
Bootstrapping Library-Based Synthesis

Kangjing Huang and Xiaokang Qiu(B)

Purdue University, West Lafayette, IN 47907, USA
{huangkangjing,xkqiu}@purdue.edu

Abstract. Constraint-based program synthesis techniques have been
widely used in numerous settings. However, synthesizing programs that
use libraries remains a major challenge. To handle complex or black-
box libraries, the state of the art is to provide carefully crafted mocks
or models to the synthesizer, requiring extra manual work. We address
this challenge by proposing Toshokan, a new synthesis framework as an
alternative approach in which library-using programs can be generated
without any user-provided artifacts at the cost of moderate performance
overhead. The framework extends the classic counterexample-guided syn-
thesis framework with a bootstrapping, log-based library model. The
model collects input-output samples from running failed candidate pro-
grams on witness inputs. We prove that the framework is sound when
a sound, bounded verifier is available, and also complete if the under-
lying synthesizer and verifier promise to produce minimal outputs. We
implement and incorporate the framework to JSketch, a Java sketching
tool. Experiments show that Toshokan can successfully synthesize pro-
grams that use a variety of libraries, ranging from mathematical functions
to data structures. Comparing to state-of-the-art synthesis algorithms
which use mocks or models, Toshokan reduces up to 159 lines of code
of required manual inputs, at the cost of less than 40 s of performance
overheads.

Keywords: Program synthesis · Libraries · Java · Program sketching

1 Introduction

Recent years have seen drastic progress in the development of constraint-based
synthesis technology, made possible by the advances in formal methods and
automated constraint solvers. The constraint solving based techniques guarantee
that the synthesized program satisfies formal specifications and make synthesis
algorithms much more scalable, stepping across domain-specific programming
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Singh and C. Urban (Eds.): SAS 2022, LNCS 13790, pp. 272–298, 2022.
https://doi.org/10.1007/978-3-031-22308-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22308-2_13&domain=pdf
http://orcid.org/0000-0003-4553-2281
http://orcid.org/0000-0001-9476-7349
https://doi.org/10.1007/978-3-031-22308-2_13

Bootstrapping Library-Based Synthesis 273

tasks and applicable to general-purpose software development using practical,
real-world languages, such as C/C++ [39,41], Python [34], OCaml [9], Java [14,
20,25,27], or JavaScript [32,37].

Toward using constraint-based synthesis to aid practical software develop-
ment, a major challenge is synthesizing programs that use libraries, which is
common in most real-world software. Note that state-of-the-art programming
tools such as those for component-based synthesis [12,14,24,33,43] and unit-test
generation [3,29] only need to run candidate programs (including the library)
for testing. However, for constraint-based synthesis, the synthesizer has to sym-
bolically reason about and analyze the libraries and generate client code that
appropriately exercises library calls. The simplest solution to support libraries
would be inlining—concatenate the library source code onto the synthesis prob-
lem and handle library methods just like other methods. Unfortunately, in prac-
tice, libraries are designed for flexibility and extensibility, making their code
large and complex, and hence difficult for the synthesizer to use. For example,
the Android platform, which contains more than 12 million lines of code [10], is
too big to reason about for any existing synthesizer. Even worse, some libraries
may contain native code, which is entirely out of reach of this approach.

To address this issue, a straightforward approach is to manually create mock
libraries—short pieces of code at the appropriate level of abstraction such that
the essential library functionality is implemented in a simple and analyzable way.
This approach is adopted by state-of-the-art sketch-based synthesis tools [20,35].
While mocks can be effective, they require extra manual work as balancing
the code simplicity and the accuracy of functional equivalence to the authentic
implementation. For example, JSketch [20] mocks the Java standard library
java.util.TreeSet using an object array, whose size can be either bounded or
dynamically resizable. The former option is simpler but may fail to mimic the
TreeSet’s behavior when too many objects are added; the latter option is observ-
ably equivalent to the TreeSet container but introduces extra complexity, which
makes synthesis performance slow. Researchers have developed techniques to
automatically create mock libraries [4,5,16,19] for program analysis or symbolic
execution. However, these techniques focus on special classes of libraries and the
generated mocks do not aim to aid program synthesis.

Another approach is to use non-executable specifications as library models.
These models usually capture the essential properties of the library which can
be leveraged by the synthesizer. For example, a critical property for a cryp-
tography library is that any decryption after an encryption with the same key
is the identity. In [25], this property is described as an algebraic specification:
decrypt(encrypt(m, k), k) ⇒ m. Library models are also developed and used
in other state-of-the-art synthesis tools, in various novel ways [15,21,23,38,41].
While this approach is promising in both terms of simplicity and performance,
it still requires extra manual work in writing the library specifications. This
is actually the well-known specification mining problem for formal verification,
which has been studied for many years [1,2,11,22]. Moreover, these models are
hard to reason about automatically and need special treatment when integrated

274 K. Huang and X. Qiu

into a synthesis tool. This limits the possible applications their approach may
stretch to. For example, The rewriting-based encoding in JLibSketch [25] only
handles library models that can be represented as equational axioms.

In this paper, we propose a new synthesis framework called Toshokan
(“library” in Japanese) to support constraint-based synthesis algorithms for
handling libraries. This framework takes an alternative approach to the prob-
lem, extending counterexample-guided inductive synthesis (CEGIS)—a standard
inductive synthesis framework [40]—with an automatically built library model
from logged behavior of the library. Intuitively, the proposed framework approx-
imates the behavior of the library using a dynamic set of input-output samples,
and guesses the output of the library when the input is not covered by any
sample. In each CEGIS iteration, when the verifier rejects a candidate program
and provides a witness input, a logger runs the failed candidate with the witness
input. The witness execution exercises the library on some critical input and the
logged input-output pair is added to the library sampling. As the CEGIS loop
runs, more and more logs are gained and the sampling eventually becomes pre-
cise enough and allows the synthesis problem to be solved or rejected. Comparing
with existing library-based synthesis approaches, Toshokan has the following
advantages:

1. it does not require any extra manual work (except for the optional query
function annotation as discussed in Sect. 4) like writing mock implementation
or library models;

2. it synthesizes provably-correct programs using real Java libraries, whose cor-
rectness is guaranteed by an off-the-shelf verifier (currently JBMC); and

3. it allows the synthesizer to treat the library as a black box, making the task
solvable using state-of-the-art Java sketching tool through careful encodings.

We give an overview of the Toshokan framework and elaborate how it works
through an example in Sect. 2. We then in Sect. 3 formally describe the library-
based synthesis problem, the major components of the framework, and the main
synthesis algorithm, and prove its soundness and relative completeness. Then in
Sect. 4, we embody the framework in the setting of sketch-based synthesis, and
present the techniques used in the angelic inductive synthesizer, the centerpiece
of the Toshokan framework, including three different library encodings. In
Sect. 5, we discuss the design of the library logger, focusing on how we handle
references and aliasing, termination and exceptions.

