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Abstract 
Homology of human and machine vision systems demonstrates that better machine could be 
designed with human assistance. Similar components can be mapped from neuroimaging data to 
visual features for recognizing an object. However, inferring object relationships from human 
vision and machine vision are not clear. To measure the similarity of human and machine visual 
inference, this work study an inference method using Microsoft COCO dataset. The input data is 
manually generated, and used for a java-based inference engine, which collects semantic data in a 
co-occurrence matrix, and writes the data to a knowledge graph in the DOT language. Unlike the 
black-box property of deep neural network, the proposed method is transparent. When rendered by 
GraphViz tools, the visible results in the knowledge graph indicated that the COCO dataset-based 
machine inference is promising when compared to human inference, yielding an accuracy of 64% 
at best. This novel inference study on the COCO dataset reveals that homology of human and 
machine vision systems is promising to be bridged. Bigger dataset and more concepts may 
increase the accuracy in the future work.  

1.  Introduction 
Machine vision system has been found to have homology with human vision system through 
functional magnetic resonance imaging (fMRI) study (Horikawa & Kamitani, 2017). Connection 
of EEG signals of human brain and visual representation of an external machine is recently 
established, and it may bridge the gap of vision sharing between human and agent. The research 
breakthrough of neuroscience demonstrates a homology between human and machine vision 
through the discovery of the joint brain-visual representation. Brain representation is extracted 
from fMRI (Horikawa & Kamitani, 2017) or Electroencephalography (EEG) signals (Palazzo et 
al., 2021), and visual representation is obtained by convolutional neural network (CNN) or other 
hand-crafted features. The relationship between brain representations and hierarchical structures 
of layers of CNN makes it possible to not only predict the brain states in awake and anesthetized 
resting-state functional neuroimaging data (Grigis et al., 2020), but also transfer human 
knowledge to design better machines (Palazzo et al., 2021). Their representations of an object can 
be shared with each other on the corresponding layers of a deep neural network. Based on the 
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accumulated knowledge, human generally infer another object when one object is observed. For 
example, if there is a cup on the table, human infers that water may be put into the cup. This 
inference capability is related to both knowledge and inference from human brain. However, this 
inference ability is not clear for an intelligence machine. Due to homology of human and machine 
vision systems, visual inference of an external machine may be also consistent to human vision 
system or not. 
  Inference, as defined by Merriam-Webster, is “a conclusion or opinion that is formed 
because of known facts or evidence.” Human inference relies on background knowledge that 
humans already know that can be used to make certain assumptions or predictions about the 
world. Copernicus’s theory indicates that the Earth orbited the Sun could not initially be 
confirmed because not enough background knowledge was present to make accurate inferences 
from. It was not until enough of this knowledge was collected and processed by some of the best 
scientific minds of the century that his theory was affirmed. This is an example of human 
inference in action. Likewise, the concept of artificial intelligence (AI) inference seeks to mimick 
and take advantage of the way the human brain makes inferences by using a combination of 
background knowledge and logical rules to make accurate predictions and decisions. This is also 
known as Rule-based AI because of the policies enacted upon the background knowledge to 
produce the desired results. 
  The more background knowledge there is to draw from, the more accurate the inferences 
from it will be. Fortunately for us, we are in the age of information--the AI revolution. We have 
more information available to us today than any civilization ever has, and the amount of 
information has caused our sum of knowledge to grow significantly. For the first time, we have 
both the technology, and the knowledge available to us to make significant improvements to AI 
and how it can be used, including the area of AI inference. However, in order to apply logical 
rules to this background knowledge, we first need a way to quantify the knowledge. This can be 
done using a knowledge graph, also known as a semantic network. Semantics, as a whole, is 
beyond the scope of this paper. We need only to understand how it plays into the quantification of 
the background knowledge used to make inferences. A knowledge graph is a theoretical graph 
structure in which the nodes are concepts, and the edges are relationships between the concepts, 
either with or without direction, hence the semantics. The bigger the knowledge graph, the more 
knowledge it contains, and the more accurate the inferences drawn from it can be. Fig. 1 shows an 
example of a small knowledge graph., which contains multiple knowledge concepts. A 
connection between two concepts can infer their relationship in real-world environments.  
  Since homology exists between human and machine vision systems, inference capability 
based on both vision systems is still unknown. We will study the commons and difference 
between human vision and machine vision-based inference systems. Inferences will be made from 
the Microsoft COCO dataset by visualizing a sample of the connections on knowledge graph. 
While COCO has been used in other AI techniques such as object detection, there has yet to be a 
study of the inferences that can be made from the dataset using an inference engine. We will use 
an inference engine implemented in java to make the inferences. First, a portion of the COCO 
dataset is fed into the engine, which will determine the concepts in the dataset that are related to 
one another. Next, the engine will use this semantic data to write a knowledge graph in the DOT 
language. Finally, we will use GraphViz command line tools to render a knowledge graph and 
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study the semantic clusters that appear in the graph visualization. These clusters are the inferences 
drawn from the COCO dataset and represent new discoveries that have not been studied yet. 
Unlike the black-box property in deep neural network, the proposed method is transparent using 
co-occurrence matrix, so a clear path of inference can be identified. Two human volunteers will 
also observe the objects and infer relationships among objects. Both human and machine 
inferences will be compared for evaluating he performance of the proposed method. In this paper, 
section 1 introduces the vision homology between human and machine. Related works are given 
in the section part. The proposed methods is presented in the third section. Results are provided in 
the fourth part. Finally, a conclusion is given. 

