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Abstract
Despite their success, policy gradient methods suf-
fer from high variance of the gradient estimator,
which can result in unsatisfactory sample com-
plexity. Recently, numerous variance-reduced ex-
tensions of policy gradient methods with provably
better sample complexity and competitive numeri-
cal performance have been proposed. After a com-
pact survey on some of the main variance-reduced
REINFORCE-type methods, we propose ProbA-
bilistic Gradient Estimation for Policy Gradient
(PAGE-PG), a novel loopless variance-reduced
policy gradient method based on a probabilistic
switch between two types of update. Our method
is inspired by the PAGE estimator for supervised
learning and leverages importance sampling to
obtain an unbiased gradient estimator. We show
that PAGE-PG enjoys a O

�
✏
�3
�

average sam-
ple complexity to reach an ✏-stationary solution,
which matches the sample complexity of its most
competitive counterparts under the same setting.
A numerical evaluation confirms the competitive
performance of our method on classical control
tasks.

1. Introduction
Policy gradient methods have proved to be really effective in
many challenging deep reinforcement learning (RL) appli-
cations (Sutton & Barto, 2018). Their success is also due to
their versatility as they are applicable to any differentiable
policy parametrization, including complex neural networks,
and they admit easy extensions to model-free settings and
continuous state and action spaces. This class of meth-
ods has a long history in the RL literature that dates back
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to (Williams, 1992), but only very recent work (Agarwal
et al., 2019) has characterized their theoretical properties,
such as convergence to a globally optimal solution and sam-
ple and iteration complexity. Since in RL it is generally
not possible to compute the exact gradient, but we rely
on sample-based approximations, policy gradient methods
are negatively affected by the high-variance of the gradient
estimator, which slows down convergence and leads to un-
satisfactory sample complexity. To reduce the variance of
the gradient estimators, actor-critic methods are deployed,
where not only the policy, but also the state-action value
function or the advantage function are parameterized (Mnih
et al., 2016). Alternatively, taking inspiration from stochas-
tic optimization, various variance-reduced policy gradient
methods have been proposed (Sidford et al., 2018; Papini
et al., 2018; Xu et al., 2019; 2021; Yuan et al., 2020; Zhang
et al., 2021).

In this work, we focus on variance-reduced exten-
sions of REINFORCE-type methods, such as REIN-
FORCE (Williams, 1992), GPOMDP (Baxter & Bartlett,
2001) and their variants with baseline (Sutton & Barto,
2018). After reviewing the principal variance-reduced ex-
tensions of REINFORCE-type methods, we introduce a
novel variance-reduced policy gradient method, PAGE-PG,
based on the recently proposed PAGE estimator for super-
vised learning (Li et al., 2021). We prove that PAGE-PG
only takes O

�
✏
�3
�

trajectories on average to achieve an ✏-
stationary policy, which translates into a near-optimal solu-
tion for gradient dominated objectives. This result matches
the bounds on total sample complexity of the most compet-
itive variance-reduced REINFORCE-type methods under
the same setting. The key feature of our method consists
in replacing the double-loop structure typical of variance-
reduced methods with a probabilistic switch between two
types of updates. According to recent works in supervised
learning (Kovalev et al., 2020; Li et al., 2021), variance-
reduced methods that do not rely on the classical double-
loop structure, also called loopless, are easier to tune, ana-
lyze and generally lead to superior and more robust practical
behavior. For policy gradient optimization, similar advan-
tages are discussed in (Yuan et al., 2020; Huang et al., 2020),
where the authors propose STORM-PG and IS-MBPG, re-
spectively, which, to the best of our knowledge, are the only



ProbAbilistic Gradient Estimation for Policy Gradient (PAGE-PG)

other loopless variance-reduced REINFORCE-type policy
gradient counterparts to our method. Both STORM-PG and
IS-MBPG are based on the idea of incorporating momentum
in the update, while our method is based on replacing the
outer loop with a coin flip which triggers with a certain prob-
ability the computation of a large-batch gradient estimate.
In addition, with respect to STORM-PG, our method enjoys
a better theoretical rate of convergence. Our experiments
show the competitive performance of PAGE-PG on classical
control tasks. Finally, we describe the limitations of the
considered methods, discuss promising future extensions
as well as the importance of incorporating noise annealing
and adaptive strategies in the PAGE-PG’s update. These
might favor exploration in the early stages of training and
improve convergence in presence of complex non-concave
landscapes (Neelakantan et al., 2015; Smith et al., 2018;
Zhou et al., 2019).

Main contributions. Our main contributions are summa-
rized below.

• We propose PAGE-PG, a novel loopless variance-
reduced extension of REINFORCE-type methods
based on a probabilistic update.

• We show that PAGE-PG enjoys a fast rate of con-
vergence and achieves an ✏-stationary policy within
O
�
✏
�3
�

trajectories on average. We further show that,
with gradient dominated objectives, similar results are
valid for near-optimal solutions.

2. Problem Setting
In this section, we describe the problem setting and briefly
discuss the necessary background material on REINFORCE-
type policy gradient methods.

Markov Decision Process. The RL paradigm is based
on the interaction between an agent and the environment.
In the standard setting, the agent observes the state of the
environment and, based on that observation, plays an ac-
tion according to a certain policy. As a consequence, the
environment transits to a next state and a reward signal
is emitted from the environment back to the agent. This
process is repeated over a horizon of length H > 0, with
H < 1 in the episodic setting and H ! 1 in the infinite-
horizon setting. From a mathematical viewpoint, Markov
Decision Processes (MDPs) are a widely utilized mathe-
matical tool to describe RL tasks. In this work we con-
sider discrete-time episodic MDPs M = {S,A, P, r, �, ⇢},
where S is the state space; A is the action space; P is a
Markovian transition model, where P (s0 | s, a) defines the
transition density to state s

0 when taking action a in state s;
r : S ⇥A ! [�U,U ] is the reward function, where U > 0
is a constant; � 2 (0, 1) is the discount factor; and ⇢ is
the initial state distribution. The agent selects the actions

according to a stochastic stationary policy ⇡, which, given a
state s, defines a density distribution over the action space
⇡(· | s). A trajectory ⌧ = {sh, ah}

H�1
h=0 is a collection of

states and actions with s0 ⇠ ⇢ and, for any time-step h � 0,
ah ⇠ ⇡(· | sh) and sh+1 ⇠ P (· | sh, ah). We denote the
trajectory distribution induced by policy ⇡✓ as p(⌧ | ✓).

