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Figure 1. In this workshop paper, we present a proof-of-concept prototype called RASSAR (Room Accessibility and Safety
Scanning in Augmented Reality) for identifying, categorizing, and localizing indoor accessibility and safety issues using LIDAR
+ camera data, real-time machine learning, and AR. With RASSAR, the user first selects the target community (a), scans
the indoor space with their mobile phone (b), and receives real-time feedback about problematic items, dimensions, and
positions. The feedback is anchored on the object’s location in real-world coordinate space (c and d).

Abstract

To help improve the safety and accessibility of indoor spaces, researchers and health professionals
have created assessment instruments that enable homeowners and trained experts to audit and
improve homes. With advances in computer vision, augmented reality (AR), and mobile sensors,
new approaches are now possible. We introduce RASSAR (Room Accessibility and Safety Scanning in
Augmented Reality), a new proof-of-concept prototype for semi-automatically identifying,
categorizing, and localizing indoor accessibility and safety issues using LIDAR + camera data,
machine learning, and AR. We present an overview of the current RASSAR prototype and a
preliminary evaluation in a single home.

Introduction

Safe, accessible housing is a fundamental human right [47]. Indeed, the UN’s Convention on the
Rights of Persons with Disabilities states that governments should identify and eliminate
accessibility barriers not just in public facilities and transportation but in schools, workplaces, and



homes [51]. To help improve the safety and accessibility of domestic spaces, researchers and
health professionals have created pre-formatted checklists (assessment instruments) that enable
homeowners and trained professionals to audit and improve indoor spaces
[13,19,20,22,37,40,42]. Often, these instruments are designed for particular target groups, such
as older adults [13,19,36,37], children [27,40], and/or people with specific disabilities [10,22].
Some instruments, including SAFER HOME [17] and the WeHSA [11], were created for
professionally trained occupational therapists to conduct in conjunction with home visits. Others
have explored self-assessment tools such as the Home Safety Self-Assessment Tool (HSSAT) [19,42]
and Remote Home Safety Protocol [37], which reduce cost, eliminate the need for professional
intervention, and improve homeowner education. HSSAT, for example, contains a safety and
accessibility checklist for nine areas of the home, including entrances, kitchens, bathrooms, and
bedrooms, and includes issues such as a lack of wheelchair ramp, uneven flooring, cluttered areas,
presence of throw rugs, electric cords across the floor, and inaccessible light switches.

With advances in computer vision, augmented reality (AR), and mobile sensors, new approaches
for assessing indoor accessibility and safety are now possible. In this paper, we introduce RASSAR
(Room Accessibility and Safety Scanning in Augmented Reality), a novel smartphone-based prototype
for semi-automatically identifying, categorizing, and localizing indoor accessibility and safety issues
using LiDAR + camera data, real-time machine learning, and AR. With RASSAR, the user holds out
their phone and slowly scans a space—the tool constructs a real-time parametric model of the 3D
scene, attempts to identify and classify known accessibility and safety issues, and visualizes
potential problems overlaid in AR—see Figure 1. We envision RASSAR as a tool to help build and
validate new construction, for homeowners planning renovations or updating their homes due to a
life change (e.g., illness, birth), or for rental services like Airbnb to help vet and validate access and
safety.

As initial work, RASSAR currently detects 18 objects and examines issues such as object dimension
(e.g., table too low), position (e.g., cabinet too high), and existence (e.g., throw rug). These supported
features are informed by ADA standards for accessible design [43,52] and the health and safety
literature [33]. We present an overview of the RASSAR prototype, its custom-trained machine
learning model, and an initial evaluation in a single home. Our work contributes a new approach to
assess indoor access/safety issues using emerging technology.

Background and Related Work

RASSAR automatically constructs 3D models of the indoor environment using the iPhone Pro’s
built-in LIiDAR scanner and classifies potential access and safety problems using LIDAR and RGB
camera data. We cover work related to both below.

In architecture and construction fields, LiDAR is increasingly used to semi-automatically generate
2D blueprints and create interactive 3D models of buildings, often to track construction progress
or examine a building post-construction (e.g., compare “as-designed” blueprints to “as-built”
results) [23,34,45]. Here, the primary focus is on generating accurate 2D/3D blueprints of rooms,
including room geometry, wall locations and orientations, and the position and size of windows



and doors. Interior objects like furniture are deemed “visual clutter,” which occlude laser scans and
negatively impact building model generation [18,23]. In our research, we are interested in both the
geometry and layout of space as well as the furniture and other objects within it and how each may
pose an accessibility or safety issue.

