arXiv:2207.08192v2 [cs.RO] 17 Oct 2022

BusyBot: Learning to Interact, Reason, and Plan in a
BusyBoard Environment

Zeyi Liu Zhenjia Xu Shuran Song
Columbia University, New York, NY, United States
https://busybot.cs.columbia.edu/

Abstract: We introduce BusyBoard, a toy-inspired robot learning environment that
leverages a diverse set of articulated objects and inter-object functional relations
to provide rich visual feedback for robot interactions. Based on this environment,
we introduce a learning framework, BusyBot, which allows an agent to jointly
acquire three fundamental capabilities (interaction, reasoning, and planning) in an
integrated and self-supervised manner. With the rich sensory feedback provided by
BusyBoard, BusyBot first learns a policy to efficiently interact with the environ-
ment; then with data collected using the policy, BusyBot reasons the inter-object
functional relations through a causal discovery network; and finally by combining
the learned interaction policy and relation reasoning skill, the agent is able to per-
form goal-conditioned manipulation tasks. We evaluate BusyBot in both simulated
and real-world environments, and validate its generalizability to unseen objects
and relations.

Keywords: Manipulation, Learning Environment, Reasoning

1 Introduction

Learning through physical interactions plays a critical role in human cognitive development [1, 2, 3].
For instance, a well-designed toy like the “busyboard” (Fig. 1a) can provide an effective learning
environment for children to develop fundamental manipulation and reasoning skills: the rich and
amplified sensory feedback encourages children to actively explore and interact; and the observed
inter-object functional relations (e.g., a switch turns on a light) facilitate the development of reasoning
and task solving skills.

In this paper, we aim to provide a similar learning environment for embodied artificial agents,
the BusyBoard environment, where agents learn to discover the underlying relations of objects
through informative interactions and plan for goal-conditioned tasks. While simple at the first glance,
this relational environment provides an integrated tool for learning and evaluating three critical
capabilities of an embodied intelligent system:

* Interact: The ability to infer action affordances from visual observations — knowing where and
how to manipulate an object to effectively change its state. Learning this skill through visual
feedback is particularly hard for small-displacement objects (e.g., switches), whose appearance
changes can be subtle even under effective actions.

* Reason: The ability to reason about inter-object functional relations (e.g., pressing a button turns
on a light). In particular, the agent should learn to infer the relations by observing and predicting
future states of the environment, without using the ground-truth relations as supervision.

* Plan: The ability to use the learned manipulation and reasoning skills in goal-conditioned
planning tasks, in other words, generating a sequence of actions to transform the environment
from a random initial state to a given goal state.

To learn these skills from the environment, we propose the BusyBot framework that acquires the
above three capabilities through self-supervised interactions. To acquire the manipulation skill, the
algorithm learns a visual affordance model that infers effective action candidates through visual
feedback. To reason about inter-object functional relations, the algorithm infers a functional scene

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

(a) BusyBoard for Kids (b) BusyBoard for BusyBot (c) Real-weﬂ .
[

t >
‘/a ’Interacnon

Ampliﬁed

Effect a

-

Figure 1: BusyBoard Environments inspired by toys for children, an integrated tool for learning and evaluating
a robot’s capabilities in interaction, reasoning, and planning.

graph and predicts the future states through a causal discovery network. Finally, to accomplish goal-
conditioned manipulation tasks, the algorithm combines the learned action affordances, inter-object
functional relationship, and dynamics to plan its actions with a model predictive control (MPC)
framework. In summary, our contributions are two-fold:

* We introduce a new learning environment for embodied agents, BusyBoard, which features a
diverse set of articulated objects with typical- and small- displacement joints, and rich inter-object
functional relations.

* We propose BusyBot, an integrated learning framework which allows an embodied agent to
acquire interaction, reasoning, and planning skills through self-supervised learning.

2 Related Work

Simulation environments for robot learning. Simulation environments are crucial for advances in
robot learning. However, most of the existing simulated environments are developed for specific tasks
or capabilities, such as navigation [4, 5, 6, 7], manipulation [8, 9, 10, 11, 12], causal reasoning in 2D
[13, 14], or high-level task planning [15]. Inspired by human toys, our BusyBoard is an integrated
environment that is compact and relevant to real-world applications, where an embodied agent can
jointly learn three critical capabilities: interaction, reasoning, and planning.

Learning interaction policy. The ability to interact with a diverse set of objects is critical for many
robotics tasks. Different methods have been proposed to learn interaction polices through human
demonstrations [16, 17, 18] or self-guided explorations [19, 20, 21, 22]. However, most prior works
have been ignoring a set of common but challenging objects: small-displacement objects. When
interacting with these objects (e.g., switches), the effectiveness of an action often cannot be observed
from the object’s own visual appearance. In this work, we address this challenge by taking advantage
of BusyBoard, which amplifies action effects through responder objects and enables learning by
enriching the supervision signal.

Inferring inter-object functional relations. Perceiving and understanding objects individually
is often not sufficient for a lot of real-world applications that involve environments with multiple
objects, and understanding inter-object relations [23, 24, 25] is a crucial skill for efficient planning.
In this work, we will tackle the problem of uncovering the inter-object functional relationship, as
defined by Li et al. [26]. One common approach is to induce changes through interventions and
iteratively construct a functional scene graph [27]. More recently, Graph Neural Networks (GNNs)
have been demonstrated to be promising for extracting the underlying structural causal model (SCM)
[28, 29, 30, 31, 32] and predicting future dynamics from motions [25]. In our work, we further
demonstrate that GNNs are able to infer inter-object functional relations from changes in visual
appearances. We also show that the inferred inter-object functional relationship and scene dynamics
can assist action planning for downstream goal-conditioned manipulation tasks.

