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Abstract

Homology of human and machine vision systems demonstrates that better machine could be
designed with human assistance. Similar components can be mapped from neuroimaging data to
visual features for recognizing an object. However, inferring object relationships from human
vision and machine vision are not clear. To measure the similarity of human and machine visual
inference, this work study an inference method using Microsoft COCO dataset. The input data is
manually generated, and used for a java-based inference engine, which collects semantic data in a
co-occurrence matrix, and writes the data to a knowledge graph in the DOT language. Unlike the
black-box property of deep neural network, the proposed method is transparent. When rendered by
GraphViz tools, the visible results in the knowledge graph indicated that the COCO dataset-based
machine inference is promising when compared to human inference, yielding an accuracy of 64%
at best. This novel inference study on the COCO dataset reveals that homology of human and
machine vision systems is promising to be bridged. Bigger dataset and more concepts may
increase the accuracy in the future work.

1. Introduction

Machine vision system has been found to have homology with human vision system through
functional magnetic resonance imaging (fMRI) study (Horikawa & Kamitani, 2017). Connection
of EEG signals of human brain and visual representation of an external machine is recently
established, and it may bridge the gap of vision sharing between human and agent. The research
breakthrough of neuroscience demonstrates a homology between human and machine vision
through the discovery of the joint brain-visual representation. Brain representation is extracted
from fMRI (Horikawa & Kamitani, 2017) or Electroencephalography (EEG) signals (Palazzo et
al., 2021), and visual representation is obtained by convolutional neural network (CNN) or other
hand-crafted features. The relationship between brain representations and hierarchical structures
of layers of CNN makes it possible to not only predict the brain states in awake and anesthetized
resting-state functional neuroimaging data (Grigis et al., 2020), but also transfer human
knowledge to design better machines (Palazzo et al., 2021). Their representations of an object can
be shared with each other on the corresponding layers of a deep neural network. Based on the
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accumulated knowledge, human generally infer another object when one object is observed. For
example, if there is a cup on the table, human infers that water may be put into the cup. This
inference capability is related to both knowledge and inference from human brain. However, this
inference ability is not clear for an intelligence machine. Due to homology of human and machine
vision systems, visual inference of an external machine may be also consistent to human vision
system or not.

Inference, as defined by Merriam-Webster, is “a conclusion or opinion that is formed
because of known facts or evidence.” Human inference relies on background knowledge that
humans already know that can be used to make certain assumptions or predictions about the
world. Copernicus’s theory indicates that the Earth orbited the Sun could not initially be
confirmed because not enough background knowledge was present to make accurate inferences
from. It was not until enough of this knowledge was collected and processed by some of the best
scientific minds of the century that his theory was affirmed. This is an example of human
inference in action. Likewise, the concept of artificial intelligence (Al) inference seeks to mimick
and take advantage of the way the human brain makes inferences by using a combination of
background knowledge and logical rules to make accurate predictions and decisions. This is also
known as Rule-based Al because of the policies enacted upon the background knowledge to
produce the desired results.

The more background knowledge there is to draw from, the more accurate the inferences
from it will be. Fortunately for us, we are in the age of information--the Al revolution. We have
more information available to us today than any civilization ever has, and the amount of
information has caused our sum of knowledge to grow significantly. For the first time, we have
both the technology, and the knowledge available to us to make significant improvements to Al
and how it can be used, including the area of Al inference. However, in order to apply logical
rules to this background knowledge, we first need a way to quantify the knowledge. This can be
done using a knowledge graph, also known as a semantic network. Semantics, as a whole, is
beyond the scope of this paper. We need only to understand how it plays into the quantification of
the background knowledge used to make inferences. A knowledge graph is a theoretical graph
structure in which the nodes are concepts, and the edges are relationships between the concepts,
either with or without direction, hence the semantics. The bigger the knowledge graph, the more
knowledge it contains, and the more accurate the inferences drawn from it can be. Fig. 1 shows an
example of a small knowledge graph., which contains multiple knowledge concepts. A
connection between two concepts can infer their relationship in real-world environments.