In computer vision, combining LiDAR and camera data for scene reconstruction and object
identification is an active area of research [29,35], particularly for autonomous vehicles [28,49]. A
key challenge is how to leverage both RGB and depth sensor streams to improve detection results
[3]. Others have examined purely 3D-detection approaches that classify objects directly from
point cloud information [2,8]. In our case, we use both LiDAR and camera data.

Most relevant to our work are applications of sensing and computer vision to support indoor
accessibility and safety. In this space, most work focuses on real-time navigation for blind or
low-vision users, such as navigating hallways [25] or stairs [50], supporting pedestrian position
estimations [24], or general wayfinding through localization and landmark detection [12,15,48].
While nascent, this work is already emerging in commercial tools. In May 2022, Apple introduced
Door Detection, which fuses real-time LiDAR+camera data with on-device machine learning to help
blind and low-vision users locate doors, understand distances to doorways, and describe door
attributes—including open/closed state [53].

While there is a large body of active research in automated approaches to audit and document the
accessibility of outdoor pedestrian environments [1,21,26,32,38,39,46], surprisingly few works
focus specifically on indoor accessibility/safety issues. Notable exceptions include Balado et al.’s
research on automatically detecting building entrance stairs from 3D point clouds [5,6] and
Ayala-Alfaro’s recent work in using mobile indoor robots to scan and classify objects that may
impede access for people with mobility disabilities [4]. We could find no prior work that attempts
to scan, identify, and localize both accessibility and safety issues using computer vision, AR, and
machine learning—which is our focus.

The RASSAR System

RASSAR identifies, categorizes, and localizes indoor accessibility and safety issues in real-time
using LiDAR + RGB camera data, computer vision, and AR (Figure 2). Specifically, we employ
Apple’'s RoomPlan API* to create a 3D room floor plan with furniture and dimension information
along with a custom-trained deep learning model (YOLOv4 [9]) for safety/accessibility object
detection using the RGB camera stream. We envision RASSAR as either a self-assessment tool for
homeowners and caregivers or as a complementary tool for occupational therapists. We are
currently targeting four communities of interest: children caregivers, wheelchair users, older
adults, and people who are blind or low vision.

Table 1 below and Table 7 (in the Appendix) provides an overview of the 18 currently supported
access/safety issues in RASSAR across three high-level categories: inaccessible or unsafe object
dimensions (e.g., door too narrow, table too low), object positions (e.g., lightswitch position too high),
and object existence (e.g., presence of a throw rug or medication).

* https://developer.apple.com/augmented-reality/roomplan/
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Figure 2. An overview of the RASSAR prototype, which uses the iPhone Pro’s built-in LIDAR and RGB cameras to build a
real-time model of indoor space and a custom-trained machine learning model (YOLOv4) to identify potential safety and
accessibility issues. In this case, RASSAR has detected scissors. The green bounding box is from Yolo, which shows the
detection confidence. We also triangulate the location of the object and insert a red sphere displayed in AR.

The RASSAR prototype is composed of three primary components:

1. Specifying access/safety issues. To support a variety of access/safety issues, we developed a
custom input specification format in JSON. The file specifies what objects to detect (e.g., table,
door, knife), what problems to analyze (e.g., table height, door width, sharp object existence), and
who is potentially impacted (e.g., wheelchair user, older adult). The full JSON descriptionis in Table

1 along with two examples in Figure 3.

Table 1. The JSON elements and their values in our input specification file.

JSON Element Description

Values

Object of interest  The object to automatically identify.
We currently support 18 objects.

Community The impacted target group(s)
Dependency Relational dependence (if any)
Dimension Specifies dimensional requirements

and conditional logic (e.g., a door
must be a minimum of 32” wide)

Existence Does the object pose a problem by
its sheer existence at the location?

Description A human-readable description of
the problem, which is drawn from
existing ADA standards and
assessment checklists

Cabinet, chair, counter, door, door handle, electric socket, grab
bar, knives, knob, light switch, medication, rug, sink, scissors,
smoke alarm, sofa, table, toilet

Children, older adults, blind or low vision, wheelchair user. Can
select one or more.

Can specify any Object of interest.

Comparator operators include <, ==, and >. We also support
a between range check.

Can be null, true, or false. If null, then this Object of interest is
not about existence but about dimension or position.

Plain text



“Door-Opening”: { “Knives”: {

“Radius”: { “Radius”: {
“Community”: [“Wheelchair User"], “Community”:["Children"],
"Dependency": ["Door”] "Dependency”: ["Table", "Sofa",
"Dimension":{ "Counter", "Floor", "Bed", "Chair"],
"Comparison™: "Dimension™: {

“>n "Comparison”: null,

"Value": [32] "Value": null
IFe IFe
"Existence": null, "Existence": false,
“Description”: "According to ADA “Description”: "For safety, no knives
compliance, door openings shall provide should be present on the reachable
a clear width of 32 inches minimum.” surfaces.”