Hierarchical Planning in Dynamic Environment. Hierarchical planning has been proven effective
for long-horizon planning in dynamic environment by decomposing a plan into several high-level
sub-goals and low-level actions [33, 34, 35]. Some prior works have proposed using a high-level
logic-based planner with learned planning operators (POs) to encode preconditions, actions, and
effects [36, 37] in a RL setup. However, both works assume abstract action and state space (e.g., grid
world). In contrast, our work learns physical actions to manipulate articulated objects from image
observations, making our work easier to be deployed in the real world. In addition, prior works model
inter-object relations implicitly from state transitions, while we explicitly learn a scene graph which
helps better generalization to new tasks and environments.

Single-link @ Single-stage [: Multi-stage O One-to-one Visual Relations

-~ . T‘—’ ‘—’T One-to-many effects
I Cew @

Multi-direction @

Appearance

Multi-link O ’ Y RN
g L B E
- S4le
” =]
(a) Trigger (b) Responder (c) Relations .

Figure 2: BusyBoard Environment is procedurally generated using articulated objects (a,b) with randomly
sampled inter-object functional relation pairs between trigger and responder objects (c). (d) shows example
boards and the underlying functional relations.

3 The BusyBoard Environment

Trigger and responder objects. As shown in Fig. 2, the BusyBoard is procedurally generated using
object URDF models. For trigger objects, we select switch instances from the Partnet-Mobility
dataset [12], including small-displacement instances (with small displacements upon interaction),
multi-direction instances (contain one movable link that can be pushed to multiple directions), and
multi-link instances (contain multiple movable links). We use other object categories (e.g., lamp,
door, tracktoy) as responder objects, which can be either single-stage or multi-stage. A single-stage
responder has only two possible states defined by either appearance (e.g., lamp on or off) or joint
state (e.g., door open or closed). A multi-stage responder has multiple possible states (e.g., multiple
light colors of a lamp responder or multiple joint positions of a tracktoy responder).

Relations. We introduce three types of inter-object functional relations:

* One-to-one: one trigger controls one single-stage responder.

* One-to-many effects: one trigger controls multiple effects on one responder. The trigger is a
multi-direction object and the responder is a multi-stage object.

* One-to-many objects: one trigger controls multiple responders. The trigger is a multi-link
object (a switch with multiple buttons), and each link controls one single-stage responder.

The inter-object functional relations enable an important property of BusyBoard: in addition to
providing visual feedback on the interacted trigger object (e.g., appearance change on a button after
being pressed), BusyBoard also amplifies the effect of an action with responder objects (e.g., a light
turns on after the button is pressed). This is especially useful for learning manipulation policies for
objects with small displacements upon interaction, for which state changes are often hard to observe.

Note that in goal-conditioned tasks, for both “one-to-many effects” and “one-to-many objects”
relations, the algorithm not only needs to know the trigger object to interact with, but also the
direction and position of the action to execute. In this paper, we use “one-to-many” to refer to the
super-set of both categories. We exclude many-to-one relations to eliminate possible ambiguities.

4 The BusyBot Framework

The goal of BusyBot is to meaningfully interact with the BusyBoard environment (§4.1), infer
the inter-object functional relations and dynamics through these interactions (§4.2), and eventually
perform goal-conditioned manipulation using the learned interaction policy, relations, and dynamics.
(§4.3). We will discuss each module in detail below.

4.1 Interact: Learning to Interact with Amplified Effects

The goal of the interaction policy 7 is to take a top-down depth image o, € RV *# as input and
generate an action a, at each step #: @(o;) — «;. The action is parameterized by an end effector (i.e.,
a suction-based gripper) position and a moving direction a, = (a}*,ad""), where &/ € R3 is the 3D
coordinate and ai" € R3, (||adi"|| = 1) is a unit vector in 3D indicating the moving direction of the

end effector. The moving distance is incrementally assigned until reaching a pre-defined limit. The

= Light on -
S . S .
k=1 Position Direction] Interactio
-1 Network Network max = 5
i - . - —_ = Polic =<0 o
] =
=
= Initial State Position Scores Direction Scores Execution Action Candldal l
' -9
Inference |
Network '
—_— i ‘
R - <: Scene Graph
Interaction Sequence Functional Relations Current+Action Future Target Compare and Select Final Action Possible Futures

Figure 3: BusyBot Overview. [Interaction] infers a sequence of actions from visual input to efficiently interact
with a given scene. [Reasoning] infers a functional scene graph (i.e., inference network) and predicts future
states (i.e., dynamics network). [Planning] uses the trained manipulation policy network (learned from multiple
boards), relation inference and dynamics network (extracted from the specific board) to plan actions for reaching
the target state.

policy is considered effective if it can 1) successfully trigger changes in responder objects, and 2)
interact with different objects to explore novel states of the board.

Interaction policy. The interaction policy is modeled by two neural networks: a position network
and a direction network, which follows a similar formulation as UMP-Net [20] to jointly learn the
action position and direction. The position network takes a depth image as input and outputs per-pixel
position affordance P € [0,1]" >/ which indicates the likelihood of an effective interact position.
The direction network takes in the depth image and the selected action position (represented as a 2-D
Gaussian distribution centered around the corresponding pixel location of the 3-D action position)
and outputs a score for each direction candidate r(ad") € [0, 1]. We uniformly sample 18 directions in
SO(3) as direction candidates. Since it is often hard to identify the state of small-displacement objects
from visual observations, the agent executes both the selected direction and its opposite direction.

Supervision. Unlike UMP-Net [20] that requires object state from simulation to compute reward,
BusyBot uses a simple self-supervised reward computed from image difference, which is enabled by
the amplified effects in the BusyBoard environments:

1 if Y2, YW I(0;,0};,) > & 1 ifo;; =0l
diry __ =1 J 1 j1© ij I(0::.0.) = J ij 1
rime(") {0 it X0, X log.op) <8 TP TN 0 oy £ .

where 0 and o’ denote RGB image observations before and after the action execution. & is a
threshold specifies the minimum number of different pixels. We use binary cross-entropy (BCE) loss
between the inferred action score r(ad") € [0, 1] and the ground-truth reward computed from image
observations rimg (ad") € [0, 1].

