄T−1, W̃ = TW̄T ⊺, Ṽ = V̄ , Ũ = T Ū. (12)

This coordinate alignment is incorporated into the model covariance estimation Algorithm 2.

Algorithm 2 Semi-parametric Bootstrap Model Covariance Estimation

Input: trajectory data (y0:t, u0:t−1), nominal model estimate (Ât, B̂t, Ĉt), residuals

{ŵτ}
t
τ=0, {v̂τ}

t
τ=0, number of bootstrap resamples Nb

1: x̄0 = x̂0
2: ū0:t−1 = u0:t−1

3: for k = 1, . . . , Nb do

4: Generate data x̄τ+1 = Âtx̄τ + B̂tūτ + w̃τ , ȳτ = Ĉtx̄τ + ṽτ , τ = 0, ..., t− 1, where w̃0:t−1

and ṽ0:t−1 are i.i.d. resamples with replacement from residuals ŵ0:t−1 and v̂0:t−1

5: (Âk
t , B̂

k
t , Ĉ

k
t ,−,−,−,−,−) = SubspaceID(ȳ0:t, ū0:t−1)

6: T ∗ = argminT∈Rn×n ∥TÂt − Âk
t T∥

2
F + ∥TB̂t − B̂k

t ∥
2
F + ∥Ĉt − Ĉk

t T∥
2
F

7: Ãk
t = T ∗ÂtT

∗−1, B̃k
t = T ∗B̂t, C̃k

t = ĈtT
∗−1

8: end for

Output: Bootstrap sample covariance Σ̂At
= 1

Nb−1

∑Nb

k=1 vec(Ãk
t − Ât)vec(Ãk

t − Ât)
⊺

Bootstrap sample covariance Σ̂Bt
= 1

Nb−1

∑Nb

k=1 vec(B̃k
t − B̂t)vec(B̃k

t − B̂t)
⊺

Bootstrap sample covariance Σ̂Ct
= 1

Nb−1

∑Nb

k=1 vec(C̃k
t − Ĉt)vec(C̃k

t − Ĉt)
⊺

3.3. Multiplicative Noise LQG: Combined Controller and State Estimator

The model covariance estimate generated from bootstrap resampling interfaces quite naturally with

a variant of the optimal linear quadratic output feedback controller that incorporates multiplicative
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noise, which has a long history in control theory but is far less widely known than its additive

noise counterpart (Wonham (1967); Bernstein and Greeley (1986); De Koning (1992); Gravell et al.

(2019)). Consider the optimal control problem to find an output feedback controller ut = π(y0:t)
for dynamics perturbed by multiplicative noise

minimize
π∈Π

lim
T →∞

1

T
E

T −1
∑

t=0

(x⊺tQxt + u⊺tRut), (13)

subject to xt+1 = (A+ Āt)xt + (B + B̄t)ut + wt, (14)

yt = (C + C̄t)xt + vt

where Āt, B̄t, and C̄t are i.i.d. zero-mean random matrices with a joint covariance structure over

their entries governed by the covariance matrices ΣA := E[vec(Ā) vec(Ā)⊺] ∈ R
n2×n2

, ΣB :=
E[vec(B̄) vec(B̄)⊺] ∈ R

nm×nm, ΣC := E[vec(C̄) vec(C̄)⊺] ∈ R
pn×pn which quantify uncertainty

in the nominal system matrices (A,B,C). The expectation is taken with respect to all of the basic

random quantities in the problem, namely x0, {Āt}, {B̄t}, {C̄t}, {wt}, {vt}.

Due to the multiplicative noise, the state distribution is non-Gaussian even when all primi-

tive distributions are Gaussian, so the Kalman filter is not necessarily the optimal state estimator.