The value function V
⇡ : S ! R associated with a policy ⇡

and initial state s is defined as

V
⇡(s) := E

"
H�1X

h=0

�
h
r(sh, ah) |⇡, s0 = s

#
,

where the expectation is taken with respect to the trajectory
distribution. With an overloaded notation, we denote with
V

⇡(⇢) the expected value under the initial state distribution
⇢, i.e.,

V
⇡(⇢) := Es0⇠⇢ [V

⇡(s0)] . (1)

The goal of the agent generally is to find the policy ⇡ that
maximizes V ⇡(⇢) in (1).

Policy Gradient. Given finite state and action spaces,
the policy can be exactly coded with |S| ⇥ |A| parame-
ters in the tabular setting. However, the tabular setting
becomes intractable for large state and action spaces. In
these scenarios, as well as in infinite countable and con-
tinuous spaces, we generally resort to parametric function
approximations. In particular, instead of optimizing over
the full space of stochastic stationary policies, we restrict
our attention to the class of stochastic policies that is de-
scribed by a finite-dimensional differentiable parametriza-
tion ⇧✓ =

�
⇡✓ | ✓ 2 Rd

 
, such as a deep neural net-

work (Levine & Koltun, 2014). The addressed problem
therefore becomes

max
✓2Rd

V
⇡✓ (⇢) . (2)

We denote with V
⇤ the optimal value. To simplify the

notation, we use V (✓) to denote V
⇡✓ (⇢), ✓ to denote ⇡✓

and R(⌧) =
P

H�1
h=0 �

h
r(sh, ah) to denote the discounted

cumulative reward associated with trajectory ⌧ . Problem (2)
can be addressed via gradient ascent, which updates the
parameter vector by taking fixed steps of length ⌘ > 0 along
the direction of the gradient. The iterations are defined as

✓t+1 = ✓t + ⌘r✓V (✓t) , (3)

where the gradient is given by

r✓V (✓) = E⌧⇠p(· | ✓)

"
H�1X

h=0

r✓ log ⇡✓(ah | sh)R(⌧)

#
.

(4)

In the model-free setting, we cannot compute the exact
gradient as we do not have access to the MDP dynamics.
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Instead, given a certain policy ✓, we simulate a finite number
N > 0 of trajectories, which are then used to approximate
Equation (4) via Monte Carlo

r̂✓V
RF(✓) =

1

N

NX

i=1

H�1X

h=0

r✓ log ⇡✓(a
i

h
| s

i

h
)R(⌧i) , (5)

where each trajectory ⌧i =
�
s
i

h
, a

i

h

 H�1

h=0
is generated ac-

cording to the trajectory distribution p(· | ✓). The estimator
in Equation (5) is also known as the REINFORCE estimator.
An alternative is given by the GPOMDP estimator

r̂✓V
GPOMDP(✓) =

1

N

NX

i=1

H�1X

h=0

�
h
r(si

h
, a

i

h
)Z✓,h , (6)

where for compactness Z✓,h =
P

h

z=0 r✓ log ⇡✓(aiz | s
i

z
).

Both REINFORCE and GPOMDP are unbiased estima-
tors of the gradient, but they are not equivalent in terms
of variance. Specifically for GPOMDP, by only consid-
ering the reward-to-go instead of the full reward, we are
removing potentially noisy terms and therefore lowering
the variance of our estimator (Zhao et al., 2011). In addi-
tion, since E [r✓ log ⇡✓(a | s)b(s)] = 0 with b(s) being a
function of the state, e.g. the value function V

⇡(s), both
the REINFORCE and GPOMDP estimators can be used in
combination with a baseline.

The discussed estimators (with or without baseline) are de-
ployed in place of the exact gradient in Equation (3), leading
to the REINFORCE and GPOMDP algorithms. These meth-
ods are reminiscent of stochastic gradient ascent (Bottou,
2012) that also relies on sample-based estimates of the true
gradient.

Notation. With an overloaded notation, we use g(⌧i | ✓) =P
H�1
h=0 r✓ log ⇡✓(aih | s

i

h
)R(⌧i) for the REINFORCE es-

timator, and g(⌧i | ✓) =
P

H�1
h=0 �

h
r(si

h
, a

i

h
)Z✓,h for the

GPOMDP estimator.

3. Related Work
Variance-reduction techniques have been first introduced for
training supervised machine learning models, such as logis-
tic regression, support vector machines and neural networks.
Supervised learning is often recast into a finite-sum empiri-
cal risk minimization problem that in its simplest takes the
form

min
✓2Rd

f(✓) :=
1

n

nX

i=1

`(fi(✓)) . (7)

In the supervised learning scenario, n is the size of the
training dataset D = {(xi, yi)}

n

i=1 and ` is a loss function
that measures the discrepancy between the model prediction
fi(✓) = f(xi; ✓) and the true value yi. If f is smooth and

satisfies the Polyak-Łojasiewicz (PL) condition, gradient de-
scent with an appropriate constant step-size enjoys a global
linear rate of convergence (Karimi et al., 2020). Despite
its fast rate, often the full gradient computation makes the
iterations of gradient descent too expensive because of the
large size of the training dataset. Mini-batch gradient de-
scent replaces the full gradient with an estimate computed
over a randomly sampled subset of the available samples.
The method requires a decreasing step-size to control the
variance and achieve convergence. As a consequence, the
lower-iteration cost comes at the price of a slower sublin-
ear convergence rate (Karimi et al., 2020). A better trade-
off between computational costs and convergence rate is
achieved by variance-reduced gradient methods, such as
SVRG (Johnson & Zhang, 2013), Katyusha (Allen-Zhu,
2017), SARAH (Nguyen et al., 2017), STORM (Cutkosky
& Orabona, 2019), L-SVRG and L-Katyusha (Kovalev
et al., 2020), and PAGE (Li et al., 2021). Because of their
provably superior theoretical properties and their competi-
tive numerical performance, these methods have attracted
great attention from the machine learning community in the
past decade. A key structural feature of classical variance-
reduced methods, such as SVRG, Katyusha and SARAH,
is the double-loop structure. In the outer loop a full pass
over the training data is made in order to compute the exact
gradient, which is then used in the inner loop together with
new stochastic gradient information to construct a variance-
reduced estimator of the gradient. However, as underlined
in (Zhou et al., 2019), the double-loop structure complicates
the analysis and tuning, since the optimal length of the inner
loop depends on the value of some structural constants that
are generally unknown and often very hard to estimate. This
inconvenience has fueled recent efforts from the supervised
learning community to develop loopless variance-reduced
gradient methods, such as L-SVRG, L-Katyusha and PAGE.
In these methods the outer loop is replaced by a probabilistic
switch between two types of updates: with probability p a
full gradient computation is performed, while with proba-
bility 1� p the previous gradient estimate is reused with a
small adjustment that varies based on the method. In par-
ticular, L-SVRG and L-Katyusha, which are designed for
smooth and strongly convex objective functions, recover
the same fast theoretical rates of their loopy counterparts,
SVRG and Katyusha, but they require less tuning and lead to
superior and more robust practical behavior (Kovalev et al.,
2020). Similar results also hold for PAGE (Li et al., 2021),
which is designed for non-convex problems. In particular,
in the non-convex finite-sum setting, PAGE achieves the
optimal convergence rate and numerical evidence confirms
its competitive performance.