Exploration. At the early stage of training the position and direction inference network, we use the
epsilon-greedy method to encourage random exploration. Additionally, in order to prevent the model
from only selecting the position that has the highest affordance score, we apply the Upper Confidence
Bound (UCB) Bandit algorithm on the inferred position affordance. Given the per-pixel position

affordance score P(i, j), the updated score is P'(i, j) = P(i, j) +c\/ "y) where ¢ = 0.5, ¢ is the number

of past steps, and N is the numeber of times when the pixel (i, j) falls in the M x M(M = 10) window
centered around each previously selected pixels.

4.2 Reason: Learning to Discover Inter-object Relations by Predicting the Future

The reasoning module takes in RGB image sequences of the agent’s interactions (§4.1), infers the
inter-object relations, and predicts future dynamics, which would guide goal-conditioned planning
(§4.3). To accomplish this goal, we adopt and modify the V-CDN model [25].

The inference network is implemented with three Graph Neural Networks (GNNs) to extract functional
relations as a scene graph. Each object O; corresponds to a node i in the graph, with a node input n}:T,
where T is the first T frames in an interaction sequence. Unlike the V-CDN model [25] that uses
keypoint locations as node features, BusyBot uses both objects’ visual features and locations, which
allows the network to represent both motion change (e.g., door opens) and appearance change (e.g.,
light turns on) of the responders. The first GNN learns spatial node and edge embeddings at each
step, which are concatenated with 256-dimensional embeddings of the executed actions a}:T output
from an MLP layer. The combined embeddings are then aggregated over temporal dimension using a

1-D convolution network and input to the second GNN which predicts a probabilistic distribution
over edge types e? = {eg|eidj € Rz}?’j:l (index 0 indicates no relation and index 1 indicates has
relation). Conditioned on the edge types, the third GNN predicts 32-dimensional edge embeddings
et = {e}|el; e R¥}Y._| which store history dynamics associated with each edge.

The dynamics network is a Graph Recurrent Network (GRN) that predicts the next state /™! given the
current observation 7', the executed action ', and the edges E = {e?, ¢’} from the inferred functional
scene graph. The inference and dynamics network are jointly trained under the objective to minimize
the mean squared error (MSE) between predicted and ground-truth object features. fé denotes the

inference model parameterized by ¢, fVD, denotes the dynamics model parameterized by y.

L:rgin MSE(n'*', fo(n' d', fy(n"T,a"T))) (t>T))
W t

Data collection. The interaction dataset used in the reasoning module is collected the using learned
interaction policy: at each step, positions with affordance scores above a threshold are grouped into
clusters using the K-means clustering algorithm (with k being the maximum possible number of
movable links on all busyboards), and positions with the highest score in each cluster are selected as
position candidates. Conditioned on each position candidate, direction with the highest affordance
score will be selected to form the final action candidates, from which a candidate will be randomly
chosen to execute. For each board environment, RGB image observations of 30 interaction steps are
generated. In addition, to prevent the model from overfitting on board appearances, we ensure that
every 20 board environments share the same initial visual appearance but with different inter-object
functional relations.

4.3 Plan: Goal-conditioned Manipulation with Relation Predictive Agent

Given an initial and target image of a BusyBoard, the task is to have BusyBot infer 1) which object(s)
to manipulate; 2) what action(s) to execute in order to successfully reach the target state.

Using the data collection method as discussed in the reasoning module, the agent infers the action
candidates and generate an interaction sequence of 30 images, which is input to the inference network
to obtain the functional scene graph. Then we consider three options to plan for goal-conditioned
tasks: 1) Relation agent, at each step, identify a responder that needs to be changed, and find the
corresponding trigger based on the functional scene graph. This method is similar to the idea of Li
et al. [26]. However, the agent might have trouble handling one-to-many relations. To solve this
issue, we propose 2) Predictive agent that uses the dynamics network from the reasoning module
and choose the action that minimizes the L2 distance of the predicted next state and the target state.
However, the predictive agent may have difficulty generalizing to novel object instances, due to
the difficulty of predicting unseen dynamics. 3) Unlike piror works that only use either predicted
dynamics or functional scene graph for planning, our final method BusyBot combines the relation
and predictive agent, where action candidates are first filtered based on the functional scene graph
and then selected based on dynamic predictions. More discussions are provided in Sec. 5.

5 Evaluation

We evaluate BusyBot with both simulated (Fig. 4) and real-world busyboards (Fig. 6). In simulation
experiments, we set up the following environments: a) Training Board: for training interaction
and reasoning module. b) Novel Config: testing board with training object instances but in new
configurations, which include new inter-object functional relations, position and orientation of objects,
board color and texture; ¢) Novel Object: both object instances and board configurations are novel.
In total, we generate 10,000 training boards, 2,000 boards with novel configurations, and 2,000 boards
with novel object instances. We generate 30 interaction images for each board, where 23 images are
reserved for relation inference and the rest for future predictions. As for object instances, we use 41
switches, 10 doors, 5 lamps, and 2 tracktoy objects, split into training / testing with ratio: 32/9, 5/5,
3/2, 1/1. The setup for real-world evaluation is described in Sec 5.4

5.1 Interaction Module Evaluation

To evaluate the interaction policy network, we compute the average precision and recall of the inferred
actions for the boards, where precision = # successful actions / # total proposed actions, and recall =
successfully interacted objects / # total interactable objects. We compare the following methods:

(a) Interaction Steps ACti“ Pred (c) More Configurations
Board Position Direction 4 o .. @: Novel Config Novel Object

1 E] 1-to-1 1-to-many 1-to-1 1-to-many
° i le 2 .. i. =
ﬁ'@l!] Cf: ﬁ ‘ “ﬁi igH 2 1’\\ |>§° Lid lﬁ%

Figure 4: Qualitative Results, (a) action affordances (b) interaction steps and corresponding reasoning results
(c) More reasoning results —: inferred inter-object functional relations. —: ground truth.