We implemented the Toshokan framework in JSketch [20]—a sketch-
based Java synthesizer—and compared the new system with standard JSketch
that supports user-provided models or mocks.1 The results demonstrate that,
Toshokan successfully synthesized correct code for all 11 benchmarks and saves
the user from the extra manual work of writing library-abstracting mocks or
models. Meanwhile, for most benchmarks, our performance is moderately slower
than but still comparable to existing algorithms. More detailed experimental
results can be found in Sect. 6.
1 The validated artifact is available via DOI 10.5281/zenodo.7009051.

https://doi.org/10.5281/zenodo.7009051

Bootstrapping Library-Based Synthesis 275

Fig. 1. Overview of the Toshokan framework (distinct components in gray).

2 Overview

Figure 1 gives an overview of the Toshokan framework, with the components
distinct from standard CEGIS highlighted in gray. In addition to the standard
components from normal CEGIS (verifier, synthesizer, counterexample set, etc.),
the proposed framework features a log-based library model and a library logger.
Whenever a candidate program P failed to be verified, the library logger takes P
along with the authentic library (either source or binaries), runs the program on
all existing counterexample inputs Q, and collects all observed library samplings,
i.e., input-output pairs when the library is invoked. These samplings collectively
form a library model N , which is an underspecification of the library, i.e., only
partially covers the behavior of the library. The angelic inductive synthesizer
(AIS) in Toshokan takes N and determines the uncovered behavior of the
library angelically. In other words, if the model does not cover a particular input,
the AIS can determine the corresponding output arbitrarily. In each iteration, the
AIS proposes a program P along with an expected bound t under which P should
terminate on all inputs from Q; the bounded verifier checks whether P , along
with the authentic library, satisfies the specification and terminates in t steps on
all inputs. The whole synthesis process terminates when the verifier accepts the
proposed program, or when the AIS concludes that there is no solution for the
current counterexample set Q and library model N .

Toshokan by Example We give a step-by-step illustration of Toshokan’s
synthesis process through a simple JSketch example. Figure 2 shows
the gcd n numbers benchmark (adapted from the Sketch source distribu-
tion [36]). The method MultiGCD.main purports to compute the greatest
common divider (GCD) of five input integers, using Java standard library
java.math.BigInteger.gcd2 to compute the binary GCD. As a program sketch,
the for-loop that calls gcd involves some unknown holes and choices (highlighted
in the code) to be filled. Note that the authentic code for gcd is complicated and
may even not be available as a black-box library. Hence the user has to provide

2 The actual library operates BigInteger objects; for simplicity, we adapt the signature
to handle int’s.

276 K. Huang and X. Qiu

1 class MultiGCD { /∗ synthesize algorithm for gcd of N numbers ∗/
2 harness void main(int[] nums) {
3 int n = nums.length; assume n ≥ 2; . . .
4 int result = gcd(nums[0], nums[1]);
5 for (int i = ??; i < {| n | n − 1 | n − 2 |}; i++)
6 result = gcd({| result | nums[i] |}, {| result | nums[i] |});
7 for (int i =0; i<N; i++) assert nums[i] % result== 0;
8 for (int i =result+1; i ≤ nums[0]; i ++) {
9 bit divisible = 1;

10 for (int j =0; j<N; j++) divisible = divisible && (nums[j] %i == 0);
11 assert ! divisible ;
12 }
13 }}

Fig. 2. JSketch example: gcd n numbers.

JSketch (or the underlying Sketch engine) a mock library or a library model
(e.g., see [36]). Both require expertise and extra work from the user (16 and
20 LoC, respectively).

With Toshokan, the user does not need to write mocks or models anymore.
Table 1 shows how Toshokan solves this synthesis problem in 4 iterations,3
without any user-provided artifacts. In the initial iteration, the synthesizer pro-
poses a random solution as the candidate program. Then the bounded verifier,
which for this example is JBMC [8], checks whether the solution terminates in
a fixed number of steps and satisfies all assertions on all inputs nums. The veri-
fier reports a concrete input that violates assertions: num= {3,3,3,1,3}. Besides
returning this witness input to the synthesizer, the most noteworthy thing is that
Toshokan also runs the failed candidate on the witness input with the authen-
tic gcd implementation, and logs the input-output samples of the all library
calls. In this instance, the logger collects a sample gcd(3,3)= 3 and adds it to
the library model N . This library model helps the synthesizer understand why
the first candidate fails.

With the collected witness input and library sampling, the synthesizer pro-
ceeds to the second iteration and proposes a new candidate program. In this
iteration, the verifier provides a new witness input num= {2,2,2,2,1}. This time,
the logger runs the candidate program with both the current and the previ-
ous witness inputs, and collects two samples: gcd(1,3)= 1 and gcd(2,2)= 2. This
process continues and collects new witness inputs and library samplings in each
iteration, until the synthesizer finds the correct solution in the fourth iteration.
The whole synthesis process finishes within 23 s (see full performance data in
Sect. 6).

3 Toshokan can actually solve this problem in 1 iteration (see Sect. 6); we use this
4-iteration run for illustration purpose.

Bootstrapping Library-Based Synthesis 277

Table 1. A Toshokan run for the gcd n numbers problem in Fig. 2.

Iter# Candidate Program (filling lines 5–6) Witness Input Collected Sampling

1 for(int i = 4; i ¡ n-1; i++) result = gcd(result, result); nums= {3,3,3,1,3} gcd(3,3)=3

2 for(int i = 2; i ¡ n-1; i++) result = gcd(num[i], result); nums= {2,2,2,2,1} gcd(1,3)=1, gcd(2,2)=2

3 for(int i = 3; i ¡ n; i++) result = gcd(num[i], num[i]); nums= {3,3,2,3,3} gcd(1,1)=1

4 for(int i = 1; i ¡ n; i++) result = gcd(num[i], result); success N/A

3 The Toshokan Framework

In this section, we formally define the synthesis problem and introduce the main
synthesis algorithm in Toshokan. Note that the formalism we give in this
section is purely semantical—it is agnostic to the syntax of the program and
the implementation of the components it relies on. This allows us to present the
key idea of Toshokan framework in a succinct and general way. We will present
in the next section more specifically, in the setting of sketch-based synthesis, how
the synthesis problem is formulated and solved.

3.1 Libraries

Definition 1 (Library Signature). A library signature is a pair Σ = (S,
{Σw,s}(w,s)∈S∗×S), where S is a set of sorts, and {Σw,s}(w,s)∈S∗×S is an S∗ ×S-
indexed family of sets of symbols. We denote the set of all symbols by Funcs(Σ).

Definition 2 (Library). For Σ = (S, {Σw,s}(w,s)∈S∗×S) a library signature, a
Σ-library LΣ = {Lf}f∈Funcs(Σ) is a family of computable functions Lf : w → s
for each symbol f ∈ Σw,s.