} }
} }

Figure 3. Two example JSON objects: (a) a doorway opening with a required width specification and (b) a check for the
existence of a knife.

2. Detecting and locating access and safety issues. RASSAR reads in the JSON specification to
initialize its problem detection engine, which relies on two core techniques: first, we employ
Apple’s RoomPlan API to build up a parametric 3D model of indoor space and use its robust built-in
object recognition? to identify doors, walls, and windows as well as objects such as chairs, sofas,
tables. For each element, we receive a 3D bounding box representing dimensional information
(width, length, height) as well as a confidence score for the object classification. Currently, Apple’s
built-in object recognizer is limited to 16 objects: bathtub, bed, chair, dishwasher, fireplace, oven,
refrigerator, sink, sofa, stairs, storage, stove, table, television, toilet, and washer/dryer.

Thus, for our second technique, we use a state-of-the-art computer vision (CV) algorithm called
YOLOV4 [9]. We chose the latest YOLOv4-tiny detector as the baseline model and trained on nine
additional access/safety objects using more than 2,500 images found via Bing Image Search and
Krasin et al.’s Open Images [54]—see Table 2. After obtaining the weights from training, we
transferred them to the AR-supported Apple CoreML® model, which is integrated into RASSAR.
While YOLO does not provide 3D dimension or localization information, we localize recognized
objects using Apple’s raycast function in RealityKit*. Specifically, we take the center of the
identified object’s 2D bounding box in each video frame’s image from the RGB camera and use
raycasting to localize the pixel in 3D space. To reduce noise, we take the average raycast value over
multiple frames (using a sliding window of N=5 frames).

2 Specifically, we use the RoomPlan’s CapturedRoom object, which includes an array of doors, openings, walls, windows as well as an inferred objects array.
3 https://developer.apple.com/documentation/coreml

4 https://developer.apple.com/documentation/realitykit/arview
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Table 2. The custom YOLO training set for additional access/safety objects beyond those recognized by the Apple
RoomPlan API. For ground truth (GT) labeling, we used Label Studio (https://labelstud.io/). For each image, we drew a 2D
bounding box and provided a GT label. Some images contained multiple issues.

Object GT Annotation Image Count
Door handle 530 370
Electric socket 370 181
Light switch 299 138
Grab bar 503 395
Scissors 270 226
Knife 622 451
Medication 688 325
Rug 470 377
Smoke alarm 191 176
Total 3,943 2,533

3. Visualizing identified issues. Finally, to visualize the identified issues, RASSAR currently draws a
small, red sphere in AR localized in 3D space (on the object itself) and also provides a 2D pop-up
that describes the problem and allows the user to confirm or disagree with the assessment. These
visualizations are preliminary. We plan on providing more detail via interactive pop-ups and a full
post hoc report when the scan is completed.

Preliminary Evaluation

As an initial exploration of technical feasibility and performance, we conducted a controlled
evaluation of RASSAR in a one-bedroom apartment. We embedded 21 access/safety problems and
10 “non-issues” in three rooms—the entrance, living room, and kitchen—see Figures 4 and 5. We
then examined three factors that may impact RASSAR performance: lighting condition, scanning
speed, and room tidiness (Table 3). Given the number of factors, it was not feasible to exhaustively
test all combinations. Instead, we investigated selected combinations. For each combination, we
conducted five full scans. In total, a single researcher set up and conducted tests for six
combinations of factors for a total of 30 scans (Table 6). Each scan included all 21 access/safety
problems and all 10 “non-issues”.

For our performance measures,, we use standard metrics including true positives: successfully
detecting an issue; true negatives: successfully avoiding a non-issue; false positives: misclassifying an
issue or identifying a non-issue as a problem; and false negatives: not identifying an actual
problem—see Table 4 for more details. As is common in machine learning research, we combine
these individual metrics into aggregate measures precision, recall, F, score, and accuracy (Table 5).


https://labelstud.io/

Figure 4. We performed an initial evaluation of RASSAR in a single apartment across three rooms: (a) the apartment
entrance, (b) living room, and (c) kitchen. The red arrows in the blueprint (left image) indicate camera capture position.
Note: these images are not from the RASSAR tool but, instead, are taken to illustrate the study setup.