Motivated by the great success of variance-reduction tech-
niques in supervised learning, numerous recent works have
explored their deployment in RL, and, in particular, their
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adaptation for policy gradient (Papini et al., 2018; Xu et al.,
2021; Yuan et al., 2020; Zhang et al., 2021). As discussed
in Section 2, the gradient is generally estimated based on
a finite number N of observed trajectories. In online RL,
the trajectories are sampled at each policy change. This
is particularly costly since it requires one to simulate the
system N times for every parameter update. Generally the
batch-size is tuned to achieve the best trade-off between
the cost of simulating the system and the variance of the
estimator. This motivates the use of variance-reduced gra-
dient methods, that use past gradients to reduce variance,
leading to an improvement in terms of sample complex-
ity. The deployment of variance-reduction techniques to
solve Problem (2) is not straightforward and requires some
adaptations to deal with the specific challenges of the RL
setting (Papini et al., 2018). Differently from the finite-sum
scenario, Problem (2) can not be recast as a finite-sum prob-
lem, unless both the state and action spaces are finite. This
and the fact that the MDP dynamics are unknown prevent
from the computation of the full gradient, which is generally
replaced by an estimate based on a large batch-size.

An additional difficulty comes from the fact that the data dis-
tribution changes over time, since it depends on the parame-
ter ✓, which gets updated during training. This is known as
distribution shift and requires the deployment of importance
weighting in order to reuse past information without adding
a bias to the gradient estimator. In particular, suppose we
have two policies ✓1 and ✓2, where ✓2 is used for the interac-
tion with the system, while we aim at obtaining an unbiased
estimator of the gradient with respect to ✓1. The unbiased
off-policy extension of the REINFORCE estimator (Papini
et al., 2018) is obtained by replacing g(⌧i | ✓) in Equation (5)
with the following quantity

g
!✓2 (⌧i |✓1) = !(⌧i | ✓2, ✓1)

H�1X

h=0

r✓ log ⇡✓1(a
i

h
| s

i

h
)R(⌧i) ,

(8)
where !(⌧i | ✓2, ✓1) = ⇧H�1

j=0
⇡✓1 (a

i
j | sij)

⇡✓2 (a
i
j | sij)

is the importance
weight for the full trajectory realization ⌧i. Similarly, the off-
policy extension of the GPOMDP estimator (Papini et al.,
2018) is obtained by replacing g(⌧i | ✓) in Equation (6) with
the following quantity

g
!✓2 (⌧i |✓1) =

H�1X

h=0

!0:h(⌧i | ✓2, ✓1)�
h
r(si

h
, a

i

h
)Z✓1,h ,

(9)
where !0:h(⌧i | ✓2, ✓1) = ⇧h

j=0
⇡✓1 (a

i
j | sij)

⇡✓2 (a
i
j | sij)

is the importance
weight for the trajectory realization ⌧i truncated at time h.
Clearly, for the importance weights to be well-defined, the
policy ✓2 needs to have a non-zero probability of selecting
any action in every state. This assumption is implicitly
required to hold where needed throughout the paper. It is

easy to verify that, for both the off-policy extensions of
REINFORCE and GPOMDP, E⌧⇠p(· | ✓2) [g

!✓2 (⌧ | ✓1)] =
E⌧⇠p(· | ✓1) [g(⌧ | ✓1)], leading to an unbiased estimator of
the gradient at ✓1.

3.1. Variance-Reduced REINFORCE-type Methods

We now briefly review some of the state-of-the-art variance-
reduced REINFORCE-type methods to solve Problem (2).
We use g(⌧ | ✓) and g

!✓2 (⌧ | ✓1) to refer to both the REIN-
FORCE and GPOMDP estimators, without and with impor-
tance sampling, respectively.
Stochastic Varaice-Reduced Policy Gradient (SVRPG),
first proposed in (Papini et al., 2018) and then further an-
alyzed in (Xu et al., 2019), adapts the stochastic variance-
reduced gradient method for finite-sum problems (Johnson
& Zhang, 2013) to deal with the RL challenges as discussed
above. The method is characterized by a double loop struc-
ture, where the outer iterations are called epochs. At the s-th
epoch, a snapshot of the current iterate ✓

s

0 is taken. Then,
N >> 1 trajectories {⌧i}

N

i=1 are collected based on the
current policy and used to compute the gradient estimator
v
s

0 = 1
N

P
N

i=1 g(⌧i | ✓
s

0). For every epoch, m iterations in
the inner loop are performed. At the t-th iteration of the
inner loop with t = 0, . . . ,m � 1, the parameter vector is
updated by

✓
s

t+1 = ✓
s

t
+ ⌘v

s

t
, (10)

where ⌘ > 0. Then B << N trajectories {⌧j}
B

j=1 are col-
lected according to the current policy ✓

s

t+1 and an estimate
of the gradient at ✓s

t+1 is produced

v
s

t+1 =
1

B

BX

j=1

g(⌧j | ✓
s

t+1) + v
s

0 �
1

B

BX

j=1

g
!✓st+1 (⌧j | ✓

s

0) .

After m iterations in the inner loop, the snapshot is refreshed
by setting ✓

s+1
0 = ✓

s

m
, and the process is repeated for a fixed

number of iterations. See Algorithm 1 in Section A of the
Appendix.
Stochastic Recursive Variance-Reduced Policy Gradient
(SRVRPG) (Xu et al., 2021) is inspired from the SARAH
method for supervised learning (Nguyen et al., 2017). Dif-
ferently from SVRPG, SRVRPG incorporates in the update
the concept of momentum, which helps convergence by
dampening the oscillations typical of first-order methods. In
particular, the estimate produced in the inner iterations for
all t = 0, . . . ,m� 1 is

v
s

t+1 =
1

B

BX

i=1

g(⌧j | ✓
s

t+1) + v
s

t
�

1

B

BX

i=1

g
!✓st+1 (⌧j | ✓

s

t
) ,

(11)
where {⌧i}

B

i=1 are generated according to policy ✓
s

t+1 and
v
s

0 is the large batch-size estimate computed at the s-th
epoch. See Algorithm 2 in Section A of the Appendix.
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Stochastic Recursive Momentum Policy Gradient
(STORM-PG) (Yuan et al., 2020) blends the key compo-
nents of STORM (Cutkosky & Orabona, 2019), a state-of-
the-art variance-reduced gradient estimator for finite-sum
problems, with policy gradient algorithms. A major draw-
back of SVRPG and SRVRPG is the restarting mechanism,
namely, the alternation between large and small batches of
sampled trajectories which ensures control of the variance.
As discussed for the finite-sum scenario, the double-loop
structure complicates the theoretical analysis and the tuning
procedure. STORM-PG circumvents the issue by deploying
an exponential moving averaging mechanism that exponen-
tially discounts the accumulated variance. The method only
requires one to collect a large batch of trajectories at the
first iteration and then relies on small batch updates. Specif-
ically, STORM-PG starts by collecting N >> 1 trajectory
samples {⌧i}