Example 1. The library signature for the overview example is constituted by a
single sort and a single function: Σ = ({Z}, {{gcd}Z2→Z}). In other words, the
signature contains a single symbol gcd, which belongs to ΣZ2→Z. We denote the
authentic Σ-library as RealΣ = {Realgcd}, where Realgcd : Z × Z → Z computes
the binary greatest common divider.

Remark: Note that the library functions are defined to be computable and deter-
ministic. This allows us to treat the library as a black box and make queries:
providing concrete input values and asking what the output value is.

Handling Side Effect. Definition 2 considers pure library functions without side
effects or multiple return values. This restriction does not affect the expressive-
ness of our framework as the definition is sufficient for encoding more complex
libraries in real world. For example, we follow the idea of JLibSketch [25] to
handle side effects. Given a Java class which maintains a complex internal state
and contains methods that query and update the current internal state, every
method in the class can be encoded to a pair of library function: both functions
take the current state of the class as an extra argument; one gives the expected
return value of the method and one gives the updated state of the class.

278 K. Huang and X. Qiu

Example 2. Consider the class java.util.Stack in Java with an initializer init and
two methods void push(int i) and int pop(). This class can be encoded to a library
with four functions. The signature of the library isΣ =

(
{Z,Stack}, {pop}Stack→Z,

{pop!}Stack→Stack}
)
. A function pop : Stack → Z captures the value returned from

Stack.pop(). In addition, the side effects of the two methods can be represented as
library functions push! : Stack × Z → Stack and pop! : Stack → Stack.

Definition 3 (Sampling). For Σ a library signature, a Σ-sampling is a family
of sets NΣ = {Nf}f∈Funcs(Σ) in which there is a finite set Nf ⊆fin w × s for
each f ∈ Funcs(Σ).

Definition 4 (Consistency). A Σ-sampling N is consistent with a Σ-library
L, denoted as N ≺Σ L, if for any f ∈ Funcs(Σ) and any (t, v) ∈ Nf , Lf (t) = v.

Example 3. In the overview example, as shown in Table 1, a Σ-sampling is main-
tained and expanded in each iteration of the synthesis process. After all four
iterations, the sampling is N = {Ngcd} where Ngcd = {(3, 3, 3), (1, 3, 1), (2, 2, 2),
(1, 1, 1)}. By Definition 4, this sampling is consistent with the authentic library
defined in Example 1, i.e., Ngcd ≺Σ Realgcd.

3.2 The Library-Based Synthesis Problem

We next present the library-based synthesis problem, which is essentially tasked
to find a correct program interacting with a known library. From the perspective
of parametric programming, the space of candidate programs can be encode as a
parameter and the underlying library can be given as another parameter. In other
words, the synthesis problem can be represented as a parameterized program
P[c, L](i) whose behavior is determined by the input i and two parameters:
parameter c controls how to concretize P to a complete program; and parameter
L is the concrete library that P calls. Once c and L are determined, P[c, L]
becomes a complete program whose behavior is deterministic and verifiable.

The specification of the synthesis problem is also represented semantically by
giving a validation condition. In other words, a program satisfies the specification
if and only if all concrete runs of the program satisfy the validation condition.

Definition 5 (Validation Condition). A validation condition for a param-
eterized program P is a family of formulae φP = {φt

P(c, L, i)}t∈N, in which each
φt
P(c, L, i) is satisfied if and only if running P[c, L] on input i terminates within

t steps and satisfies the specification.

Definition 6 (Library-Based Synthesis Problem). A library-based synthe-
sis problem is represented as a tuple (P, C, LReal,φP) where P is a parameterized
program, C is the space of parameters for P, LReal is the library used in P, and
φP is a validation condition for P. The synthesis problem is to find a value
ctr ∈ C and a bound t such that for any input i, φt

P(ctr, LReal, i) is valid.

Remark: Note that the synthesis problem only aims to produce programs verifi-
able in bounded steps (which can be implicitly enforced in P and/or φP). This
is a common practice for modern synthesis tools [7,39,42].

Bootstrapping Library-Based Synthesis 279

3.3 Inductive Synthesis with Angelic Libraries

We solve the library-based synthesis problem set forth above using Toshokan,
an enhanced CEGIS framework as illustrated in Fig. 1. We now formally describe
the angelic inductive synthesizer, the key component of the framework.

The Angelic Inductive Synthesizer (AIS), similar to a regular inductive syn-
thesizer in the standard CEGIS loop, maintains a set of sample inputs, finds a
candidate program that satisfies the specification at least for the sample set, and
gives the candidate to a verification oracle for checking. The salient feature of
the AIS is that it also maintains a library sampling NΣ and ignores the exact
behavior of the authentic library not covered by NΣ . Inspired by angelic pro-
gramming [6,13], the AIS divines an angelic library LAng that is consistent to
NΣ and guarantees the synthesized program satisfies the specification for LReal.
In other words, if executed with the authentic library, the synthesized program
does not necessarily satisfy the specification, even if the input is restricted to
a sample set. However, the CEGIS loop will collect more counterexamples and
samplings in each iteration and guarantees the correctness of the final solution
(see our synthesis algorithm later in this section).

Formally, given a validation condition φP , let the current input set and library
sampling be Q and N , respectively, the synthesis task is to check the following
second-order formula:

Φ[φP , Q,N] ≡ ∃ctr. ∃t. ∃LAng.
(
N ≺Σ LAng ∧

∧

inp∈Q

φt
P(ctr, LAng, inp)

)

where φt
P is the validation condition for the synthesis problem. The following

theorem states that any solution to the original library-based synthesis problem
is also a solution to the inductive synthesis problem.

Theorem 1. Given a library-based synthesis problem L = (P, C, LReal,φP), a
set of inputs Q, and a library sampling N such that N ≺Σ LReal, then if L has
a solution ctr, it witnesses the validity of Φ[φP , Q,N].

Proof. The solution ctr and the authentic library function LReal witness the valid-
ity of Φ[φP , Q,N]. First, as N is consistent with LReal, N ≺Σ LReal. Second, as
ctr is a solution to L, there is an integer t0 such that running P[ctr, LReal] on all
inputs from Q terminates within t0 steps, i.e.,

∧

inp∈Q

φt0
P [ctr, LReal, inp]. Therefore

Φ[φP , Q,N] is valid. *+

An AIS just solves Φ[φP , Q,N] and returns the witnessing solution ctr and
bound t. We define it below and discuss our approaches to developing it in Sect. 4.

Definition 7 (Angelic Inductive Synthesizer). An angelic inductive syn-
thesizer is a procedure that accepts queries of the form AIS(φP , Q,N) where φP
is a validation condition, Q is a finite set of inputs, and N is a library sampling.
If Φ[φP , Q,N] is valid, the procedure responds with a witnessing solution (ctr, t);
otherwise it returns (unsat, 0).