(b) Reasoning
I
5

—gﬁy

* Oracle (joint state supervision): Interaction policy supervised on joint states. This is considered
as the oracle because changes in joint states are directly obtained from simulation.

* RGB: A baseline that takes RGB images instead of depth images as input to the model.
* w/o responder: Interaction policy supervised on visual feedback but no responder effects.

* w/o exploration: An ablated version of BusyBot without using UCB for exploration.

Results and Analysis. From Tab. 1, we can see that
[w/o responder] achieves poor performenf:e since vi- Prec Recall | Prec Recall
sual feedback of small-displacement objects alone

is insufficient for learning. In contrast, [BusyBot] is ~ Oracle 918 824 |79.5 902
able to achieve comparable performance as the or- RGB 623 63.1 |9.50 17.0
acle, which validates our hypothesis that triggered = w/oresponder 0.71 0.65 |0.24 0.49
responder effects can assist the model in learning w/o exploration 94.2 33.7 |81.9 38.6
good interaction policy by amplifying the visual feed- BusyBot 90.1 80.1 |82.6 848
back. We also demonstrate the effectiveness of our
exploration method by showing the recall of [w/o
exploration] drops by more than 45% than that of [BusyBot]. From the [RGB] baseline, we find that
color observations alone struggle to learn interaction policy for instances such as switches that are
all-white. Moreover, the performance of [RGB] drops significantly for novel objects, implying that
the model trained with RGB observations overfits on colors and lacks generalizability.

Novel Config | Novel Object

Table 1: Performance of Interaction Policy

5.2 Relation Reasoning Module Evaluation

The reasoning module is evaluated by the following metrics: 1) Relation inference accuracy, measured
by the precision (Edge-P) and recall (Edge-R) of the inferred functional relation pairs. 2) Future
state prediction accuracy (Pred-A), measured by the percentage of correct future state predictions.
We compare the following alternatives:
* w/o inference: An ablated version of the model without the inference network. The dynamics
network takes in all history interaction data and directly predicts the next state.
* w/o exploration: An ablated version of our method, where the input of the reasoning network
are data collected under an inferior interaction policy.

Training Board Novel Config Novel Object
Edge-P Edge-R Pred-A | Edge-P Edge-R Pred-A | Edge-P Edge-R Pred-A

- - 79.2 - - 36.2 - - 7.04
55.6 51.0 89.6 74.6 3.10 14.3 75.1 0.96 11.6
95.8 100 88.1 95.5 99.7 73.8 85.0 99.5 31.0

w/o inference
w/o exploration
BusyBot

Table 2: Performance of Reasoning Module. For BusyBot, while the future state prediction accuracy (Pred-A)
decreases for unseen board appearances (novel config, novel object), the reasoning module is still able to reliably
infer the inter-object functional relations (Edge-P, Edge-R) in novel scenarios.

Results and Analysis. Compared to [w/o inference], we see that without inferring the inter-object
relations, the model overfits on the training data and generalizes poorly to novel boards. We also
observe that with bad interactions [w/o exploration], the reasoning model is not able to uncover the
relations accurately and make correct future state predictions. In comparison, our model generalizes
well to novel board configurations and achieves performance comparable to that of the training board.
This demonstrates that a good interaction policy helps the agent uncover the correct inter-object

functional relations, which then helps the agent to understand scene dynamics. For boards with novel
object instances, even though the future state prediction accuracy drops by around 40% than the seen
instances (which is expected since the object features are never seen by the dynamics model), the
relation inference accuracy is still comparable. The performance on novel boards verifies that the
model’s ability to infer inter-object functional relationship can transfer to new scenes and objects.

5.3 Goal-conditioned Manipulation

We generate 50 one-to-one tasks Initial Goal Relation Predictive BusyBot
and 50 one-to-many tasks for each 8 - 2 4= =) Al D o
type of board (training, novel config, © ® ’eg"" ®
. L - - - = -

novel object). One-to-one tasks con- 3 - - = -
tain only two-state triggers, and thus “ : =) = (= —
only require the algorithm to iden- . bt e i 12

. . . . =1 #\) y
tify Fhe correct trigger (similar task g [y a8 Y M livas B et R
studied in IFRexplore [26]). One- ¢ © Of o ® = J >N e
to-many tasks contain both multi- ~ v e o | v | = ™ = v | e
direction and multi-link triggers that gt edge —> inferred edge gt action @ —=>inferred action|_jobj not in target state

require the agent to not only identify Figure 5: Goal-conditioned Manipulation. Compared to the pre-
the correct trigger, but also infer the dictive agent, the relation agent generalizes better on novel objects,
correct action to manipulate the trig- while struggles in handling one-to-many relations. Our method
ger (e.g., the correct button position BusyBot combines the advantages of both agents.

or pushing direction).

Metrics & Baselines. We measure object-
level success rate on both one-to-one and one-
to-many manipulation tasks for each type of
board. The success rate is defined at object
level at the end of an interaction sequence .
with a maximum of 8 steps. Success rate = Relation) 98.3 ~ 61.1 1 93.7 600) 92.0 62.8
affectable responders in goal state / # total Predictive| 97.7 67.5 | 910 67.0 1 89.0 582
BusyBot| 98.3 71.0 | 93.7 694 | 923 64.9
affectable responders. We compare the three
agents as discussed in 4.3, along with two Table 3: Goal-conditioned Manipulation Result
learning-based agents using behavior cloning
(BC) and proximal policy optimization (PPO). More details can be found in supp.