0 Non-issue Object @ Dimensional Issue

0 Positional Issue e Existence Issue



Figure 5. The location and example images of the 21 access/safety issues and 10 non-issues (to examine true negatives).
Dimensional issues (D) refer to furniture with inaccessible sizes (e.g., a table that is too short or too tall); Positional
issues (P) refer to items placed at an inaccessible height (e.g., a light switch that is out of reach). Existence issues (E)
refers to the presence of risky or unsafe items (e.g., a scissors or knife).

Table 3. The three scanning factors used in our preliminary evaluation.

Scanning Factor Easy Moderate Hard
Lighting Condition Well lit Partially lit Very dark
(> 30 lux) (=5 lux) (< 1 lux)
Scanning speed Slow Medium Fast
(scanin < 2 mins; sustained  (scanin < 2 mins; sustained  (scanin < 1 min; no sustained
hover over objects) hover over objects) hover over objects)
Tidiness Clean Moderately messy Very messy

Table 4. Specific measures used to evaluate RASSAR performance.

Performance Measure Abbr. Description
True positive TP Successfully identifying an access/safety issue
True negative TN Successfully avoiding a non-issue

False positives
Misclassifications

Extra detection
Dimension/position error

False negatives
Missed
Dimension/position error

FP-MISC  Misclassifying an object or reporting the wrong issue
for a problem (e.g., classifying a table as a chair)

FP-E Classifying a non-issue as a problem

FP-DP Object identified correctly but dimension or position is
incorrect, leading to a false positive (e.g., a table with
an accessible height being inferred as too low or high).

FN-M Missed classifying an object

FN-DP The object has an access/safety issue related to
dimension or position but the system failed to detect it.

Table 5. Aggregate performance measures. FP is a summation of FP-MISC, FP-E, and FP-F while FN sums FN-M and FN-F.
All measures return a value between 0-1 where 1 is best.

Measure Calculation Description
Precision TP The fraction of true positives over all made classifications (i.e., when RASSAR
TP + FP . - . .
makes a classification, how likely is it to be correct?)
Recall TP The fraction of true positives over all possible correct classifications (i.e., how
TP+ FN good is RASSAR at finding all possible problems?)
F,Score _Precision * Recall A standard technique to combine both precision and recall together and is

Precision + Recall

Accuracy __ TP+TF
All possible cases

generally described as the harmonic mean of the two.

Describes the number of correct classifications over all possible
classifications (31 in this case).



Across the six experimental conditions, our accuracy ranged from 48.4-89.7%—see Table 6.
Unsurprisingly, the well lit, clean, and medium scan speed performed best with a precision and recall
of 87.4% and 92.8% respectively while the low light trials performed worst, primarily affecting
recall: precision=78.8%; recall=26.3%. The second-worst performing trials were the fast scan speed
condition, which resulted in 91.5% precision, 41.7% recall, and 60% overall accuracy. The amount
of clutter did reduce performance from 89.7% to 82.6% (for messy) and 72.3% (for very messy) but
its impact was more limited than lighting and scan speed.

To complement this quantitative analysis, we also provide example identifications and
classification errors in Figures 6 and 7. For example, we show true positive examples in Figure 6
(left) as well as examples where RASSAR reported no issues for actual problems (false negatives;
Figure 7 right).

Table 6. Our evaluation results. Each row specifies three tested factors, which are averaged over 5 scans. TP, FP, TN, and
FN are counts. Precision, recall, F, score, and accuracy are percentages.

Factors Ground Truth Result Cnts Result Stats (%)
Light Tidy Speed TP TN TP FP TN FN |Prec. Rec. F, Acc.
1 Welllit  Clean Med. 21 10 18 2.6 9.8 14
2 Partial Clean Med. 21 10 162 3.6 10 28 818 853 835 845
3 Poorly lit Clean  Med. 21 10 | 52 14 98 146 788 484
4 Welllit  Messy Med. 21 10 15.6 2.6 10 48 1857 765 808 826
5 Welllit  V.messy Med. 21 10 124 44 10 74 738 626 678 723

6 Welllit  Clean  Fast 21 10 86 08 10 12 _ 573 60

True Positive Examples True Negative Examples
Dimension Position Existence Dimension Position Existence
S |
/I 0 ® ‘! .
| I . _p
Detecting low table  Detecting high door Detecting scissors No report for No report for correct No misclassification for

handle correct door width switch height other objects

OWMM. b |
Detectinglowsofa  Detecting high Detecting knife No report for No report for correct No misclassification for
storage correct table height storage height other objects

Figure 6. Example true positives and true negatives from our evaluation. The red sphere is a preliminary indicator used
to indicate the presence of a problem anchored in 3D space and projected in AR.