280 K. Huang and X. Qiu

3.4 Verifier and Logger

While the angelic inductive synthesizer presented in Sect. 3.3 is complete (as
illustrated in Theorem1), it is not sufficient to solve the library-based synthesis
problem: first, it only guarantees the correctness of the synthesized program on
a finite set of inputs Q; second, the correctness of the synthesized program relies
on an angelically chosen library LAng, which is not necessarily consistent with
the authentic library LReal. Therefore, our Toshokan framework requires two
other components: a bounded verifier and a logger. We define them below.

The bounded verifier is slightly stronger than the standard one in a CEGIS
framework: it promises to verify the correctness of the input program and its
termination in bounded steps, or provide a counterexample. The logger runs a
concrete program and collects the interaction with the underlying library.

Definition 8 (Bounded Verifier). A bounded verifier is an oracle that
accepts queries of the form BV(P, c, L,φP , t), where (P, c, L,φP) forms a
library-based synthesis problem and t ∈ N is an execution bound, asking “Do
all executions of P[c, L] terminate in t steps and satisfy the specification φP?”
In other words, it checks the validation condition ∀i. φt

P(c, L, i). If so, the oracle
responds with a positive answer -; otherwise it responds with a witness input
inp such that φt

P(c, L, inp) is invalid, i.e., the concrete execution of P[c, L] on
inp does not terminate in t steps or violates the functional specification.

Remark: While the AIS (cf. Definition 7) treats the library as an absolute black
box, it becomes trickier for the bounded verifier—it can treat the library as a
black box and do testing only, which can be very slow, or leverage the bytecode
(or even source code if available) to make verification more symbolic and efficient.

Definition 9 (Logger). A logger is an oracle that accepts queries of the form
log(P, c, L,Q), where P is a parameterized program, c is a control parameter,
and L is a Σ-library, Q is a finite set of inputs, and runs program P[c, L] with
every input from Q. The logger returns a library sampling N such that for any
f ∈ Funcs(Σ), a pair (t, v) ∈ Nf if and only if one of the runs involves an
invocation f(t) to the library and returns value v.

We will discuss more about the design and implementation of the logger in
Sect. 5.

3.5 The Main Synthesis Algorithm

We are now ready to present the main synthesis algorithm for Toshokan, which
is shown in Algorithm 1. The algorithm extends the classic CEGIS framework
and leverages the three components we described above: AIS the angelic induc-
tive synthesizer, BV the verifier and log the logger. The verifier and the logger
repeatedly provide extra counterexamples and library samplings, respectively, to
refine the inductive synthesis task.

Bootstrapping Library-Based Synthesis 281

input : A library-based synthesis problem (P, C, LReal,φP)
output: A solution ctr to the input problem, if any; otherwise ⊥

1 def toshokan(P, C, LReal,φP) :
2 Q,N, S ← ∅ // cex inputs, library sampling and checked solutions
3 ctr ← Init(C) // the control parameter, initially random from C
4 t ← Init() // bound of execution steps
5 repeat
6 w ← BV(P, ctr, LReal, φP , t)
7 if w = (:
8 break
9 else:

10 S ← S ∪ {ctr}, Q ← Q ∪ {w} , N ← N∪ log(P, ctr, LReal, Q)
11 (ctr, t) ← AIS(φP , Q, N)

12 until ctr = unsat;
13 return ctr

Algorithm 1: Main synthesis algorithm for Toshokan.

In addition to a set of witness inputs Q, it also maintains a library sampling
N as an approximation/model of the authentic library LReal. In other words,
N is expanded along the synthesis/verification iterations but always consistent
with LReal. The algorithm starts from empty Q, empty N , a random solution ctr
and an initial bound t. In each iteration, the BV checks whether the current ctr
and t lead to a fully correct program P[ctr, LReal] terminating in t steps (line 6).
if so, the algorithm terminates and returns the solution ctr; otherwise, the failed
solution is added to the set of checked solutions C, and the verification result,
which is a new witness input w, is added to the set Q (line 10). Note that the
AIS may not understand why the new witness input w violates the specification,
because running P[ctr, LReal] on w may involve calls to the library LReal with
arguments not covered by the current sampling N . To this end, the algorithm
invokes log to run the program on all inputs in Q and record the behavior of the
library (line 10). The newly generated sampling are added to N . Now with the
updated S, Q and N , the algorithm asks the inductive synthesizer to generate
a new solution and proceeds to the next iteration (line 11). If the synthesizer
cannot find any more solution, the algorithm terminates and concludes that the
synthesis problem is unsolvable.

Soundness and Completeness. We now discuss the soundness and complete-
ness of the algorithm.

Theorem 2 (Soundness). Given an input library-based synthesis problem
(P, C, LReal,φP), if Algorithm1 terminates and returns a solution ctr, it is a
solution to the synthesis problem. If the algorithm returns unsat, then the syn-
thesis problem has no solution.

Proof. If a solution ctr is returned by the algorithm, it must be produced by
the AIS as a pair (ctr, t) and have passed the checking of the BV. Then by
Definitions 6 and 8, ctr is indeed a solution to the input problem (P, C, LReal,φP).

282 K. Huang and X. Qiu

If the algorithm returns unsat, the last instance of AIS(φP , Q,N) has no
solution. Then by Theorem 1, the input problem (P, C, LReal,φP) does not have
solution either. *+

The completeness states that if the input synthesis problem is solvable, Algo-
rithm1 guarantees to produce a solution. We show that algorithm is relatively
complete: if the underlying BV and AIS are both enumerative, then the whole
algorithm is complete. Intuitively, BV and AIS are enumerative if they guaran-
tee to provide the “minimal” witness input and candidate program, respectively.
We next define the enumerative-ness and prove the relative completeness.

Definition 10. A bounded verifier BV is enumerative if there exists a total
ordering assigning a distinct natural number to each possible input of the parame-
terized program W : I → N, such that for any invocation BV(P, ctr, LReal,φP , t),
it returns a counterexample inp only if for any other input inp′ such that
W(inp′) < W(inp), inp′ is not a valid return value.

Definition 11. An angelic inductive synthesizer AIS is enumerative if there
exists a total ordering assigning a distinct natural number to each control value
E : C → N, such that for any invocation AIS(φP , Q,N), it returns ctr only if
for any other value ctr′ such that E(ctr′) < E(ctr), ctr′ is not a solution to the
AIS problem.

Theorem 3 (Relative Completeness). Let BV be an enumerative bounded
verifier and let AIS be an enumerative angelic inductive synthesizer, then run-
ning Algorithm 1 with BV and AIS guarantees to produce a solution if the input
library-based synthesis problem is solvable.