N

i=1 according to an initial policy ✓0. Those
samples are deployed to calculate an initial gradient esti-
mate v0 = 1

N

P
N

i=1 g(⌧i | ✓0), which is used in place of the
gradient to update the parameter vector as in Equation (3).
Then T iterations are performed where at the t-th iteration
the parameter vector is updated as described in Equation (3),
but replacing the gradient with the following estimate

vt =
1

B

BX

i=1

g(⌧i | ✓t) + (1� ↵)

"
vt�1

�
1

B

BX

i=1

g
!✓t (⌧i | ✓t�1)

#
,

(12)

where ↵ 2 (0, 1] and {⌧i}
B

i=1 are generated with policy
✓t. Notice that if ↵ = 1, we recover the REINFORCE
method, while if ↵ = 0 we recover the SRVRPG update.
See Algorithm 3 in Section A of the Appendix.

IS-MBPG’s update is identical to (12) but ↵ is adjusted at
every iteration (Huang et al., 2020).

4. PAGE-PG
PAGE (Li et al., 2021) is a novel variance-reduced stochastic
gradient estimator for Problem (7), where f is differentiable
but possibly non-convex. Let Bt be a set of randomly se-
lected indices without replacement from {1, . . . , n} and
|Bt| = B << n, where the subscript t refers to the iteration.
The PAGE estimator is based on a small adjustment to the
mini-batch gradient estimator. Specifically, it is initialized
to the full gradient g0 = r✓f(✓0) at ✓0. For the subsequent
iterations, the PAGE estimator is defined as follows

gt =
8
><

>:

1
n

nP
i=1

rfi(✓t) prob. pt
1
B

P
i2Bt

rfi(✓t) + gt�1�
1
B

P
i2Bt

rfi(✓t�1) prob. 1� pt.

(13)

This unbiased gradient estimator is used to update the pa-
rameter vector in a gradient-descent fashion

✓t+1 = ✓t � ⌘gt ,

where ⌘ > 0 is a fixed step-size. Therefore, PAGE is based
on switching with probability pt between gradient descent
and a mini-batch version of SARAH (Nguyen et al., 2017).

As suggested by its name, PAGE-PG is designed by blending
the key ideas of PAGE with policy gradient methods. As
discussed in Section 3, we can not simply use the PAGE
estimator for policy gradient in its original formulation but
some adjustments are required. In particular, we substitute
the exact gradient computations with an estimate based on
a large batch-size N >> B. To deal with the distribution
shift, we deploy importance weighting in a similar fashion
as the variance-reduced policy gradient methods discussed
in Section 3. PAGE-PG works by initially sampling N

trajectories with the initial policy ✓0 and using those samples
to build a solid gradient estimate v0 = 1

N

P
N

i=1 g(⌧i | ✓0).
For any t > 0, PAGE-PG deploys the following estimate

vt =
8
>><

>>:

1
N

NP
i=1

g(⌧i | ✓t) prob. pt

1
B

BP
i=1

g(⌧i | ✓t)+vt�1�
1
B

BP
i=1

g
!✓t (⌧i | ✓t�1) prob. 1� pt,

(14)
where ⌧i is drawn according to policy ✓t for any i. The pa-
rameter vector is updated according to Equation (3), where
vt is deployed in place of the gradient. Notice that for
pt = p = 1 we recover the REINFORCE/GPOMDP method
with batch-size N . See Algorithm 4 in Section A of the
Appendix for a pseudo-code description. As it appears
in Equation (14), the double loop-structure that character-
izes SVRPG and SRVRPG is replaced by a probabilistic
switch between two estimators. In particular, the probability
of switching pt plays an analogous role to the hyperpa-
rameter dictating the length of the inner loop in SVRPG
and SRVRPG as it determines the frequency with which
the gradient estimate based on a large batch is updated.
Consequently, a smaller probability of switching tends to
generate more noisy gradient estimates and viceversa. As
discussed in Section 6, this could be exploited in some
iteration-varying strategy that regulates the level of explo-
ration by adjusting the hyperparameter pt on the fly. One
possibility could be to start with a small value of pt and then
gradually increase it as the training progresses. This can
potentially prevent the iterates from getting stuck in some
bad local maximizer by promoting exploration in the early
stages of training, while producing more stable gradient
estimates towards the end of training.
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4.1. Theoretical Analysis

For the convergence analysis, we focus on the GPOMDP
estimator, since it is generally preferred over the REIN-
FORCE one because of its better performance. Therefore in
this section we use g(⌧i | ✓) =

P
H�1
h=0 �

h
r(si

h
, a

i

h
)Z✓,h and

g
!✓2 (⌧i |✓1) =

P
H�1
h=0 !0:h(⌧i | ✓2, ✓1)�h

r(si
h
, a

i

h
)Z✓1,h.

We also consider a constant probability of switching pt = p

in order to simplify the analysis. We refer to Section C in the
Appendix for the proofs and to Section B in the Appendix
for the technical lemmas. After discussing the fundamental
assumptions, we focus on studying the sample complexity
of PAGE-PG to reach an ✏-stationary solution. We further
show that, when the objective is gradient-dominated, since
✏-stationarity translates into near-optimality, the derived re-
sults are also valid for near-optimal solutions.

The theoretical analysis of variance-reduced policy gradi-
ent methods generally focuses on deriving, under certain
assumptions, an upper bound on the number of sampled tra-
jectories that are needed to achieve an ✏-stationary solution.
Definition 4.1 (✏-stationary solution). Let ✏ > 0. ✓ 2 Rd is
an ✏-stationary solution if and only if kr✓V (✓)k  ✏ .