Since homology exists between human and machine vision systems, inference capability
based on both vision systems is still unknown. We will study the commons and difference
between human vision and machine vision-based inference systems. Inferences will be made from
the Microsoft COCO dataset by visualizing a sample of the connections on knowledge graph.
While COCO has been used in other Al techniques such as object detection, there has yet to be a
study of the inferences that can be made from the dataset using an inference engine. We will use
an inference engine implemented in java to make the inferences. First, a portion of the COCO
dataset is fed into the engine, which will determine the concepts in the dataset that are related to
one another. Next, the engine will use this semantic data to write a knowledge graph in the DOT
language. Finally, we will use GraphViz command line tools to render a knowledge graph and
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study the semantic clusters that appear in the graph visualization. These clusters are the inferences
drawn from the COCO dataset and represent new discoveries that have not been studied yet.
Unlike the black-box property in deep neural network, the proposed method is transparent using
co-occurrence matrix, so a clear path of inference can be identified. Two human volunteers will
also observe the objects and infer relationships among objects. Both human and machine
inferences will be compared for evaluating he performance of the proposed method. In this paper,
section 1 introduces the vision homology between human and machine. Related works are given
in the section part. The proposed methods is presented in the third section. Results are provided in
the fourth part. Finally, a conclusion is given.

dining_table

Fig. 1. An example of a small knowledge graph.

2. Related Work

2.1 Microsoft COCO Dataset

The Microsoft COCO Dataset (Common Objects in Context) is a large, well annotated dataset
meant for improving object recognition in computer vision (Lin et al., 2014). Unlike object
detection and object localization, which focus on whether an image contains a certain concept,
and where that concept is located in the image, respectively, the COCO dataset focuses on
individual object segmentation, and is used to train and evaluate machine learning models. One
such model can be seen in the knowledge aware object detection framework (Fang et al., 2017)
where COCO is used to test an optimized object detection algorithm which uses semantic
consistency. COCO was also used to evaluate a virtual semantic reasoning network (Li et al.,
2017) which was a convolutional neural network (CNN) used to recognize the key objects and
semantic concepts in images within a dataset to perform image-text matching of a semantic scene.
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Fig. 2 shows a page from the COCO online dataset explorer. It is seen that multiple concepts (e.g.
bird) have been identified and segmented in the objective image. Those concepts are corresponding
to segmented objects in an image.
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bird = search

Fig.2. COCO online dataset explorer. A bird object is segmented in the sample image.

2.2 Inference and Inference Engines

Inference and its uses have been long standing topics in many different fields. An in-depth
manual for the migration from statistical analysis to causal analysis can be found in J Pearl's
overview (Pearl, 2009), along with a number of mathematical solutions for causal effects,
counterfactuals, and mediation. Inference engines have also been subject to a variety of uses.
VIBES, the Variational Inference Engine for Bayesian Networks (Christopher, 2002), uses an
algorithm to automatically generate and solve variational equations in probabilistic learning
models. Another inference engine, Random Walk (Lao et al., 2011), uses a modified version of the
Path Ranking Algorithm to make new inferences on a large-scale knowledge base and further
improve learning accuracy.

2.3 Knowledge Graphs

As new knowledge has continued to multiply, new knowledge graphs and knowledge bases have
become available. One such knowledge base is ConceptNet (Liu et al., 2004), a semantic network
and natural-language processing toolkit supporting many context-oriented inferences of
commonsense knowledge. YAGO (Suchanek et al., 2007), another popular semantic knowledge
base, uses rule-based methods to combine semantic knowledge from WordNet and Wikipedia,
creating a stable and highly accurate model. YAGO is not alone in its quest to fuse existing
knowledge bases together. Knowledge Vault (Dong et al., 2014) leverages supervised machine
learning techniques to automatically construct large-scale knowledge bases from multiple existing
knowledge sources, including Google's own Knowledge Graph. Knowledge vault also includes its
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own internal inference engine that uses probabilistic inference to determine the factual accuracy
of a newly compiled knowledge vault, demonstrating the common cooperation of inference
techniques and semantic knowledge vehicles.

3. Proposed Method

The inference engine is what bridges the gap between the semantic data in the COCO dataset and
the knowledge graph we can produce from the data. This will be the focal point of this paper. The
main two tasks of the inference engine are to gather the data from the input, and to write it into an
output format that can be visualized. The inference engine operates much like any other
algorithm: it has an input, a sequence of instructions or operations, and an output. The java
implementation of the inference engine has three main pieces: a Dictionary, a Co-occurrence
Matrix, and a Knowledge Graph.