 
Fig. 1. An example of a small knowledge graph. 

2.  Related Work 

2.1  Microsoft COCO Dataset 

The Microsoft COCO Dataset (Common Objects in Context) is a large, well annotated dataset 
meant for improving object recognition in computer vision (Lin et al., 2014). Unlike object 
detection and object localization, which focus on whether an image contains a certain concept, 
and where that concept is located in the image, respectively, the COCO dataset focuses on 
individual object segmentation, and is used to train and evaluate machine learning models. One 
such model can be seen in the knowledge aware object detection framework (Fang et al., 2017) 
where COCO is used to test an optimized object detection algorithm which uses semantic 
consistency. COCO was also used to evaluate a virtual semantic reasoning network (Li et al., 
2017) which was a convolutional neural network (CNN) used to recognize the key objects and 
semantic concepts in images within a dataset to perform image-text matching of a semantic scene. 
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Fig. 2 shows a page from the COCO online dataset explorer. It is seen that multiple concepts (e.g. 
bird) have been identified and segmented in the objective image. Those concepts are corresponding 
to segmented objects in an image. 

 
Fig.2. COCO online dataset explorer. A bird object is segmented in the sample image. 

2.2  Inference and Inference Engines 

Inference and its uses have been long standing topics in many different fields. An in-depth 
manual for the migration from statistical analysis to causal analysis can be found in J Pearl's 
overview (Pearl, 2009), along with a number of mathematical solutions for causal effects, 
counterfactuals, and mediation. Inference engines have also been subject to a variety of uses. 
VIBES, the Variational Inference Engine for Bayesian Networks (Christopher, 2002), uses an 
algorithm to automatically generate and solve variational equations in probabilistic learning 
models. Another inference engine, Random Walk (Lao et al., 2011), uses a modified version of the 
Path Ranking Algorithm to make new inferences on a large-scale knowledge base and further 
improve learning accuracy. 

2.3  Knowledge Graphs 

As new knowledge has continued to multiply, new knowledge graphs and knowledge bases have 
become available. One such knowledge base is ConceptNet (Liu et al., 2004), a semantic network 
and natural-language processing toolkit supporting many context-oriented inferences of 
commonsense knowledge. YAGO (Suchanek et al., 2007), another popular semantic knowledge 
base, uses rule-based methods to combine semantic knowledge from WordNet and Wikipedia, 
creating a stable and highly accurate model. YAGO is not alone in its quest to fuse existing 
knowledge bases together. Knowledge Vault (Dong et al., 2014) leverages supervised machine 
learning techniques to automatically construct large-scale knowledge bases from multiple existing 
knowledge sources, including Google's own Knowledge Graph. Knowledge vault also includes its 
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own internal inference engine that uses probabilistic inference to determine the factual accuracy 
of a newly compiled knowledge vault, demonstrating the common cooperation of inference 
techniques and semantic knowledge vehicles. 

3.  Proposed Method 

The inference engine is what bridges the gap between the semantic data in the COCO dataset and 
the knowledge graph we can produce from the data. This will be the focal point of this paper. The 
main two tasks of the inference engine are to gather the data from the input, and to write it into an 
output format that can be visualized. The inference engine operates much like any other 
algorithm: it has an input, a sequence of instructions or operations, and an output. The java 
implementation of the inference engine has three main pieces: a Dictionary, a Co-occurrence 
Matrix, and a Knowledge Graph. 