False Positive Examples False Negative Examples
Misclassifications Extra Detections Missed Problem Dimn/Pstn Error

I

Misclassified switchas ~ Detect counter edge as Failed to detect rugdue Failed to report high

socket knife to clutteronit counter
l |
Misclassified knife as door Detect pot as door handle | Failed to detect Failed to report high socket

handle medication

Figure 7. Example false positive and false negative detections.

Discussion and Conclusion

In this workshop paper, we introduced RASSAR, an initial prototype for semi-automatically
identifying accessibility and safety issues of indoor spaces using LiDAR depth scanning and
computer vision. While preliminary, RASSAR demonstrates a new potential approach for mapping
and assessing the accessibility and safety of buildings—both public and private. Such a tool could
be used to help plan infrastructural renovations (e.g., to add grab bars or ramps) or simply to
inform the placement or type of furniture and the reduction of clutter (e.g., electrical cords as
tripping hazards) in living spaces (e.g., homes, hotels).

Study limitations. Our study helped identify and characterize ideal scanning conditions; however,
it was limited both in scope and size. First, only one apartment and a single set of objects were
evaluated—future work should examine multiple homes, rooms, and additional object types.
Second, a single researcher performed the scan—future studies should examine the effect of
different human scanners. Third, and finally, a more thorough evaluation of the custom-trained
YOLOvV4 detection model should be performed.

What is semi-automatic? Recent Al-based companies like AccessiBe and AudioEye have faced
significant criticism for overclaiming how well their tools automatically identify web accessibility
problems and provide supposed WCAG-compliant solutions [14,31]. Tools like RASSAR may be
subject to similar criticism, albeit for the physical rather than the virtual world. However, our
envisioned goal with RASSAR is to create a human+Al system that enables both to work better
together. For example, allowing users to actively correct false positives, add new training data for
false negatives, and educate them about potential problems. Still, we must confront ethical
questions about using imperfect tools to identify problems and must strive for rigorous evaluation
and transparency [41]. The ways in which RASSAR actively combines human insights with Al is an
active area of future work.



Future work. Finally, with our initial proof-of-concept prototype created, we would now like to
recruit and solicit feedback from key stakeholder groups to refine and update our prototype. We
would also like to prototype and examine new functionality for indoor public spaces (e.g., stores,
restaurants, government buildings), experiment with AR-based head-mounted displays that could
continuously track and update accessibility/safety states by passersby, and examine methods for
users to share training data and new JSON specifications. We also plan to improve our deep
learning model to improve recognition accuracy and efficiency (e.g., minimize gaze time).
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Rationale for Attendance

Our paper positions the home as central to the future of urban accessibility—a place for comfort,
for family, and for access and safety. In doing so, our submission moves beyond public
infrastructure and transit as core focal points and broadly relates to at least two of the ten key
workshop questions: how is urban accessibility data collected and what is the role of Al in assessing
accessibility? Of our six authors, five are students and all are junior scholars who would benefit
from the discussions and networking that the workshop would provide—all which could likely
shape their dissertation directions.



Appendix

Table 7. A table of the 18 currently supported access/safety issues in RASSAR. RASSAR currently asks the user to select
a primary target community but, of course, disabilities and identities can intersect; future versions of the tool will enable
multiple selections. Acronyms of literature sources: ADA: ADA Standards for accessible design [52]; HSPD: Home
Safety for People With Disabilities [7]; HAC: Home Accessibility Considerations for Your Living Room [30]; FHADM:
Fair Housing Act Design Manual [43]; VA: Vision Aware [44]; HSSAT: Home Safety Self-Assessment Tool [33]; Child
Safety Checklist [16].

Primary Community
Issue

Object Category Measurement  Dimension (in inches) Literature Sources
Category Older BLV Wheelchair Children
Adults Users
Table Height >=28 & <=34 ADA v
Counter Height >=28 &<=34 HSPD v
Toilet Height >=17 & <=19 4
Object .
Dimension Sofa Height
Sink Height <=17 4
Chair Depth
Door Radius >=32 ADA v
Cabinet Height <=27 ADA v
Knob Height >=34 & <=48 ADA v
X Door Handle Height >=34 & <=48 ADA v
Object
Position
Light Switch Height >=15 & <=48 FHADM v
. >=18 & <=27 for child
Grab Bar Height 5233 & <=36 for adults ADA v v v v
. . _ _ VA, HSSAT ,
Electric Socket Height >=15 & <=48 FHADM 4 v 4 v
Rug Presence null VA, HSSAT v v v v
Scissors Presence null CSC v
Object .
Existence Knives Presence null CSC v
Medication Presence null CSC v

Smoke Alarm Absence null VA ,HSPD v 4 v 4