Proof. If the synthesis problem is solvable, there exists a minimal solution ctr.
Assume the algorithm does not produce a solution, then due to the soundness,
the algorithm will not terminate and AIS will produce an infinite sequence of
conjectured solution/bound pairs: (ctr0, t0), (ctr1, t1), . . . such that none of the
ctri’s is a solution. Now as ctr is the minimal solution and AIS is enumerative,
we have E(ctri) < E(ctr) for all i ≥ 0. Therefore there must exist a solution ctrR
appears in the sequence infinitely often. As ctrR is not a solution, let inpR be the
minimal counterexample input and running inpR on P[ctrR, LReal] terminates in
tR steps. As BV is enumerative, it is not hard to prove that there is a infinite
subsequence (ctrR, v0), (ctrR, v1), . . . where v0, v1, . . . is strictly increasing. In
other words, there must be a pair (ctrR, vm) proposed by the AIS and vm > tR.
Therefore vm is sufficiently large for AIS to know that ctrR terminates and fails
to satisfy the specification, then ctrR will not be proposed again after (ctrR, vm).
The contradiction concludes the proof. *+

Remark: Note that enumerative verifiers and synthesizers are not uncommon in
practice. For example, in Sketch, one can use the minimize keyword to enforce the
synthesizer to fill holes with values as small as possible. Moreover, an enumerative
verifier can be constructed from a regular verifier: once a witness input i = inp

Bootstrapping Library-Based Synthesis 283

is found by the regular verifier, add an assumption i < inp to the program and
rerun the regular verifier to find a smaller witness input; repeat the process until
no more witness input can be found. The last found witness input in the process
should be the minimal one.

4 Angelic Inductive Synthesis

So far we have overviewed the Toshokan framework with the general library-
based synthesis problem defined in a semantical way. In this section, we present
our approaches to developing the angelic inductive synthesizer in depth, in the
setting of program sketching. In other words, the representation of parameterized
program and specification is concretized to a sketched program, and the synthesis
task is to fill holes of a sketched program such that all assertions are satisfied.
We first present a simple language for program sketching, then discuss three
different ways to encode and solve the angelic inductive synthesis problem.

The Toshokan Core Language. We instantiate the library-based synthesis
problem (Definition 6) to JSketch, a Java sketching language [20]. Below we
show how the AIS problem can be encoded for a Toshokan core language.
The language is similar to Sketch and allows us to reuse the JSketch-to-Sketch
compilation [20] and the Sketch synthesis engine [39].

The syntax of the Toshokan core language is presented in Fig. 3. Besides
standard programming constructs covered by Sketch (e.g., assignments, condi-
tionals and loops), this language also supports library function definitions and
calls, which are shown as the highlighted portion of the syntax. The language
describes a program sketch which begins with a list of library functions (the L
part). A library function may take primitive or composite values as arguments
and return an primitive or composite value. For each library function f used in
the program, there exists a corresponding full, authentic implementation fReal,
which does not include any holes, assumptions or assertions, or calls to other
library functions.4 The second part of the sketch is the harness functions (or the
H part). It may include constant holes of the form ??, choice of expressions of
the form {| · | · |}, assumptions, assertions, and arbitrary calls to the library
functions.

Intuitively, the synthesis task is to fill the unknown constants with values
(assumed to be naturals) such that running the harness functions will not trigger
any assertion failure before any assumption violation. Formally, let P = L;H be
a program sketch in the Toshokan core language, and let the number of holes
in H be m, then this sketch characterizes a library-based synthesis problem as
per Definition 6: (

H,Nm, {fReal}fReal∈L,φP
)

4 This limitation is not fundamental and can be generalized in the future. Without
calls between library functions, the implementation of library logger becomes easier
since logging instrumentation would only need to be done on client code.

284 K. Huang and X. Qiu

Fig. 3. Syntax of the Toshokan core language (the library-related part is highlighted).

where φP generates bounded validation conditions from a concrete program and
a concrete input, checking that the execution terminates (in a bounded number
of steps) and satisfies all assertions. Formally, let ctr be the values filled to holes
and let inp be the input to the harness, the validation condition can be formulated
in the following form:

φt
P(ctr, inp) ≡ ∃S0 . . . St.∃Z0 . . . Zt.

(

∀0 ≤ j ≤ t.Follow(Sj , Zj+1, Sj+1) ∧ Exec(Zj , Sj , Zj+1)
)

The formula guesses a t-step run of the program, including the executed state-
ment Sj and the valuation Zj of the variables before the statement, for each step
j. The predicate Follow checks that statement Sj+1 follows statement Sj given
the current valuation Zj+1. The predicate Exec checks that running Sj with the
current valuation Zj will successfully yield the next valuation Zj+1.

Direct Encoding for Libraries of Primitive Type. Now we have a library-
based synthesis problem represented by the input sketch in the Toshokan core
language. Recall that a key step of our main synthesis algorithm is to solve the
angelic inductive synthesis problem AIS(φP , Q,N) as described in Definition 7:
given a library sampling N , guess an angelic library consistent with N and
generate a candidate program that satisfies the specification φP on the sample
input set Q. Our approach is to represent this problem as another sketched
program which does not contain library calls. As our core language is consistent
with Sketch both in syntax and semantics, the problem can be directly solved
by Sketch [39] or other synthesis engines.

We start from the simplest case: the library functions all take primitive
arguments only and return primitive values—this is already sufficient for the
overview example gcd n numbers. In this case, the angelic choices can be simply

Bootstrapping Library-Based Synthesis 285

represented as uninterpreted functions. Assuming P contains a library function
int f(int u1, . . . , int um) among others, we encode the problem AIS(φP , Q,N)
to a program sketch as shown in Fig. 4. The function h is copied from the har-
ness function in the original P which may involves unknown control holes to be
synthesized, assumptions and assertions delimiting the behavior of the program,
and calls to the library functions. The new harness function test simply takes
the input for h and makes sure the input matches one of the sample inputs
in set Q, then calls the real harness h. The library function f is implemented
as follows: if the input (u1, . . . , um) matches the one sample input (s1, . . . , sm)
from the library sampling N , then return the corresponding output t; otherwise,
return an angelic value from an uninterpreted function fAng. The uninterpreted
function is arbitrary but guarantees the functionality, i.e., LAng always returns
the same output with the same input.

Fig. 4. Direct encoding of AIS(φP , Q,N).

Note that Fig. 4 assumes that function f takes integer parameter and returns
integer values, but the encoding can be easily generalized to more primitive types
supported by modern synthesizers. For example, Sketch has native support of
synthesizing control parameters and uninterpreted functions of int and bit, as
well as constant-sized arrays or nested arrays of primitive values.

Call-Tree-Based Encoding for Libraries of Composite Type. Now let us
consider encoding libraries of composite type, i.e., the library function may take
as argument or return values from user-defined, variable-size types, e.g., records,
variable-size arrays, algebraic data types. While the direct encoding presented in
Fig. 4 is straightforward and efficient and Sketch has native support for arrays,
structs and algebraic data types, naturally extending this encoding to support
composite types is not practically feasible for two reasons: first, for many real-
world libraries (e.g., for encryption/decryption), the source code is not avail-
able and internal data is unknown; second, some libraries are implemented with

286 K. Huang and X. Qiu

Fig. 5. Example: call-tree-based encoding for Stack.

complex data structures (e.g., java.util.Stack is implemented as a dynamically
resizable array), making the direct encoding inefficient.