Training | Novel Config | Novel Object
1-to-1 1-to-m|I-to-1 1-to-m|1-to-1 1-to-m

PPO| 91.2 885 | 623 543 | 599 557
BC| 954 949 | 570 518 | 63.8 54.8

Results and Analysis. All agents achieve good performances on one-to-one tasks. This means
that both the relation and dynamics learned by the reasoning module can generalize to novel board
configurations and objects. The [predictive] agent achieves better performance on one-to-many tasks
with seen object instances by leveraging future predictions to select the correct action to apply on the
trigger object. In contrast, the [relation] agent can only identify the trigger object but not the exact
action (e.g., which link to interact with or which direction to push). On the other hand, the [relation]
agent performs slightly better than the [predictive] agent on all one-to-one tasks and boards with
novel objects, when the dynamics model sometimes fails to predict the correct next state. This shows
that inter-object functional relationship can generalize to scenarios when future predictions are not
reliable enough to assist planning. The result of [PPO] and [BC] indicate that RL-based agents fail to
generalize to boards with novel configurations or objects, and it is thus critical to learn an explicit
representation of inter-object functional relations.

5.4 Real-world Experiments

Setup. We test the trained model on a busyboard in real world with robot interactions (Fig. 6). The
board consists of 3 trigger objects (switches) and 3 responder objects (LEDs). Objects outside the
effective region are ignored. We manually modified the underlying inter-object functional relations of
the board by rewiring the objects. We test with 6 different configurations including 4 one-to-one and
2 one-to-many configurations. For each configuration, the robot interacts with the board for 30 steps
and the rollout is grouped into 6 overlapping and continual sub-sequences, each of which has a length
of 25. In total, we generate a real-world dataset of 36 sequences with 108 inter-object functional
relation pairs for evaluating the reasoning module.

Results. Fig. 6 (c) shows that the algorithm is able to refine inter-object functional relations
(reducing additional edges) through interactions. The precision and recall of inferred relations are

Steps Obs&Action Prediction (d) More Configurations
: : : Prediction Ground Truth

one-to-one

Direction

Position

effective region

(a) Setup (b) Interaction (c) Reasoning

Figure 6: Real-world Busyboard. We test the trained models on a real-world busyboard with robot interactions
(a), and show that our algorithm is able to discover the inter-object relations (c) through interactions (b).

93.9% and 100%, respectively. All inter-object functional relations can be discovered by our model,
with only a few additional pairs predicted. The result shows that the relation reasoning ability of the
model is transferable to real-world scenarios. More results can be found in supp.

5.5 Application in Simulation Home Environments

To demonstrate the learned skills can
be applied beyond the BusyBoard en-
vironment, we further test our reason-
ing model in 2 kitchen scenes from
AI2THOR [15]: a) a stove with mul-
tiple controls and b) a room with mul-
tiple objects. Following the same
evaluation protocol, we let the agent (t) Room with multiple abjects

interact with the environments for Figure 7: Application in ARTHOR Home Environments. The
a few steps and use the trained rea- figure shows the interactions (in yellow), corresponding state
soning model to infer the functional changes, ground truth inter-object functional relationships (in green),
scene graphs' We Observe that the and inferred relationships (11'1 red).

algorithm achieves similar performance to boards with novel objects (shown in 5.2): while the
algorithm cannot perfectly predict the future states of the object (due to out-of-distribution object
visual appearance), it is able to infer the correct edges through interactions, without the need of
fine-tuning. The result demonstrates the generalization ability of our proposed environment and
algorithm to new domains and applications.

5.6 Limitation and Future Work

While the BusyBoard environment is inspired by toys, it still lacks certain diversity and complexity in
real-world toys. For example, real-world toys are often designed with multi-sensory feedback such as
sound and tactile, while our environment focuses on visual effects only. Several assumptions made by
BusyBot could also be relaxed for more general applications. First, BusyBot assumes full observability
of objects in a single image. Future work may consider using a 3D scene representation that integrates
multi-view observations to handle larger-scale environments. In addition, the interaction module
assumes trigger objects can reach all states through single-step actions. Future work could consider
learning a more general manipulation policy [20] to accomodate objects that require a sequence of
actions to manipulate. Finally, the relation reasoning module assumes objects are detected. Though
the assumption is valid in our setup, it may not hold for cluttered scenes.

6 Conclusion

We propose a toy-inspired relational environment, BusyBoard, and a learning framework, BusyBot,
for embodied Al agents to acquire interaction, reasoning, and planning abilities. Our experiments
demonstrate that the rich sensory feedback in BusyBoard helps the agent learn a policy to efficiently
interact with the environment; using the data collected under this interaction policy, inter-object
functional relations can be inferred through predicting future states; and by combining the ability to
interact and reason, the agent is able to perform goal-conditioned manipulation tasks. We verify the
effectiveness and generalizability of our method in both simulation and real-world setups.

Acknowledgments: The authors would like to thank Huy Ha, Cheng Chi, Samir Gadre, Neil Nie, and
Zhanpeng He for their valuable feedback and support. This work was supported in part by National
Science Foundation under 2143601, 2037101, and 2132519, and Microsoft Faculty Fellowship. We
would like to thank Google for the URS robot hardware. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the sponsors.

References

[1] R. Held and A. Hein. Movement-produced stimulation in the development of visually guided
behavior. Journal of comparative and physiological psychology, 56, 1963. doi:10.1037/
h0040546.

[2] G.E. Roberson, M. T. Wallace, and J. A. Schirillo. The sensorimotor contingency of multisen-
sory localization correlates with the conscious percept of spatial unity. Behavioral and Brain
Sciences, 24(5), 2001. doi:10.1017/S0140525X0154011X.

[3] R. Baillargeon. Infants’ physical world. Current Directions in Psychological Science, 13(3),
2004. doi:10.1111/5.0963-7214.2004.00281.x.