3.1  Input Generation 

To generate the input, we need a pool of COCO images, and a way to extract the concepts from 
the images so that the inference engine will understand how to use them. A concept is an object 
within an image, for instance, a cat, or a dining room table. The Python library FiftyOne was used 
in a small Python program to determine which images should be selected and used. FiftyOne 
selected a randomly generated set of 200 images from the 2017 training split of the COCO dataset 
and saved them to a local directory. Each image in this set was then manually located in the 
online COCO dataset explorer by using its unique image ID. The explorer provides a simplified 
view of the annotations for each image, including all the concept labels. As shown in Fig. 3, the 
concepts in each image were then recorded in a text file, with one concept label per line. A blank 
line was used to indicate the end of an image, and the beginning of the next image in the set. 
Thus, all the concepts for each image are placed in their own group in the text file, and each 
group is separated by one blank line. This will help the engine to read through the file later. Our 
text file represented just under 250 images containing 85 unique concepts. 

Fig. 3. Part of one of the input text files. All the concepts for each image are placed in their own 
group in the text file. 
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3.2  Dictionary 

Once our input file is constructed, we will read through it, putting each line as a String entry into 
two distinct hash tables, which are both fields in the Dictionary object. Each hash table entry will 
be identified by a positive integer, which is the key. The first hash table will contain every line in 
the file, including blank lines indicating separate images, labeled as "BLANK". The second hash 
table will contain one entry for every unique concept, even if this concept is found in many of the 
image representations in the text file. This dictionary object will serve as a miniature database 
from which we will draw semantic knowledge about COCO. 

3.3  Co-Occurrence Matrix 

The next step is to use the contents of the Dictionary object to produce a co-occurrence matrix. 
This matrix will be implemented by the COMatrix class, which uses a two-dimensional integer 
array to store the co-occurrence data found within Dictionary. The size of the matrix is 
determined by the total number of unique concepts in the second hash table. The purpose of this 
matrix is to record the number of times a given concept occurs in the same context as another 
given concept (appears in the same image). For example, let us suppose that there are 17 separate 
images in which both a person and a surfboard occur in the same image. In this case, the value at 
the intersection of the (person, surfboard) vertex in the co-occurrence matrix would be 17, and so 
also would be the (surfboard, person) vertex, because this is the co-occurrence value of these two 
concepts. This only applies to distinct objects, so if there are two surfboards in one image, this 
does not mean that we increase the count; the concepts are not self-reflexive. 

3.4  Knowledge Graph 

The third and final class in the implementation is the KnowledgeGraph object. The purpose of 
this object is to analyze the co-occurrence matrix, and write an output file in the DOT language, 
which will be the actual knowledge graph. DOT is an open-source graph description language 
that can be used to write and define the nodes and edges in both undirected and directed graphs. 
Due to the time constraints on this project, only undirected graphs were used.  DOT is commonly 
associated with the GraphViz package, which provides many tools for rendering and viewing 
graphs that were created using the DOT language. After the KnowledgeGraph object is 
initialized, two methods will be called on it: one to draw the nodes, which are the concepts, and 
another to draw the edges, which are the relationships between the concepts. Consideration can be 
given to the values found in the co-occurrence matrix. For example, if the value in the matrix at 
(cat, table) is very high, this means that there is a very strong relationship between these two 
concepts, and could be represented by a different color or size node. We can also program the 
method to draw only the nodes which have very strong relationships with each other, say, at least 
3 co-occurrences. When the inference engine is run by the main, the result will be a DOT file 
(*.gv, *.dot) which can be rendered into a PNG image by the GraphViz tools. At this point, we 
are now able to see the inferences represented by the clusters of semantically related concepts. As 
shown in Fig. 4, a knowledge graph is produced by the proposed inference engine. A threshold 3 
is selected to remove some irrelevant items. It is clearly seen that some clusters exist for grouping 
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related objects together. For example, “person” is the center of a big cluster in which “person” 
object has strong relationships to other objects, so an inference can be obtained from “person” to 
those related objects. 

 

 
Fig. 4. A knowledge graph produced by the inference engine from our input. In this graph, all the related 
concepts have at least 3 co-occurrences. A quick look can see about 3-4 clusters of related concepts. 

4.  Results 

We have categorized the most obvious concept clusters in the knowledge graph into three main 
categories, which are numbered respectively: Kitchen/Dining Room (1), Family/Living Room (2), 
and City Street (3). These three categories were then tested against two volunteers and their 
human knowledge of these given categories, so as to compare the output of the inference engine 
to the gold standard: human inference. The volunteers were asked to list what they thought to be 
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ten common objects in these three given contexts. Tables I. and II. compare on two accounts the 
inferences found within a random sampling of over 240 images from the training split of the 
COCO 2017 dataset with that of human inferences. The column heads indicate human inferences 
with ‘H’, and COCO inferences with ‘C,’ starting with category 1, and ending with category 3. 