To this end, we use a different, call-based encoding for libraries with compos-
ite type. The idea is to characterize the library’s internal state using the call tree
that creates the current value. We illustrate the call tree representation through
the following example.

Consider a Java program that uses the Stack library (see Example 2), which is
shown in Fig. 5a. The main function creates a Stack object s, computes an integer
i through a sequence of method calls to s, and returns the updated s. While the
exact representation of the returned object is hard/impossible to obtain, the
object can be determined by an expression new Stack().push(1).push(2).pop().
This expression can be uniquely represented as a call tree as shown in Fig. 6.
Furthermore, one can assign a unique number to every Stack-valued method.
For example, in Fig. 6, init, push! and pop! are assigned −1, −2, −3, respectively.
Then the call tree’s Polish notation can be uniquely represented as an array (see
the right hand side of Fig. 6).5

Based on this array representation of call trees, we encode library-using pro-
grams to array-manipulating programs. Intuitively, we maintain an array s tree
for each non-primitive value s used in the program, and every method call or
object initializationm is simulated by a corresponding manipulation to the array:
if a m updates s, then expand the call tree by extending s tree accordingly; if
m computes a primitive value from s, then follow the direct encoding and use
an uninterpreted function mAng to make an angelic choice. Figure 5b shows the
encoding of Fig. 5a: we use [Em] to represent the integer value encoding a method

5 Here we assume all integer arguments are positive and use negative integers to rep-
resent methods. If negative integers are involved in the program, the array encoding
has to have an extra bit to indicate a leaf node is a primitive value or a method call.

Bootstrapping Library-Based Synthesis 287

m, and the function main is generated by a line-by-line translation from the orig-
inal Main method. Note that s.pop() returns a primitive value and hence is trans-
lated using the direct encoding as shown in Fig. 4. Figure 7 formally presents the
call-tree-based encoding of method declarations calls, assuming there is a single
composite type C and a single primitive type int.

Fig. 6. Example: Polish notation of call tree.

Query-Based Encoding for
Libraries with Query Functions.
The call-tree-based encoding for
composite type presented above has
a potential scalability issue: the call
tree grows unboundedly when more
and more library calls are made.
Therefore, the size of the correspond-
ing array representation will quickly
become larger than synthesis engines
can handle, especially when library
calls are involved in a loop.

We address this problem by using another query-based encoding when the
library admits query functions, which are inspired by the state query meth-
ods proposed by Pei et al. [30]. Intuitively, query methods have no side effects
and can be used to characterize the library class’ internal mutable state. For
example, consider a non-naive Java class SortedList defining a linked list data
structure that would sort itself as new elements are added into it, as shown in
Fig. 8a. The SortedList class contains two methods: insert and search. The search
method is actually a query function—the internal sate and behavior of a Sort-
edList object l is unique determined by l.search(i) for all possible input i. We

Fig. 7. Call-tree-based encoding.

288 K. Huang and X. Qiu

ignore the detection of query functions and assume the programmer manually
marks query functions, using the @query keyword.

Given a library with query functions, we can solve the angelic inductive syn-
thesis problem using a query-based encoding. We formally define query functions
below:

Definition 12 (Query Function). Let Σ be a library signature containing
two sorts {P,C} where P is primitive and C is composite. Then a Σ-library LΣ

admits a set of query functions Q if: 1) Q ⊆ ΣC×P∗→{true, false}; and 2) For every
non-query function f ∈ ΣC×···→C , and every a, a′ ∈ C, if f(a, b̄) 1= f(a′, b̄), a
and a′ are distinguishable by query functions, i.e., there exists a g ∈ Q and
ē ∈ P ∗ such that g(a, ē) 1= g(a′, ē).

Continuing on the SortedList example, Fig. 8b shows how this program is
encoded. Note that the AIS is based on a finite set of inputs Q. Therefore, we
can approximate the internal state of a SortedList object lst using a bit vector lst -
query, which contains values search(inp) for every inp ∈ Q. When a new SortedList
is created, the bit vector is initialized with all 0’s as the search function always
returns false. To update the bit vector, we expect the logger to invoke the query
function search before and after each non-query function call, namely insert and
insert!, and collect the inputs/outputs as a library sampling N . Based on N , all
library functions are directly encoded in a way similar to Fig. 4.

In addition, for the search function itself, we encode it to an extra function
searchQ. When searchQ is called for lst query with input u, it essentially retrieves
whether u matches any sample input covered by Q; if so, it simply returns the
corresponding value in lst query; otherwise it proceeds to the directly encoded
search function.

5 The Logger

In this section, we discuss another major component of the Toshokan frame-
work: the logger log, whose definitions have been given (in Definition 9). We
discuss our design in the setting of program sketching to match the AIS design
we described in Sect. 4. The design is mostly straightforward—simply run the
candidate program with the current set of counterexample inputs Q, and for
every library call it encounters, log the input and the corresponding output.
Below we discuss some issues we identified and addressed in the design and
implementation of the logger.

References and Aliasing. Real world libraries manipulate dynamically allo-
cated structs and objects using references (pointers), which may be aliased or
overlapped (e.g., two List references a and b such that a 1= b but a.next ==
b.next). Therefore, a library function call will not only affect the references
explicitly passed in as arguments, but also those aliased or overlapped with
these arguments, which can be unboundedly many and cannot be tracked using
library sampling.

Bootstrapping Library-Based Synthesis 289

Fig. 8. Example of SortedList and its corresponding query-based encoding.

To this end, we track library calls with arguments that are aliased or disjoint
only. More concretely, we first extend the definition of library sampling (see
Definition 3) and the logger in the following way. Assume Σ is a library signature
containing a reference sort Ref and L is a Σ-library containing a function f :
Refn → Ref. Then an extended library sampling of f is a finite set of

Nf ⊆fin B(n) × Refn × Ref × 3{0,1,...,n}

where B(n) is the set of partitions of the set {1, . . . , n}. The first element is a
partition of the references into aliased equivalence classes; references from differ-
ent equivalence classes must be disjoint. The second and the third elements are
simply the input and output of the function. The last element indicates whether
the output reference is aliased, overlapped, or disjoint with the n arguments.

Next, we also adapt the call-tree-based encoding for libraries. In addition to
the encoding we presented in Fig. 7, the encoded program explicitly maintains
the relationship between all references: aliased, disjoint, or overlapped. When-
ever a reference is updated (via either an assignment or a library call), all aliased
references will be updated in the same way and all disjoint references will be kept
unchanged. For other overlapped references, as we don’t track precise informa-

290 K. Huang and X. Qiu

tion to updated them, they will be havoced, i.e., they will be updated arbitrarily,
being disjoint or still overlapped with the updated reference.