However, the optimal linear output feedback controller can be exactly computed, and consists of a

multiplicative noise linear dynamic compensator of the form (5). In this case, there is no separa-

tion between estimation and control, so the optimal controller and estimator gains (K,L) must be

jointly computed. Specifically, the optimal gains can be computed by solving the coupled nonlinear

matrix equations in symmetric matrix variables X = (X1, X2, X3, X4) given in the supplementary

paper Gravell and Summers (2021) by using a value iteration algorithm, described in De Koning

(1992). In the absence of multiplicative noise, they reduce to the familiar separated algebraic Riccati

equations for optimal estimation and control. The solutions are denoted

(X,K,L) = GDARE(A,B,C,W, V, U,Q,R,ΣA,ΣB,ΣC) (15)

Both the optimal controller and estimator gains depend explicitly on the model uncertainty, as quan-

tified by the variances of the system matrices, as well as the process and measurement noise covari-

ances. This policy is known to provide robustness to uncertainties in the parameters of the nominal

model (Bernstein and Greeley (1986)). Furthermore, the uncertainty in the nominal model estimate

used in this control design method is richly structured and derived directly from the finite available

data.

In the proposed data-driven control algorithm, we simply substitute the estimated nominal

model and model covariance matrices obtained from the subspace identification and bootstrap meth-

ods into the multiplicative noise compensator design equations. We also introduce a parameter γ
which provides a fixed scaling of the model uncertainty. Note that γ = 0 corresponds to certainty

equivalent control, and as γ increases, more weight is placed on uncertainty in the nominal model.

For γ ∈ (0, 1), this approach can be interpreted as shrinkage estimation of the model sample co-

variance matrices towards certainty equivalence Ledoit and Wolf (2004). Existence of a solution to

the generalized Riccati equation depends not just on stabilizability and detectability of the nominal

system (A,B,C), but also on the mean-square stabilizability via dynamic output feedback of the

multiplicative noise system (called mean-square compensatability in De Koning (1992)). When

the multiplicative noise variances are too large, it may be impossible to stabilize the system in the
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mean-square sense. In this case, we scale down the model variances to compute a mean-square

stabilizing dynamic output feedback controller; see Algorithm 3. In particular, we verify the system

with specified γ is mean-square stabilizable by checking whether the generalized Riccati equation

admits a positive semidefinite solution; if not, we find the upper limit γmax = cγγ via bisection (e.g.

Burden et al. (1978)) on a scaling cγ ∈ [0, 1].

Algorithm 3 Multiplicative Noise LQG

Input: Nominal model matrices A, B, C, additive disturbance covariances W , V , U , penalty ma-

trices Q, R, covariances ΣA,ΣB,ΣC , scaling γ, bisection tolerance ϵ > 0
1: Find largest cγ ∈ [0, 1] via bisection such that there exists a feasible solution to (15)

2: (X,K,L) = GDARE(A,B,C,W, V, U,Q,R, cγγΣA, cγγΣB, cγγΣC)
Output: (A+BK − LC,K,L)

4. Numerical Experiments

We examined the following 2-state shift register with system, penalty, and noise covariance matrices

[

A B

C

]

=





0 1 0
0 0 1

1 −1



 ,

[

Q

R

]

=





1 −1
−1 1

0.01



 ,

[

W

V

]

=





0.1 0
0 0.1

0.1





where the output penalty was Y = 1 leading to the given value forQ = C⊺Y C. The first state stores

the previous value of the second state, the second state is determined solely by the control input,

and the output is the difference of the two states. This system is based on the one described in Recht

(2020), wherein it was shown that the system is extremely sensitive to model identification errors.

In particular, despite the open-loop system being perfectly stable with zero eigenvalues, the system

under optimal linear quadratic state feedback control is nearly unstable such that any small error in

the estimated system matrices produce an unstable closed-loop system. Therefore, this system is

likely to see a benefit from the proposed robust control synthesis approach.