Based on Definition 4.1, a stochastic policy gradient based
algorithm reaches an ✏-stationary solution if and only if
E
⇥
kr✓V (✓out)k2

⇤
 ✏

2, where ✓out is the output of the
algorithm after T iterations and the expected value is taken
with respect to all the sources of randomness involved in the
process. Our analysis is based on the following assumptions.
Assumption 4.2 (Bounded log-policy gradient norm). For
any a 2 A and s 2 S there exists a constant G > 0 such
that kr✓ log ⇡✓(a | s)k  G for all ✓ 2 Rd.
Assumption 4.3 (Smoothness). ⇡✓ is twice differentiable
and for any a 2 A and s 2 S there exists a constant M > 0
such that kr2

✓
log ⇡✓(a | s)k  M for all ✓ 2 Rd.

Assumption 4.4 (Finite variance). There exists a constant
� > 0 such that Var(g(⌧ | ✓))  �

2 for all ✓ 2 Rd.
Assumption 4.5 (Finite importance weight variance). For
any policy pair ✓a, ✓b 2 Rd and with ⌧ ⇠ p(· | ✓b), the im-
portance weight !(⌧ | ✓b, ✓a) = p(⌧ | ✓a)

p(⌧ | ✓b) is well-defined.
In addition, there exists a constant W > 0 such that
Var(!(⌧ |✓b, ✓a ))  W .

The same set of assumptions is considered in (Papini et al.,
2018; Xu et al., 2019; 2021; Yuan et al., 2020). By analyzing
PAGE-PG in the same setting as its counterparts, we are
able to compare them from a theoretical viewpoint.
Remark 4.6. While the non-convex optimization community
agrees on the rationality of Assumptions 4.2-4.4, in (Zhang
et al., 2021) the authors argue that Assumption 4.5 on the
boundedness of the importance weight variance is uncheck-
able and very stringent. In a more limited setting (finite
MDPs only) than the one considered in this work, they are

able to remove such assumption via the introduction of a
gradient-truncation mechanism that provably controls the
variance of the importance weights in off-policy sampling.
This approach is for now outside the scope of this work, but
can be addressed in future work by adopting a trust region
policy optimisation perspective. In practice, to ensure that
Assumption 4.5 is met, one can resort to small step-sizes so
that p(⌧ | ✓b) ⇡ p(⌧ | ✓a) and the weight is bounded. This,
however, comes at the cost of slower convergence, as also
confirmed by our numerical experiments in Section 5.

For completeness, we report the following fundamental
proposition from (Xu et al., 2021), which is used consis-
tently in our proofs.

Proposition 4.7. Let ⌧i be a realization of ⌧ ⇠ p(· | ✓1).
Under Assumptions 4.2-4.3:

1. kg(⌧i | ✓1)� g(⌧i | ✓2)k  Lk✓1 � ✓2k for all ✓1, ✓2 2

Rd
, where L := MU/(1� �)2 + 2G2

U/(1� �)3,

2. V (✓) is L-smooth and twice differentiable, i.e.

kr
2
✓
V (✓)k  L.

3. kg(⌧i | ✓)k  Cg for all ✓ 2 Rd
and Cg := GU/(1�

�)2.

Theorem 4.8. Suppose that Assumptions 4.2-4.5 hold and

select ⌘ > 0, p 2 (0, 1] and B 2 N such that ⌘
2



min
�
p/(1� p) ·B/2C, 1/4L2

 
. The average expected

squared gradient norm after T iterations of PAGE-PG satis-

fies

1

T

T�1X

t=0

E
⇥
kr✓V (✓t)k

2
⇤


2 (V ⇤
� V (✓0))

⌘T
+
�
2

N
+

�
2

pNT
.

See Lemma B.1 in Section B of the Appendix for the defi-
nition of C. Theorem 4.8 states that under a proper choice
of step-size, batch-size and probability of switching, the
average expected squared gradient norm of the performance
function after T iterations of PAGE-PG is in the order of
O
�
1
T
+ 1

NT
+ 1

N

�
. The first term O

�
1
T

�
characterizes the

convergence of PAGE-PG, while the second and third terms
come from the variance of the gradient estimator computed
at the iterations with large batches. Our convergence rate
improves over the rate O

�
1
T
+ 1

B
+ 1

N

�
of SVRPG (Pa-

pini et al., 2018) and over the rate O
�
1
T
+ 1

B
+ 1

TN

�
of

STORM-PG (Yuan et al., 2020), by avoiding the depen-
dency on the small batch-size B. Compared to the rate
of SRVR-PG O

�
1
T
+ 1

N

�
, our analysis leads to an extra

O
�

1
TN

�
term which arises from the variance of the first

gradient estimator. By selecting p = B

N
and B = O (1), we

recover the rate O
�
1
T
+ 1

N

�
.

Corollary 4.9. Under the conditions of Theorem 4.8,

set ⌘ =
p
B/

p
2CN , p = 1/N , N = O

�
✏
�2
�

and
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Table 1. Sample complexities of comparable algorithms for finding
an ✏-stationary solution.

METHOD SAMPLE-COMPLEXITY NO-RESTART

REINFORCE O
�
✏�4

�
–

GPOMDP O
�
✏�4

�
–

SVRPG O

⇣
✏�10/3

⌘
7

SRVRPG O
�
✏�3

�
7

STORM-PG O
�
✏�3

�
3

PAGE-PG O
�
✏�3

�
3

B = O (1). Then
1
T

P
T�1
t=0 E

���r✓V (✓t)
���
2
�
 ✏

2
within

O
�
✏
�3
�

trajectories on average with ✏ ! 0.

Under the considered assumptions, REINFORCE-type
methods, including REINFORCE, GPOMDP as well as their
variants with baselines, need O(✏�4) samples to achieve an
✏-stationary solution. By incorporating stochastic variance
reduction techniques the complexity can be reduced. In
particular, SVRPG achieves an O(✏�10/3) sample com-
plexity (Xu et al., 2019) while the more sophisticated
SRVRPG (Xu et al., 2021) and STORM-PG (Yuan et al.,
2020) achieve an O(✏�3) sample complexity. According
to Corollary 4.9, PAGE-PG needs on average O

�
✏
�3
�

tra-
jectories to achieve an ✏-stationary solution, which makes
it competitive from a theoretical viewpoint with its state-
of-the-art counterparts. The discussed results on sample
complexity are summarized in Table 1.

Recent works (Agarwal et al., 2019; Bhandari & Russo,
2021) have shown that, despite its non-concavity, with cer-
tain policy parametrizations, such as direct and softmax,
the objective of Problem (2) is gradient dominated. We
complete our theoretical analysis by extending the results
of Theorem 4.8 to gradient-dominated objectives.