[4] D. Perille, A. Truong, X. Xiao, and P. Stone. Benchmarking metric ground navigation. In
2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages
116-121. IEEE, 2020.

[5] N. Tsoi, M. Hussein, O. Fugikawa, J. Zhao, and M. Vdzquez. An approach to deploy interactive
robotic simulators on the web for hri experiments: Results in social robot navigation. In
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
7528-7535. IEEE, 2021.

[6] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embodied
Al Research. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2019.

[7] C.Li, F. Xia, R. Martin-Martin, M. Lingelbach, S. Srivastava, B. Shen, K. E. Vainio, C. Gokmen,
G. Dharan, T. Jain, A. Kurenkov, K. Liu, H. Gweon, J. Wu, L. Fei-Fei, and S. Savarese. igibson
2.0: Object-centric simulation for robot learning of everyday household tasks. In 5th Annual
Conference on Robot Learning, 2021. URL https://openreview.net/forum?id=
2uGN5 jNJIROR.

[8] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
robot learning, pages 1094-1100. PMLR, 2020.

[9] S.James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. /IEEE Robotics and Automation Letters, 5(2):3019-3026, 2020.

[10] O. Ahmed, F. Trduble, A. Goyal, A. Neitz, M. Wiithrich, Y. Bengio, B. Scholkopf, and S. Bauer.
Causalworld: A robotic manipulation benchmark for causal structure and transfer learning. In
International Conference on Learning Representations, 2021.

[11] Y. Zhu, J. Wong, A. Mandlekar, and R. Martin-Martin. robosuite: A modular simulation
framework and benchmark for robot learning. In arXiv preprint arXiv:2009.12293, 2020.

[12] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H. Wang, L. Yi,
A. X. Chang, L. J. Guibas, and H. Su. SAPIEN: A simulated part-based interactive environment.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[13] A. Bakhtin, L. van der Maaten, J. Johnson, L. Gustafson, and R. Girshick. Phyre: A new
benchmark for physical reasoning. Advances in Neural Information Processing Systems, 32,
2019.

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

A. Jain, A. Szot, and J. Lim. Generalization to new actions in reinforcement learning. In
H. D. Il and A. Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 4661-4672. PMLR,
13-18 Jul 2020. URL https://proceedings.mlr.press/v119/jain20b.html.

E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu,
A. Gupta, and A. Farhadi. Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint
arXiv:1712.05474,2017.

S. Brahmbhatt, C. Ham, C. C. Kemp, and J. Hays. Contactdb: Analyzing and predicting grasp
contact via thermal imaging. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 8709-8719, 2019.

T. Nagarajan, C. Feichtenhofer, and K. Grauman. Grounded human-object interaction hotspots
from video. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 8688-8697, 2019.

T. Nagarajan, Y. Li, C. Feichtenhofer, and K. Grauman. Ego-topo: Environment affordances
from egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 163-172, 2020.

K. Mo, L. J. Guibas, M. Mukadam, A. Gupta, and S. Tulsiani. Where2act: From pixels to
actions for articulated 3d objects. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 6813-6823, 2021.

Z. Xu, H. Zhanpeng, and S. Song. Umpnet: Universal manipulation policy network for
articulated objects. IEEE Robotics and Automation Letters, 2022.

B. Eisner, H. Zhang, and D. Held. Flowbot3d: Learning 3d articulation flow to manipulate
articulated objects. RSS, 2022.

S. Y. Gadre, K. Ehsani, and S. Song. Act the part: Learning interaction strategies for articulated
object part discovery. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 15752-15761, 2021.

P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, et al. Interaction networks for learning
about objects, relations and physics. Advances in neural information processing systems, 29,
2016.

C. Mitash, A. Boularias, and K. Bekris. Physics-based scene-level reasoning for object pose
estimation in clutter. The International Journal of Robotics Research, page 0278364919846551,
2019.

Y. Li, A. Torralba, A. Anandkumar, D. Fox, and A. Garg. Causal discovery in physical systems
from videos. Advances in Neural Information Processing Systems, 33, 2020.

Q. Li, K. Mo, Y. Yang, H. Zhao, and L. Guibas. IFR-Explore: Learning inter-object functional
relationships in 3d indoor scenes. In International Conference on Learning Representations
(ICLR), 2022.

S. Nair, Y. Zhu, S. Savarese, and L. Fei-Fei. Causal induction from visual observations for goal
directed tasks. arXiv preprint arXiv:1910.01751, 2019.

A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and T. Lillicrap.
A simple neural network module for relational reasoning. Advances in neural information
processing systems, 30, 2017.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

M. Zecevié, D. S. Dhami, P. Veli¢kovié, and K. Kersting. Relating graph neural networks to
structural causal models. arXiv preprint arXiv:2109.04173, 2021.

10

[31] W. Lin, H. Lan, and B. Li. Generative causal explanations for graph neural networks. In
International Conference on Machine Learning, pages 6666-6679. PMLR, 2021.

[32] N. R. Ke, O. Bilaniuk, A. Goyal, S. Bauer, H. Larochelle, B. Schélkopf, M. C. Mozer, C. Pal,
and Y. Bengio. Learning neural causal models from unknown interventions. arXiv preprint
arXiv:1910.01075, 2019.

[33] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu. Hierarchical planning for long-horizon manipu-
lation with geometric and symbolic scene graphs. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 6541-6548. 1EEE, 2021.

[34] D. Hafner, K.-H. Lee, 1. Fischer, and P. Abbeel. Deep hierarchical planning from pixels. arXiv
preprint arXiv:2206.04114, 2022.

[35] J. Li, C. Tang, M. Tomizuka, and W. Zhan. Hierarchical planning through goal-conditioned
offline reinforcement learning. arXiv preprint arXiv:2205.11790, 2022.