Termination and Exceptions. Termination is a tricky issue for program anal-
ysis and verification, and also for our synthesis framework. Note that the input
program to the logger is not necessarily terminating: it may invoke library calls
infinitely often and the logger may not terminate either. In this case, the logger
can set an execution limit T : if the execution reaches T steps, the logger just
halts and returns the samples collected thus far. The limit T can be simply set
as the integer t0 found by the AIS—according to Definition 7 and the formula
Φ[φP , Q,N] AIS solves, all sample runs of the synthesized program with the
conjectured angelic library LAng guarantee to terminate within t0 steps. In other
words, if the real execution with the authentic library LReal does not terminate
within t0 steps, the library behavior collected by the logger is already enough to
distinguish LReal and LAng.

Another similar issue is about the exceptions. While the Toshokan core
language is simple, it may present exceptions such as division-by-zero and array
index out-of-bound. More importantly, the library calls made by the candidate
program also might be invalid and throw exceptions from running the authen-
tic implementation of the library. In these cases, our logger simply returns the
library samplings collected thus far and input to the last library call that causes
the exception. These samplings will let the AIS know how the witness input
leads to the exception so that the next candidate can avoid this scenario.

6 Evaluation

We implemented the Toshokan framework in JSketch [20]—a sketch-based
Java synthesizer—and conducted experimental evaluation. It takes a JSketch
file (intuitively a Java program with unknown constants, expressions, etc.) as
input and produces a concrete Java program satisfying user-provided specifica-
tion. Note that our goal is not outperforming vanilla JSketch using models
and mocks [25]: the primary goal of Toshokan is to reduce the extra LoC that
other methods require the user to write. Therefore, our evaluation attempts to
answer the following research questions: RQ1: Can Toshokan synthesize pro-
grams interacting with a wide variety of libraries? RQ2: Does Toshokan reduce
the LoC that the synthesizer user needs to write with acceptable performance? In
this section, we first describe our implementation and benchmarks, then report
the experimental results which answer the two research questions.

Implementation. The implementation was written in Rust and C++ with
around 10k total LoC. We leverage the current frontend of JSketch to encode
most Java-specific features to Sketch, and encode the angelic inductive synthesis
problem as described in Sect. 4. Once a Sketch solution is obtained, we further
leverage the decoder of JSketch to generate a concrete Java program candidate
for verification and logging.

Bootstrapping Library-Based Synthesis 291

We employ JBMC [8] as the bounded verifier. Note that JBMC verifies com-
piled Java bytecode, i.e., it does not rely on the availability of the library’s source
code. JBMC also serves as the logger: if a candidate program failed verification,
we build a Java program that explicitly runs the failed program with all witness
inputs and finishes with assert false. JBMC will claim that the program is wrong
and provide the trace of execution. We implemented a data extractor to collect
input-output samples for the library calls involved in the trace. We remark that
the JBMC-based logger is potentially unsound as JBMC uses its own library
models.

Benchmarks. To evaluate Toshokan, we have adopted and converted a num-
ber of synthesis benchmarks from various sources, including Sketch modular syn-
thesis benchmarks using function models [35], JDial benchmark using external
libraries [17] and our own benchmarks using composite-type libraries. We also
write some benchmarks ourselves by converting some well-known, widely used
algorithms and data structures into sketch format with holes added, so that the
benchmark set could be more diversified. We hope the wide range of the bench-
marks adopted could help demonstrate the wide variety of libraries upon which
our methods could be applied to.

Sketch modular synthesis [35] benchmarks are obtained from Sketch source
repository as part of the project’s experimental feature benchmarks [36]. These
benchmarks come with two versions: one model version and one mock version
for each synthesis task. The model version utilizes the function model features
of Sketch to solve synthesis tasks with unknown library functions, as long as
models of the functions are provided. The mock versions are effectively the
same synthesis tasks, but with concrete implementations of the library func-
tions. We excluded some benchmarks that are not legit (e.g., no synthesis task
or no argument for the library function). This ends up in a total of 4 bench-
marks adapted from this benchmark set. JDial [17] benchmarks are obtained
from JDial-Debugger’s Github repository [18]. Among the JDial direct manip-
ulation benchmarks, we picked two out of three benchmarks that use external
libraries (excluding evalPoly 3 which seems to be identical to evalPoly 2). We
also combined them into a larger one, evalPoly combined.

Up to this point, all the benchmarks we adopted are using libraries of primi-
tive types. To demonstrate the effectiveness of our methods handling libraries of
composite types, we converted a number of well-known, widely used algorithms
and data structures into sketch formats with added holes. This creates 4 new
benchmarks, namely stack match, set match, arraylist match, and heap sort, all
in encoding for libraries of composite types.

It ends up in a total of 11 benchmarks to be evaluated in experiments.
Whereas the sizes of the client-code sketches are relatively small, the authen-
tic libraries involved in these benchmarks are not small. E.g., the ArrayList
from OpenJDK8 [28] contains 1.4kLOC. Moreover, the authentic versions of
the libraries contain Java features like reflection and lambda expression that
JSketch does not support yet; some of them also invoke native code. There-

292 K. Huang and X. Qiu

Table 2. Description of benchmarks and experimental results.

Benchmark Toshokan JSketch (Model) JSketch (Mock)

Name LoC #C Lib Data Type Lib Func(s) Enc Time(s) #I Model LoC Time(s) Mock LoC Time(s)

gcd n numbers 70 12 int gcd D 22.44 1 20(29%) 4.8 16(23%) 5.96

lcm n numbers 74 12 int lcm D 25.91 3 21(28%) 3.92 17(23%) 4.11

powerroot sqrt 65 15 int sqrt D 15.40 1 14(22%) 3.81 19(29%) 3.84

primality sqrt 56 12 int sqrt D 32.89 4 14(25%) 3.76 19(34%) 3.75

evalPoly 1 61 15 int pow D 22.77 3 30(49%) 3.91 11(18%) 4.32

evalPoly 2 59 15 int pow D 6.86 1 30(51%) 3.78 11(19%) 3.74

evalPoly combined 97 30 int pow D 15.52 2 30(31%) 3.99 11(11%) 4.31

stack match 24 8 Stack push,pop C 39.18 5 N/A N/A 22(92%) 3.86

set match 26 8 HashSet add,contains C,Q 8.76 1 29(112%) 4.02 32(123%) 4.01

arraylist match 26 8 ArrayList push back,get C,Q 41.75 5 29(112%) 4.1 22(85%) 3.8

heap sort 72 20 Heap insert,pop min C 32.56 4 N/A N/A 159(221%) 4.44

Enc–Encoding(s) used in benchmark for Toshokan
D–Direct encoding of primitive types, C–Call-tree based encoding, Q–Query based
encoding
#C–number of control bits in the sketch after preprocessing. #I–number of iterations
Toshokan runs.

fore inlining these libraries is beyond the capacities of JSketch as currently
implemented.