The training data DT were generated by initializing the state at the origin, applying random

controls distributed according to a Gaussian distribution with zero-mean and scaled identity covari-

ance where the scaling was equal to the sum of the largest singular values of W and V (to ensure a

sufficiently strong signal-to-noise ratio), and simulating the evolution of the state with the additive

process and measurement noise specified by the problem data (W,V ).
For brevity, we abbreviate the control design schemes ªcertainty-equivalent controlº as ªCEº

and ªrobust control via multiplicative noiseº as ªRMNº. To evaluate the performance of RMN rel-

ative to CE, we performed Monte Carlo trials to estimate the distribution of several key quantities:

infinite-horizon performance, spectral radius of the closed-loop system, model error, and multiplica-

tive noise variances. In each Monte Carlo trial, the actual additive noise disturbances wt, vt were

drawn independently. The level of additive noise was significant enough that an appreciable number

of model estimates remained poor for many timesteps, highlighting the behavior of CE and RMN

in the critical high-uncertainty regime. We simulated the system and evaluated quantities for the

trajectory lengths T ∈ {20, 40, 80, 160, 320} according to Algorithm 1; all of the trajectory lengths

were sufficiently long to ensure the estimates in subspace identification were non-degenerate. We

drew Ns = 100, 000 independent Monte Carlo samples and Nb = 100 bootstrap samples at each
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time step for uncertainty estimation. We used unity scaling of the multiplicative noise (γ = 1) and

a tolerance of ϵ = 0.01 for bisection to find the largest scaling cγ of multiplicative noise variance in

the multiplicative noise LQG algorithm.

In Figure 1 we plot statistics of performance and spectral radius using both control schemes,

while in Figure 2 we plot statistics of the differences between the performance and spectral radius.

We are chiefly interested in the expected value and upper quantiles of performance, which corre-

spond to average performance and risk of poor performance. We see that CE leads to both worse

average behavior and riskier behavior as reflected by the distribution of the performance. In par-

ticular, we see that the performance of RMN is clearly better during times between T = 20 and

T = 80, dropping at the 99th percentile from 2.318 to 1.077 whereas CE suffers 12.091 to 1.089.

This can also be explained from the spectral radius, which is larger across all timesteps and statis-

tics, corresponding to a less stable system. In particular, at the beginning between T = 20 and

T = 80 when uncertainty is highest, RMN yields spectral radii at the 99th percentile that drop from

0.903 to 0.843 while CE yields 0.985 to 0.916, nearer to instability and allowing the state to travel

far from the origin, resulting in high cost. With increasing T the model estimates improved and

uncertainty estimates became sufficiently small that the difference between CE and RMN control

was insignificant.

Please see the supplement Gravell and Summers (2021) for additional figures and discussion;

in particular, it is shown that the nominal system matrices Â, B̂, and Ĉ produced by the subspace

identification algorithm approached the true parameters, accompanied by a decrease in the mul-

tiplicative noise variances and increase of cγ to unity. Additionally, the bootstrap distribution of

model parameters is shown for a single Monte Carlo trial at T = 20, revealing that the bootstrap

distribution of models accurately captures the deviation of the nominal model from the true system.

Code which realizes the algorithms of this paper and generates the reported results is available from

https://github.com/TSummersLab/robust-adaptive-control-multinoise-output

5. Conclusions

We proposed a data-driven robust control algorithm that uses the bootstrap to estimate model es-

timate covariances and a non-conventional multiplicative noise LQG robust output feedback com-

pensator synthesis to explicitly account for model uncertainty. Future work will go towards pro-

viding finite-time theoretical performance guarantees using tools from high-dimensional statistics

and exploring alternative bootstrap uncertainty quantification schemes and robust control synthesis

frameworks based e.g. on linear matrix inequalities and System Level Synthesis.
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Figure 1: Infinite-horizon performance JT /J
∗ and closed-loop spectral radius ρ(ΦT ) vs time for

CE and RMN.

Figure 2: Difference between CE and RMN on infinite-horizon performance JT /J
∗ and closed-

loop spectral radius ρ(ΦT ) metrics vs time. Differences between metrics using CE and

RMN were computed for each Monte Carlo trial individually; statistics of the resulting

empirical distribution are shown.
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