Assumption 4.10 (Gradient dominancy). There exists a
constant � > 0 such that V ⇤

� V (✓)  �
��r✓V (✓)

��2 for
all ✓ 2 Rd

.

Corollary 4.11. Consider the same setting as in Theo-

rem 4.8 where also Assumption 4.10 holds. Then,

V
⇤
�max

tT

E [V (✓t)] 
2� (V ⇤

� V (✓0))

⌘T
+

�
2
�

N
+

�
2
�

pNT
.

The gradient dominancy condition implies that any station-
ary policy is also globally optimal. Consequently, as for-
malized in Corollary 4.11, the results from Theorem 4.8 are
valid for near-optimal policies, with the only difference that
in this case the upper bound on the suboptimality is also
proportional to the gradient dominancy constant.

5. Numerical Evaluation
In this section we numerically evaluate the performance
of the discussed variance-reduced policy gradient methods
on two state-of-the-art model-free reinforcement learning
tasks from OpenAI Gym (Brockman et al., 2016). In or-
der to conduct the numerical evaluation of the discussed
methods, we implemented them, along with GPOMDP,
in a Pytorch-based toolbox. In addition, the toolbox in-
terfaces OpenAI Gym (Brockman et al., 2016) allowing
the user to easily train RL agents on different environ-
ments with the discussed methods. Finally, Pytorch (Paszke
et al., 2019) provides the possibility of speeding up the
computation via the deployment of graphical processing
units (GPUs). The toolbox is publicly available at https:
//gitlab.ethz.ch/gmatilde/vr_reinforce.

5.1. Benchmarks

For the empirical evaluation of the discussed methods we
consider the Acrobot and the Cartpole environments from
OpenAI Gym.
Acrobot. The Acrobot system comprises two joints and
two links, where the joint between the two links is actuated.
Initially, the links are hanging downwards, and the goal is
to swing the end of the lower link up to a given height. A
reward of �1 is emitted every time the goal is not achieved.
As soon as the target height is reached or 500 time-steps are
elapsed, the episode ends. The state space is continuous with
dimension 6. The action space is discrete and 3 possible
actions can be selected: apply a positive torque, apply a
negative torque, do nothing. To model the policy, we use a
neural softmax parametrization. In particular, we deploy a
neural network with two hidden layers, width 32 for both
layers and Tanh as activation function.

Cartpole. The Cartpole system is a classical control envi-
ronment that comprises a pole attached by an un-actuated
joint to a cart that moves along a frictionless track. The
pendulum starts upright, and the goal is to prevent it from
falling over. A reward of +1 is provided for every time-step
that the pole remains within 15 degrees from the upright
position. The episode ends when the pole is more than 15
degrees from vertical, or the cart moves more than 2.4 units
from its initial position. The state space is continuous with
dimension 4. The action space is discrete with 2 available
actions: apply a force of +1 or �1 to the cart. As for
the Acrobot, to model the policy we use a neural softmax
parametrization. In particular, we deploy a neural network
with two hidden layers, width 32 for both layers and Tanh
as activation function. The maximum episode length is set
to 200.

Unfortunately the hyperparameter settings of Theorem 4.8
and Corollary 4.9, as well as those indicated by the theo-
retical analysis of the other considered methods, are func-

https://gitlab.ethz.ch/gmatilde/vr_reinforce
https://gitlab.ethz.ch/gmatilde/vr_reinforce
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tions of problem-dependent constants which are typically
unknown and/or very expensive to estimate. Therefore for
our benchmarks we set N = 100, B = 5 and m = 10
and � = 0.9999 and we rely on grid-search for tuning the
step-size and the other hyperparameters. See Section D in
the Appendix for more details on the choice of the hyperpa-
rameters. Notice in addition that, since the hyperparameter
configurations in Theorem 4.8 and Corollary 4.9 are suffi-
cient but not necessary requirements, there could be poten-
tially different configurations that lead to similar results. For
each algorithm, we run the experiment 5 times with random
initialization of the environments. The curves (solid-lines)
are obtained by taking the mean over the independent runs
and the shaded areas represent the ±� standard deviations.

The experiments in Figures 1 and 2 show that, given enough
episodes, all of the algorithms are able to solve the tasks,
achieving near-optimal returns. For the Acrobot environ-
ment in Figure 1, the SRVRPG and GPOMDP algorithms
take the biggest number of episodes to find an optimal pol-
icy, while STORM-PG and SVRPG are the fastest in terms
of number of episodes. This might be due to the step-size,
which, for certain methods, needs to be set to particularly
small values to enforce finite importance weight variance
and ensure convergence. For the Cartpole environment in
Figure 2, as expected, the GPOMDP algorithm takes the
longest to find the optimal policy, followed in order by
SVRPG, SRVRPG, STORM-PG and PAGE-PG. Notice that
these empirical observations corroborate the theoretical find-
ings on the sample complexity. Finally, our benchmarks
demonstrate the competitive performance of PAGE-PG with
respect to its counterparts.

Figure 1. Average reward versus number of episodes for GPOMDP
(blue), SVRPG (orange), SRVRPG (green), STORM-PG (red) and
PAGE-PG (light purple) on the Acrobot environment. The solid
line represents the mean and the shaded areas are calculated as the
±� of the outcomes over 5 independent runs.

Figure 2. Average reward versus number of episodes for GPOMDP
(blue), SVRPG (orange), SRVRPG (green), STORM-PG (red) and
PAGE-PG (light purple) on the Cartpole environment. The solid
line represents the mean and the shaded areas are calculated as the
±� of the outcomes over 5 independent runs.

6. Conclusions, Limitations & Future Works
After a brief survey on the main variance reduced policy gra-
dient methods based on REINFORCE-type algorithms, we
formulate a novel variance-reduced extension, PAGE-PG, in-
spired from the PAGE gradient estimator for optimization of
non-convex finite-sum problems. To the best of the authors’
knowledge, our method is the first variance-reduced policy
gradient method that replaces the outer loop with a proba-
bilistic switch. This key feature of PAGE-PG facilitates the
theoretical analysis while preserving a fast theoretical rate
and a low sample complexity. In addition, our numerical
evaluation shows that PAGE-PG has a competitive perfor-
mance with respect to its counterparts.