3.1 Input Generation

To generate the input, we need a pool of COCO images, and a way to extract the concepts from
the images so that the inference engine will understand how to use them. A concept is an object
within an image, for instance, a cat, or a dining room table. The Python library FiftyOne was used
in a small Python program to determine which images should be selected and used. FiftyOne
selected a randomly generated set of 200 images from the 2017 training split of the COCO dataset
and saved them to a local directory. Each image in this set was then manually located in the
online COCO dataset explorer by using its unique image ID. The explorer provides a simplified
view of the annotations for each image, including all the concept labels. As shown in Fig. 3, the
concepts in each image were then recorded in a text file, with one concept label per line. A blank
line was used to indicate the end of an image, and the beginning of the next image in the set.
Thus, all the concepts for each image are placed in their own group in the text file, and each
group is separated by one blank line. This will help the engine to read through the file later. Our
text file represented just under 250 images containing 85 unique concepts.

L: o ¢
Fig. 3. Part of one of the input text files. All the concepts for each image are placed in their own
group in the text file.
5



P. LANGLEY, G. HUNT, AND D. G. SHAPIRO

3.2 Dictionary

Once our input file is constructed, we will read through it, putting each line as a String entry into
two distinct hash tables, which are both fields in the Dictionary object. Each hash table entry will
be identified by a positive integer, which is the key. The first hash table will contain every line in
the file, including blank lines indicating separate images, labeled as "BLANK". The second hash
table will contain one entry for every unique concept, even if this concept is found in many of the
image representations in the text file. This dictionary object will serve as a miniature database
from which we will draw semantic knowledge about COCO.

3.3 Co-Occurrence Matrix

The next step is to use the contents of the Dictionary object to produce a co-occurrence matrix.
This matrix will be implemented by the COMatrix class, which uses a two-dimensional integer
array to store the co-occurrence data found within Dictionary. The size of the matrix is
determined by the total number of unique concepts in the second hash table. The purpose of this
matrix is to record the number of times a given concept occurs in the same context as another
given concept (appears in the same image). For example, let us suppose that there are 17 separate
images in which both a person and a surfboard occur in the same image. In this case, the value at
the intersection of the (person, surfboard) vertex in the co-occurrence matrix would be 17, and so
also would be the (surfboard, person) vertex, because this is the co-occurrence value of these two
concepts. This only applies to distinct objects, so if there are two surfboards in one image, this
does not mean that we increase the count; the concepts are not self-reflexive.

3.4 Knowledge Graph

The third and final class in the implementation is the KnowledgeGraph object. The purpose of
this object is to analyze the co-occurrence matrix, and write an output file in the DOT language,
which will be the actual knowledge graph. DOT is an open-source graph description language
that can be used to write and define the nodes and edges in both undirected and directed graphs.
Due to the time constraints on this project, only undirected graphs were used. DOT is commonly
associated with the GraphViz package, which provides many tools for rendering and viewing
graphs that were created using the DOT language. After the KnowledgeGraph object is
initialized, two methods will be called on it: one to draw the nodes, which are the concepts, and
another to draw the edges, which are the relationships between the concepts. Consideration can be
given to the values found in the co-occurrence matrix. For example, if the value in the matrix at
(cat, table) is very high, this means that there is a very strong relationship between these two
concepts, and could be represented by a different color or size node. We can also program the
method to draw only the nodes which have very strong relationships with each other, say, at least
3 co-occurrences. When the inference engine is run by the main, the result will be a DOT file
(*.gv, *.dot) which can be rendered into a PNG image by the GraphViz tools. At this point, we
are now able to see the inferences represented by the clusters of semantically related concepts. As
shown in Fig. 4, a knowledge graph is produced by the proposed inference engine. A threshold 3
is selected to remove some irrelevant items. It is clearly seen that some clusters exist for grouping
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related objects together. For example, “person” is the center of a big cluster in which “person”
object has strong relationships to other objects, so an inference can be obtained from “person” to
those related objects.

Fig. 4. A knowledge graph produced by the inference engine from our input. In this graph, all the related
concepts have at least 3 co-occurrences. A quick look can see about 3-4 clusters of related concepts.