TABLE I. COCO INFERENCES AGAINST VOLUNTEER #1 
1 (H) 1 (C) 2 (H) 2 (C) 3 (H) 3 (C) 
Oven Yes TV Yes Street Light No 

Fridge Yes Couch Yes Fire Hydrant Yes 

Pot No Coffee Table No Street Sign Yesb 

Pan No Photo No Building No 
Coffee Maker No Book Yes Church No 
Dishwasher No Board Game No Bus Yes 
Microwave Yes Dog No Car Yes 

Dish Yesa Lamp No Sidewalk No 
Dish Soap No Window No Person Yes 

Sink Yes Fan No Bird No 
Table Yes N/A N/A N/A N/A 
Chair Yes N/A N/A N/A N/A 

a. The dataset was more specific with different types of dishes, but had no concept for a general “dish,” so 
we answered this question as yes. 
b. The dataset did not have a general “street sign,” but was more specific, and contained “stop sign.” We 
considered this inference accurate and marked as yes. 
 

The inference engine revealed that COCO had a 46.88% accuracy when compared with the 
human inference from volunteer 1, and a 46.67% accuracy when compared with volunteer 2. The 
average overall accuracy for both volunteers including all three context categories was 47.77%. 
When taking each category individually, the category in which COCO had the highest accuracy 
when tested against human inference was category 1, the Kitchen/Dining Room at 63.63% 
combined accuracy, and 64.17% average accuracy. Categories 2 and 3 were 30% and 45% 
combined accuracy, respectively. The limitations of the results are due to the small samlpling size 
of the COCO dataset and the small sampling size and variety of human inference that it was 
tested against. The COCO dataset contains hundreds of thousands of images, and only 240 were 
used for the input to the inference engine. This means that the clusters of related concepts that 
were used to display the inferences could have been much larger and included more nodes and 
edges had the input been larger. An increase in the size of the input would likely result in more 
clusters that could be tested on human inference. Likewise, the amount of human inference that 
was used to test the main categories was very minimal— only ten concepts—and was only 
collected from two volunteers. An increase in the number of volunteers to test against would 
result in a more reliable evaluation of the artificial inferences. 
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TABLE II. COCO INFERENCES AGAINST VOLUNTEER #2 
1 (H) 1 (C) 2 (H) 2 (C) 3 (H) 3 (C) 

Table Yes Couch Yes Street Light No 

Chair Yes chair Yes Traffic Cone No 

  Sink Yes TV Yes Street Sign Yesc 
Fridge Yes Coffee Table No Person Yes 
Microwave  

Yes 
End Table  

No 
 

Car 
 

Yes 

   Oven Yes Blanket No Trash Can No 
   Cabinet No Pillow No Cross Walk No 

 Plate No Rug No Pot Hole No 
 Table Yes Couch Yes Street Light No 

   Fork Yes Fireplace No Dog Yes 
   Dish washer  

No 
 

Shelf 
 

No 
 

Sidewalk 
 

No 
c. Please see table footnote ‘b’ about the stop sign. 

5.  Conclusion 

5.1  Summary and Discussion 

We proposed an inference engine based on the homology of human and machine vision systems. 
It is different from deep network architecture and has transparency of the inference process. Our 
results are tested against the gold standard of human inference, with even the best cluster 
obtaining an accuracy of 64%. Human visual inference and machine vision inference still have 
gaps. Perhaps the accuracy would increase if many more images from the dataset were processed 
and there was more of a variety of concepts, but our input size did not have enough variety to 
yield a greater accuracy. However, it is also worth noting that when the size of the input was 
increased from 100 to 200 images, the number of unique concepts found within those images 
increased only from 72 to 82. If the COCO dataset truly is more accurate against human inference 
than this study has shown, it would take a vastly larger input to verify, and a much stronger 
inference engine with more computing power. Furthermore, complicated inference by deep neural 
networks may improve the accuracy due to its larger capacity model. But transparency is 
sacrificed. Homology between human and machine vision provides a promising direction for co-
inferring an object in an environment.  

5.2  Future Work 

One improvement to this work would be a way to generate the input file for the inference engine 
without having to construct the text file manually. This way, we could also generate a much 
larger input to feed to the engine and produce a more complex knowledge graph. Another 
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improvement would be a better variety of human inference to test against, perhaps people from 
different cultures or ethnicities. Lastly, future work could take advantage of the wide range of 
capabilities of the DOT language in writing undirected graphs. This would make the renderings of 
the knowledge graph clearer, and the inferences would be easier to see and identify if the concept 
clusters could be displayed in several different ways by the GraphViz tools. 
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