Our benchmarks and theoretical results on the sample
complexity confirm that variance-reduced techniques suc-
cessfully manage to reduce the sample complexity of
REINFORCE-type algorithms, speeding up the convergence
in terms of number of sampled trajectories. At the same
time, it is possible to identify the following limitations:
Unrealistic and uncheckable assumption on importance
weight variance. As underlined in Remark 4.6, all the
discussed variance-reduced policy gradient methods heav-
ily rely on the stringent and uncheckable assumption that
the importance weights have bounded variance for every
iteration of the algorithms (Assumption 4.5). To enforce
indirectly this assumption, very small values of the step-
size are needed, resulting in a dramatic slow-down of the
convergence rate. A more efficient alternative could be the
deployment of a gradient-truncation strategy, as proposed
in (Zhang et al., 2021) for the case of finite MDPs. This mod-
ification, which corresponds to the solution of a trust-region
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subproblem, is simple and efficient since it does not involve
significant extra computational costs but, at the same time,
requires to migrate from vanilla REINFORCE-type methods
to trust-region based algorithms such as TRPO (Schulman
et al., 2015) and PPO (Schulman et al., 2017) for compar-
isons.

Extreme sensitivity to hyperparameters. Our benchmarks
suggest an extreme sensitivity to the hyperparameters, es-
pecially the choice of the step-size. Time-consuming and
resource-expensive tuning procedures are required to se-
lect a proper configuration of hyperparameters. To alleviate
this issue, the update direction should be computed also
taking into account second-order information, as it is done
in (Huang et al., 2020) for HA-MBPG. Second-order meth-
ods are notably more robust against the step-size selection
than first-order methods, since their update includes infor-
mation on the local curvature (Agarwal et al., 2019; Gargiani
et al., 2020).
Noise annealing strategies. Empirical evidence suggests
that, in the presence of complex non-concave landscapes,
exploration in the form of noise injection is of critical impor-
tance in the early stages of training to prevent convergence
to spurious local maximizers (Chung et al., 2021). Entropy
regularization is often used to improve exploration, since
it indirectly injects noise in the training process by favor-
ing the selection of more stochastic policies (Ahmed et al.,
2019). Unfortunately, by adding a regularizer to Problem (2)
we are effectively changing the optimal policy. An alter-
native approach would be increasing the batch-size during
training. In this perspective, a promising heuristic to further
improve the convergence of PAGE-PG could consist in grad-
ually increasing the probability of switching pt. Finally, as
also pointed out in (Papini et al., 2018), since the variance
of the updates depends on the snapshot policy as well as
on the sampled trajectories, it is realistic to imagine that
predefined schemes for the probability of switching are not
going to perform as well as adaptive ones, which adjust the
value of pt based on some measure of the variance.

We leave for future development the aforementioned ex-
tensions, which we believe would counteract the current
limitations of the analyzed methods.
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A. Algorithmic Description of Variance-Reduced REINFORCE-type Methods

Algorithm 1 SVRPG
Input: initial parameter ✓0, large batch-size N , small batch-size B, step-size ⌘ > 0, inner-loop length m 2 N, number of
epochs S 2 N
initialize ✓

0
m

= ✓0

for s = 1 to S do
set ✓s0 = ✓

s�1
m

collect N trajectories with policy ✓
s

0

v
s

0 = 1
N

P
N

i=1 g(⌧i | ✓
s

0)
for t = 0 to m� 1 do
✓
s

t+1 = ✓
s

t
+ ⌘v

s

t

sample B trajectories with policy ✓
s

t+1

v
s

t+1 = 1
B

P
B

i=1 g(⌧i | ✓
s

t+1) + v
s

0 �
1
B

P
B

i=1 g
!✓st+1 (⌧i | ✓s0)

end for
end for
Output: ✓out chosen uniformly at random from {✓

s

t
}
m,S

t=1, s=1

Algorithm 2 SRVRPG
Input: initial parameter ✓0, large batch-size N , small batch-size B, step-size ⌘ > 0, inner-loop length m 2 N, number of
epochs S 2 N
initialize ✓

0
m

= ✓0

for s = 1 to S do
set ✓s0 = ✓

s�1
m

collect N trajectories with policy ✓
s

0

v
s

0 = 1
N

P
N

i=1 g(⌧i | ✓
s

0)
for t = 0 to m� 1 do
✓
s

t+1 = ✓
s

t
+ ⌘v

s

t

sample B trajectories with policy ✓
s

t+1

v
s

t+1 = 1
B

P
B

i=1 g(⌧i | ✓
s

t+1) + v
s

t
�

1
B

P
B

i=1 g
!✓st+1 (⌧i | ✓st )

end for
end for
Output: ✓out chosen uniformly at random from {✓

s

t
}
m,S

t=1, s=1

Algorithm 3 STORM-PG
Input: initial parameter ✓0, large batch-size N , small batch-size B, step-size ⌘ > 0, momentum parameter ↵ 2 (0, 1]
collect N trajectories with policy ✓0

v0 = 1
N

P
N

i=1 g(⌧i | ✓0)
for t = 0 to T � 1 do
✓t+1 = ✓t + ⌘vt

collect B trajectories with policy ✓t+1

vt+1 = 1
B
g(⌧i | ✓t+1) + (1� ↵)

h
vt �

1
B

P
B

i=1 g
!✓t+1 (⌧i | ✓t)

i

end for
Output: ✓out chosen uniformly at random from {✓t}

T

t=1
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Algorithm 4 PAGE-PG
Input: initial parameter ✓0, large batch-size N , small batch-size B, step-size ⌘ > 0, probability p 2 (0, 1]
collect N trajectories with policy ✓0

v0 = 1
N

P
N

i=1 g(⌧i | ✓0)
for t = 0 to T � 1 do
✓t+1 = ✓t + ⌘vt

vt+1 =

8
>><

>>:

1
N

NP
i=1

g(⌧i | ✓t) prob. p

1
B

BP
i=1

g(⌧i | ✓t) + vt�1 �
1
B

BP
i=1

g
!✓t (⌧i | ✓t�1) prob. 1� p

end for
Output: ✓out chosen uniformly at random from {✓t}

T

t=1

B. Technical Lemmas
Lemma B.1. Let ✓t and ✓t+1 denote two consecutive iterates of PAGE-PG and let g(⌧ | ✓t+1) and g

!✓t+1 (⌧ | ✓t) denote the

on-policy and off-policy GPOMDP estimates computed at the iterates ✓t+1 and ✓t respectively, and where ⌧ ⇠ p(· | ✓t+1).
Then,

E
���g(⌧ | ✓t+1)� g

!✓t+1 (⌧ | ✓t)
���
2
�
 C · E

���✓t+1 � ✓t

���
2
�
,

where C := 2(L2 + C!), L := MU/(1� �)2 + 2G2
U/(1� �)3 and C! := 24UG

2(2G2 +M)(W + 1)�/(1� �)5.

Proof.