4. Results

We have categorized the most obvious concept clusters in the knowledge graph into three main
categories, which are numbered respectively: Kitchen/Dining Room (1), Family/Living Room (2),
and City Street (3). These three categories were then tested against two volunteers and their
human knowledge of these given categories, so as to compare the output of the inference engine
to the gold standard: human inference. The volunteers were asked to list what they thought to be
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ten common objects in these three given contexts. Tables 1. and II. compare on two accounts the

inferences found within a random sampling of over 240 images from the training split of the

COCO 2017 dataset with that of human inferences. The column heads indicate human inferences

with ‘H’, and COCO inferences with ‘C,’ starting with category 1, and ending with category 3.
TABLE 1. COCO INFERENCES AGAINST VOLUNTEER #1

1 (H) 1O 2 (H) 2(O) S t?egg)Light 31
Oven Yes TV Yes No
Fridge Yes Couch Yes Fire Hydrant Yes
Pot No Coffee Table No Street Sign Yes®
Pan No Photo No Building No
Coffee Maker No Book Yes Church No
Dishwasher No Board Game No Bus Yes
Microwave Yes Dog No Car Yes
D@sh Yes? Lamp No Sidewalk No
Dish Soap No Window No Person Yes
Sink Yes Fan No Bird No
Table Yes N/A N/A N/A N/A
Chair Yes N/A N/A N/A N/A

2 The dataset was more specific with different types of dishes, but had no concept for a general “dish,” so
we answered this question as yes.

b The dataset did not have a general “street sign,” but was more specific, and contained “stop sign.” We
considered this inference accurate and marked as yes.

The inference engine revealed that COCO had a 46.88% accuracy when compared with the
human inference from volunteer 1, and a 46.67% accuracy when compared with volunteer 2. The
average overall accuracy for both volunteers including all three context categories was 47.77%.
When taking each category individually, the category in which COCO had the highest accuracy
when tested against human inference was category 1, the Kitchen/Dining Room at 63.63%
combined accuracy, and 64.17% average accuracy. Categories 2 and 3 were 30% and 45%
combined accuracy, respectively. The limitations of the results are due to the small samlpling size
of the COCO dataset and the small sampling size and variety of human inference that it was
tested against. The COCO dataset contains hundreds of thousands of images, and only 240 were
used for the input to the inference engine. This means that the clusters of related concepts that
were used to display the inferences could have been much larger and included more nodes and
edges had the input been larger. An increase in the size of the input would likely result in more
clusters that could be tested on human inference. Likewise, the amount of human inference that
was used to test the main categories was very minimal— only ten concepts—and was only
collected from two volunteers. An increase in the number of volunteers to test against would
result in a more reliable evaluation of the artificial inferences.
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TABLEII. COCO INFERENCES AGAINST VOLUNTEER #2

1 (H) 1(©) 2 (H) 20 3 (H) 3O
Table Yes Couch Yes Street Light No
Chair Yes chair Yes Traffic Cone No
Sink Yes vV Yes Street Sign Yes®
Fridge Yes Coffee Table No Person Yes
Microwave End Table

Yes No Car Yes
Oven Yes Blanket No Trash: Can No
Cabinet No Pillow No Cross Walk No
Plate No Rug No Pot Hole No
Table Yes Couch Yes Street Light No
Fork Yes Fireplace No Dog Yes
Dish washer

No Shelf No Sidewalk No

¢ Please see table footnote ‘b’ about the stop sign.

5. Conclusion

5.1 Summary and Discussion

We proposed an inference engine based on the homology of human and machine vision systems.
It is different from deep network architecture and has transparency of the inference process. Our
results are tested against the gold standard of human inference, with even the best cluster
obtaining an accuracy of 64%. Human visual inference and machine vision inference still have
gaps. Perhaps the accuracy would increase if many more images from the dataset were processed
and there was more of a variety of concepts, but our input size did not have enough variety to
yield a greater accuracy. However, it is also worth noting that when the size of the input was
increased from 100 to 200 images, the number of unique concepts found within those images
increased only from 72 to 82. If the COCO dataset truly is more accurate against human inference
than this study has shown, it would take a vastly larger input to verify, and a much stronger
inference engine with more computing power. Furthermore, complicated inference by deep neural
networks may improve the accuracy due to its larger capacity model. But transparency is
sacrificed. Homology between human and machine vision provides a promising direction for co-
inferring an object in an environment.

5.2 Future Work

One improvement to this work would be a way to generate the input file for the inference engine
without having to construct the text file manually. This way, we could also generate a much
larger input to feed to the engine and produce a more complex knowledge graph. Another
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improvement would be a better variety of human inference to test against, perhaps people from
different cultures or ethnicities. Lastly, future work could take advantage of the wide range of
capabilities of the DOT language in writing undirected graphs. This would make the renderings of
the knowledge graph clearer, and the inferences would be easier to see and identify if the concept
clusters could be displayed in several different ways by the GraphViz tools.
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