[36] A. Agostini, C. Torras, and F. Worgotter. Efficient interactive decision-making framework
for robotic applications. Artificial Intelligence, 247:187-212, 2017. ISSN 0004-3702. doi:
https://doi.org/10.1016/j.artint.2015.04.004. URL https://www.sciencedirect.com/
science/article/pii/S0004370215000661. Special Issue on Al and Robotics.

[37] B. Quack, F. Worgotter, and A. Agostini. Simultaneously learning at different levels of
abstraction. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4600—4607, 2015. doi:10.1109/IROS.2015.7354032.

11

arXiv:2207.08192v2 [cs.RO] 17 Oct 2022

BusyBot: Learning to Interact, Reason, and Plan in a
BusyBoard Environment
(Supplementary Material)

1 Implementation Details

1.1 Interaction module.

Training detail. The interaction module is trained online in a self-supervised manner for 400 epochs.
Each epoch contains a data collection phase and a training phase. During the data collection phase,
16 busyboard environments are generated and the agent executes 10 actions on each board. Each
interaction data point is stored in a FIFO replay buffer (size=6400) as {o;,a}"",a%", r(a®")}. During
the training phase, in each iteration, we sample 16 and 32 interaction data points from the replay
buffer for training position and direction inference network respectively. When sampling the data
points, we make sure that half of the sampled data points have positive reward and half of them have
zero reward. We train 8§ iterations for the position network and 24 iterations for the direction network
in each epoch.

Given the model structure, an effective direction depends on an effective position to gain the positive
reward, thus to make the training more efficient, we only train the position inference network (with
an initial learning rate of 0.0005 and Adam optimizer) and try all direction candidates in the first
100 epochs. If one of the direction candidates yields positive reward, the position network gains
positive reward. To bootstrap the training, in the first 10 epochs, data are collected by a policy that
chooses random positions and the training starts at the 10th epoch. From the 100th to 120th epoch,
we randomly select direction candidates to collect negative data points. Starting from the 120th
epoch, we jointly train the position and direction inference network (with an initial learning rate of
0.0001 and Adam optimizer). To encourage exploration, we apply the epsilon-greedy exploration
algorithm with € starting from 1 and decreasing linearly to a minimum value of 0.1 over a span of
40 epochs and 80 epochs, from the epochs when the training starts for the position and direction
inference network respectively.

Network detail. The structure of the position inference network and direction inference network
are discussed below:

Given a depth observation captured by a depth camera, we first calculate the world coordinates
for each pixel using depth values. Surface normals are then estimated using the cross product of
neighboring coordinates. Next, the depth image and surface normals are concatenated (4 x 480 x 640)
and fed into the position inference network with a U-Net architecture. The position network has 4
down-sample blocks with 32, 64, 128, and 256 channels, followed by 4 up-sample blocks with 128,
64, 32, and 2 channels. Each down-sample (or up-sample) block includes a max-pooling (or bilinear
interpolation) layer and two 3 x 3 convolution layers with ReLU activation. The output tensor has
a size of 2 x 480 x 640 and softmax activation is applied to obtain the final affordance score map
(1 x 480 x 640).

The direction network takes in the current depth observation, surface normals, and the 2-D Gaussian
representation of the selected position (5 x 480 x 640) and applies seven 3 x 3 convolution layers
with 32, 64, 128, 256, 512, 512, and 512 channels. Max pooling is also applied except for the first
layer. The output tensor with a size of 512 x 7 x 10 is flattened as an embedding X (o;) and passed
through a two-layer MLP with both 256 dimensions, followed by a four-layer MLP with dimensions
of 1024, 1024, 1024, and 18. Finally, the network outputs the scores for all direction candidates
(1 x 18).

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

1.2 Reasoning module.

Network details. The graph neural networks used in the reasoning module has a similar structure as
the Interaction Network (IN) [?]. The frist GNN is a spatial encoder that takes in node n; (T X N x 259)
and edge features {n;,n;}(T x N x N x 259), where T is the number of frames, N is the number of
objects, and the 259-dimensional node feature is the concatenation of the object’s 256-dimensional
visual feature (extracted from the 10th layer of a pre-trained ResNet-50 network) and its 3D position.
The input vectors are flattened and input to a sequence of linear layers followed by ReLLU activation
to encode (1 layer), propagate (4 layers for edges and 2 layers for nodes, in each propagation step),
and decode (2 layers) the information. The objective is to learn £ and f°%/ that maps the input
features to node and edge embeddings,

hij = £ (niynj, {e?,e"}) (1)

hi = £ (ni,Zjen;hij) @)
where N; denotes all objects that are directly connected by an edge to object i, i; and h;; are the
learned spatial node (7' x N x 128) and edge embeddings (T x N x N x 128).

The other GNNs use the same structure as above to pass information through nodes and edges.

Training details. The total number of nodes N in the GNNS is set to 10, the maximum possible
number of objects over all busyboards. For boards with less than 10 objects, we input 0’s as
placeholders for vacant nodes. In this way, the model is able to generalize to boards with different
number of objects. In addition, since the model does not rely on the states of the triggers to make
predictions, we find that the training can be more stable if we input 0’s in place of visual features for
trigger objects.

The action is encoded to a 256-dimensional embedding by a 3-layer MLP with 256, 256, 256
dimensions. For the object where the action is applied on, the input is the 6-D action; for other
objects, the input are 0’s.

We jointly train the relation inference and dynamics network for 200 epochs with a learning rate
of 0.0005 and a batch size of 64, using the Adam optimizer. During training, we clip out sudden
explosion in loss to obtain more stable training.

1.3 Planning module.

The relation agent compares the initial and goal image and identifies the different responders. For
each responder that needs to be changed, the agent retrieves the corresponding trigger based on
the functional scene graph (if multiple triggers are found, the agent randomly chooses one) and
applies the action. Therefore, the total steps executed by the relation agent is the number of different
responders in the initial and goal image and the relation agent will terminate regardless of whether
the goal state is reached. The predictive agent and the BusyBot agent will terminate after executing 8
steps, or terminate immediately if the goal state is reached within 8 steps.