E
⇥
kg(⌧ | ✓t+1)� g

!✓t+1 (⌧ | ✓t)k
2
⇤
= E

⇥
kg(⌧ | ✓t+1)� g(⌧ | ✓t) + g(⌧ | ✓t)� g

!✓t+1 (⌧ | ✓t)k
2
⇤

(a)
 2E

⇥
kg(⌧ | ✓t+1)� g(⌧ | ✓t)k

2
⇤
+ 2E

⇥
kg(⌧ | ✓t)� g

!✓t+1 (⌧ | ✓t)k
2
⇤

(b)
 2L2E

⇥
k✓t+1 � ✓tk

2
⇤
+ 2E

⇥
kg(⌧ | ✓t)� g

!✓t+1 (⌧ | ✓t)k
2
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(c)
 2L2E

⇥
k✓t+1 � ✓tk

2
⇤
+ 2C!E

⇥
k✓t+1 � ✓tk

2
⇤

= 2(L2 + C!)E
⇥
k✓t+1 � ✓tk

2
⇤
,

where Inequality (a) follows from the fact that, given any arbitrary triplet of vectors (x, y, z), then kx � z + z � yk
2 =

kx�zk
2+kz�yk

2+2hx�z, z�yi = kx�zk
2+kz�yk

2+kx�zk
2+kz�yk

2
�kx�2z+yk

2
 2kx�zk

2+2kz�yk
2.

Inequality (b) is derived by considering the first point of Proposition 4.7 (see Proposition 4.2 in (Xu et al., 2021) for a
detailed proof). Inequality (c) is obtained by considering Inequality (B.9) in (Xu et al., 2021).

Lemma B.2. Let vt and ✓t+1 denote the gradient estimate and the iterate generated by PAGE-PG at iteration t + 1,

respectively. Under Assumptions 4.2-4.5, the estimation error at iteration t+ 1 can be bounded as follows

E
⇥
kvt+1 �r✓V (✓t+1)k

2
⇤
 (1� p)E

���vt �r✓V (✓t)
���
2
�
+

⌘
2(1� p)C

B
E
h��vt

��2
i
+

p�
2

N
,

where the expectation is taken with respect to all the sources of randomness up to iteration t+ 1.

Proof. Let Ft denote the information up to iteration t. From the law of iterated expectations, we know that
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E
⇥
kvt+1 �r✓V (✓t+1)k2
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⇥
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. We start by analysing the inner expectation
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where Equality (a) follows from the fact that E⌧⇠p(· | ✓) [g(⌧ | ✓)] = r✓V (✓). Inequality (b) is obtained considering that, for
any random vector X , the variance can be bounded as follows E

⇥
kX � E [X] k2

⇤
 E

⇥
kXk

2
⇤

(see Lemma B.5 in (Papini
et al., 2018) for a detailed proof) and Inequality (c) is obtained by exploiting the triangle inequality. By combining the
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derived upper bound with the results from Lemma B.1 and exploiting Assumption 4.4, we derive the following bound
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N
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By considering the full expectation on the derived results, we finally obtain
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where the second last equality is derived considering that E⌧⇠p(· | ✓2) [g
!✓2 (⌧ | ✓1)] = r✓V (✓1) for any ✓1, ✓2, and the last

equality is obtained by considering that ✓t+1 = ✓t + ⌘vt.

Lemma B.3. Let Assumptions 4.2-4.5 hold and let vt and ✓t+1 denote the gradient estimator and the iterate generated

by PAGE-PG at iteration t+ 1, respectively. The accumulated sum of the expected estimation error satisfies the following

inequality
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E
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Proof. Recall that p 2 (0, 1] is the probability that regulates the probabilistic switching. Then,
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(15)
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Summing up over T iterations the result from Lemma B.2, we obtain the following inequality
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By combining Inequality (16) with Inequality (15), we obtain the final result
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(17)

where the second last inequality is derived by deploying the definition of v0 and the triangle inequality, while the last
inequality is obtained by considering Assumption 4.4.

C. Proof of the Main Theoretical Results
Proof of Theorem 4.8. In the considered setting we know from Proposition 4.7 that V (✓) is L-smooth, where L :=
MU/(1� �)2 + 2G2

U/(1� �)3. Consequently, we can write the following lower bound on V (✓t+1)
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where Equality (a) is derived by considering that hx, yi = kxk2

2 + kyk2

2 �
ky�xk2

2 . Since by design choice ⌘  1/(2L), then
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By rearranging some terms and changing the direction of the inequality, we obtain
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Summing up over the first T iterations, we obtain
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By taking the expectation on both sides of Equation (19) and considering the fact that V ⇤
� V (✓) for all ✓ 2 Rd, we get
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where Inequality (a) follows from Lemma B.3 and Inequality (b) follows from the fact that ⌘
2(1�p)
pB

 1/(2C). Finally,
rearranging the terms and multiplying both sides by 2

⌘T
, we obtain the final result
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Proof of Corollary 4.9. Let � = V
⇤
� V (✓0). We set p = 1

N
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We now want to derive some values of T and N such that
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For that, we utilize the results of Theorem 4.8 as follows
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from which we infer that, with these specific choices, Inequality (21) is verified for all values of N and T such that
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For the sake of compactness, we define K1 = 6�
p
2C and K2 = 3�2. The average number of trajectories over T iterations

is given by the following expression

pTN + (1� p)TB = T (pN + (1� p)B) . (25)



ProbAbilistic Gradient Estimation for Policy Gradient (PAGE-PG)

We want to study the average sample complexity of PAGE-PG to reach an ✏-stationary solution when ✏ ! 0. To do that, we
set T = K1
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p
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, such that the constraints on T from Equation (24) are verified. Finally, by plugging this value for the
number of iterations and the choice of p in Equation (25), we get
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By setting the batch-size parameters to B = O (1) and N = O
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, we finally get
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Proof of Corollary 4.11. We combine the gradient dominancy condition and the results from Theorem 4.8 as follows
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where a := argmintT E
h��rV (✓t)
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i
.

D. Additional Details on the Hyperparameters

Table 2. Hyperparameter setting for the Acrobot benchmark.

METHOD ⌘ ↵ pt

GPOMDP 10�4 – –
SVRPG 10�5 – –
SRVRPG 6 · 10�6 – –
STORM-PG 10�4 0.9 –
PAGE-PG 5 · 10�6 – 0.01, 0.4

Table 3. Hyperparameter setting for the Cartpole benchmark.

METHOD ⌘ ↵ pt

GPOMDP 10�4 – –
SVRPG 10�4 – –
SRVRPG 10�6 – –
STORM-PG 4 · 10�5 0.99 –
PAGE-PG 5 · 10�5 – 0.8