As for the learning-based agents (BC and PPO), at each step, both agents take the current observation
o, the goal state observation oy, the action candidates A,, and the interaction history H, as input, and
infers a discrete action index for execution. For fair comparison, we make both the observations
(top-down RGB images) and action candidates (inferred by the interaction module) the same as in
our method. In addition, we encode the interaction history H; = [(09,d,), (01,a1) -+, (0r—1,a:-1)]
via a LSTM as an implicit scene representation for each step. The objective of PPO is to optimize the
cumulative reward (i.e., success rate) and the objective for BC is to mimic the behavior of an expert
agent (generated using an oracle policy).

2 Environment Details

Board Generation. The main body of the board will be assigned random colors (from 8 colors)
and textures (from 5 textures) upon generation to introduce variety. Objects are placed into random
positions on the board with no overlap.

Objects from the lamp and door category may rotate 6, = {0, %, T, %n}, where 0, denotes rotation (in

radian) along the z-axis counter-clockwise. The orientation of objects from the switch and tracktoy

category are fixed in order to eliminate possible ambiguities. The joint states of the triggers are also
randomly set upon board generation to add variance to initial board observations.

Relation Assignment. Switch objects are classified into small-displacement, multi-direction, and
multi-link triggers. Door objects are single-stage motion effects. Tracktoy objects are multi-stage
motion effects. Lamp objects can be either single-stage or multi-stage appearance effects. When
sampling the relation, we make sure that each trigger object is matched with at least one responder.

3 Result Details

Figure 1 and 2 shows the step-by-step reasoning result on simulated and real-world busyboards. We
highlight the object that the agent interacts with in each step using the yellow symbol. We can observe
that the edge predictions associated with each object refine through interactions.

Figure 3 shows the step-by-step goal-conditioned planning results on boards with novel configurations.
All agents perform well on one-to-one tasks, while the predictive agent and BusyBot agent outperform
the relation agent on one-to-many tasks by leveraging future predictions to select the correct link or
correct direction.

Figure 4 shows step-by-step goal-conditioned planning result on boards with novel objects. One-
to-one (a) shows a case when all agents perform well, demonstrating that the learned relation and
dynamics can generalize to boards with unseen object instances. One-to-one (b) shows a case when
incorrect future predictions lead to a repeating action (the agent turns on and off the green light),
while the relation agent and BusyBot agent are able to retrieve the correct trigger to manipulate using
the functional scene graph.

The one-to-many task on boards with novel objects is challenging for both relation and predictive
agent, given that the relation agent cannot infer the exact action position or direction, and the
predictive agent might not be able to select the correct action either as the future state prediction
accuracy is low on novel objects. By combining the advantages of both agent, the BusyBot agent
may yield the correct result by narrowing down possible action candidates using the functional scene
graph and leveraging future predictions of the dynamics network to choose the correct action.

one-to-many

Novel Object

-to-one

one-

Novel Config
one-to-many

one-to-one

—_
<
=]

.=

=~

cemcccccccccccccccccccccsccccccccdacaaccccccccccccccaaaaa

Obs&Action Prediction

Steps Obs&Action Prediction

v
—

21

22

23

24

lated busyboards.

Full reasoning sequences on simu

Figure 1

1 1 1

1
1 P C
=
e
L}
_.plv e ~)
> B
m “D«“ Pl Pl
= i
S "
< = . . X X * X O
2 1.8
5] ‘5
P < e Ol O & ® ° s XN °
1
'3
“% by 1O ® » » » 2 » -®
............ L o e
i
1
=
_.0
=
‘5.
L1
B
o =
(=}
8 .
k=) i
1 1
[0} (=
=}
3 L2
o
i<
13
)
(=)
e
1
|||||||||||| P
1
1
1
[=
1.8
(IR
1w
5
[! =
=} -
? "
0 1
= 1
() 1
n 1
° :
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Steps Obs&Action

Ground
Truth

Figure 2: Full reasoning sequences on real-world busyboard.

Steps

Init

w

Affordance Scene Graph ~ Goal | Affordance Scene Graph

;- 132 “'-:82 . li

One-to-One . One-to-Many (a) One-to-Many (b)
Goal Affordance Scene Graph ~ Goal

Relatlon Predictive BusyBot | Relation Predictive BusyBot

£ //

= A
PR — N -

Relation Predictive BusyBot

+ 4 i
lﬂ 2 1%2 . 132
\mlf w—l w—- :
|%z D '*Z . :32:

e i e i §

'%Z Vd '%2 ,é '%Z

#s Pushing down © Pullingup - Pushingright Pushlng left [_} Obj not in target state

Figure 3: Goal-conditioned planning result on boards with novel configurations.

One-to-One (a) One-to-One (b) One-to-Many
Affordance

Affordance Scene Graph ~ Goal

Goal

Scene Graph

Affordance Scene Graph ~ Goal

Y
9_4

=
Relation Predictive

o= ¢ = o

Relation Predictive ~ BusyBot Relation Predictive BusyBot

®‘r

'
! '
! '
! '
! '
! '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' I
' I
! '
! '
! '
' '
' '
' '
' '
! '
' '
! '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
! '
' '
' '
' '
' '
' '
' I
' '
' '
! '
! '
! '
' '
' '
' '
' '
' '
' '
' '
' '
' '
! '
' '
' '
' '
' '
' '
' '
! '
! '
! '
! '
! '
! '
' '
' '
' '
' '
' '
! '
! '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
! '
! '
! '
! '
! '
! '
! '
' '

+4 Pushing down @) Pulling ub - Pushing right .= Pushing left [} Obj not in target state

Figure 4: Goal-conditioned planning result on boards with novel objects.