For each benchmark, we list the size of the program sketch, the number of
control bits in the sketch, and the library’s signature (see Table 2). Note that
the “#C” column of the table describes the numbers of bits needed to represent
a solution candidate for the synthesis task in the benchmark, i.e. a number of
N control bits of the benchmark indicates that the search space of its solution
is 2N . Additionally, the LoC sizes of the model and mock code which JSketch
uses for the respective benchmark are shown in the table, as well as their relative
sizes to the benchmark per se.

Experimental Results. The experiments were conducted on a server with 2
Intel(R) Xeon(R) E5-2630 v4 10-core CPUs, with each core having 2 threads, at
main frequency of 2.20GHz, with 128GB of memory. The experiments were run
as 10 independent parallel tasks, and the whole process terminates once any of
the 10 simultaneously running tasks returns with a correct synthesized solution.

Since the solving process of Sketch synthesis engine involves nondeterministic
algorithms presenting nondeterministic intermediate results and performance, as
well as having a large range of different configuration parameters that could be
potentially optimized, the parallelism described above could be a great help in
increasing overall performance for both our methods and our comparing meth-
ods, as long as parallel computing resources are available. Experiments were
run on all 11 benchmarks with a timeout of 1 h. Performance of sketch with
appropriate models and/or mocks on these same benchmarks are also collected
whenever possible using the same parallel methods described above, as baseline
of performance for the effectiveness evaluation.

Bootstrapping Library-Based Synthesis 293

Toshokan successfully solved all benchmarks within the timeout. Our
experimental results, including the solving time and number of iterations taken
by Toshokan to find the solution, are shown in Table 2. The results give an
answer to RQ1: Toshokan was able to effectively handle synthesis tasks that
interact with a wide range of different libraries and library functions, including
advanced arithmetic operations, as well as complex composite data structures.
This indicates a good variety of our methods’ possible applications.

Fig. 9. Experimental results: saved LoC vs. extra
time, absolute amount (above for all benchmarks and
below for clustered benchmarks).

Now let us proceed to
the second research ques-
tion. We take the mock/-
model LoC as a measure of
the extra code needed for
the synthesizer user to write
which Toshokan managed
to save, and the extra time
Toshokan takes to solve
the benchmark comparing
to mock/model as measures
of performance overhead.
We believe the measures
allow us to reasonably indi-
cate the benefit/cost ratio of
our approach.

Figure 9 compares the
absolute amount of extra
LoC against extra time
by Toshokan. This figure
indicates how Toshokan
trades extra synthesis time
for saving the programmer’s
effort (in terms of LoC).
For example, by adopting
Toshokan, a programmer
who wants to write the set -
match program could save
32 LoC writing at the cost
of waiting for only 4 extra
seconds. This figure would
paint a picture from a
potential user’s perspective on the performance numbers.

Observing Table 2 and the figures, we are encouraged toward an answer
to RQ2: On one hand, Toshokan saves the user some work from writing
various kinds of mocks and models. Depending on the actual complexities of the
underlying library and synthesis task, the Mock/Model LoC ranges from 11 to
159, and could be as high as 2.21× of the original sketch LoC. On the other hand,

294 K. Huang and X. Qiu

the performance slowdown is moderate. All benchmarks on Toshokan showed
a slowdown of less than 40 s. Given the extra LoC of code writing Toshokan
managed to eliminate, we consider this performance as acceptable in proving the
effectiveness of our methods.

7 Related Work

Several library models have been proposed in different settings and handled by
the synthesizer in different ways. Gascon et al. [15] model each component of the
target language as a proof rule, which allows the synthesizer to symbolically exe-
cute programs consisting of these components. JLibSketch [25] model libraries
as equational specifications and automate the reasoning about library models by
term rewriting. Unlike above approaches in which the rules/equations are man-
ually written by experts, the model in Toshokan is simply a partial function
and automatically generated. We tried to include the JLibSketch on the reported
benchmarks [25]. Unfortunately, we found the Java programs produced for all
these benchmarks are flawed and cannot be handled by our implementation.6

The function models used in modular synthesis [35] are more flexible. The
model can be either strong (deterministic) or weak (nondeterministic). In other
words, there can be a unique or multiple valid outputs for the same input. The
key contribution of their work is a CEGIS+ algorithm which handles both strong
and weak models efficiently. However, the functional models and the canonical-
ization functions they rely on are still manually written, while our library models
are generated automatically from the logger. This is made possible by the fact
that there is a canonical, executable library in our setting. In contrast, the orig-
inal functions in [35] are not necessarily executable—these functions per se can
be templates with holes to be filled by the synthesizer. The JSketch (Model
version) which we have compared with implements the CEGIS+ algorithm (see
experimental results in Sect. 6). The idea of angelic synthesis is also used by
Burst [26], which does not aim to synthesize and handle library models.

There is a rich literature in component-based synthesis, which aims to gener-
ate a program consisting of library calls to a provided API. This line of work was
pioneered by Prospector [24] and followed by many synthesis tools including
CodeHint [14], SyPet [12], EdSynth [43] and FrAngel [33]. These systems
typically synthesize code making library calls by actually executing the candi-
date program on a set of test cases. Our approach also treats the library as
a black box but not for testing. We synthesize provably-correct, library-using
programs by incorporating inductive synthesis (using JSketch) and bounded
verification (using JBMC).

Unit-test generation is another related research area. The task is to generate
sequences of method calls to exercise the library to be tested. For example,
6 As a limitation of current JSketch, when generators are involved, the raw output
of JSketch is not compilable and some manual adaptation is needed. This is impos-
sible for Toshokan because the CEGIS loop must compile JSketch output every
iteration.

Bootstrapping Library-Based Synthesis 295

Pacheco et al. [29] generate method calls randomly and guide the generation
with feedback from executing the generated sequences. Fudge [3] extracts code
snippets from corpus code and mutate them to generate fuzz drivers. Instead of
testing libraries, our purpose is to synthesize client code of libraries that satisfies
formal specifications.

The idea of delegating complex verification tasks to external oracles is also
explored by SyMO [31], but the main distinction is about the synthesizer’s side.
SyMO (and all existing SyGuS solvers) treat libraries as a white-box, defined
function. In other words, when library call f(x) is part of the grammar, SyGuS
solvers need access to the implementation of f(x) as a defined function. In con-
trast, our angelic inductive synthesizer treats the library as a black box. More-
over, many libraries are not pure-functional (e.g. Stack.push), with side effects
updating the internal composite data structure, which cannot be handled by
SyMO.

External function handling in direct manipulation. The most related work
to this paper is JDial [17], which performs direct manipulation, a special form
of program repair. In each iteration of the synthesis procedure, JDial lever-
ages Sketch to guess a single input-output pair of the library function which
is not covered by the current program’s execution, then runs the library func-
tion with the guessed input to check whether the guessed output is correct.
While JDial and Toshokan share the same idea of dynamically expanding
the library model, they are different in several aspects. First, JDial supports
interactive program repair, while Toshokan, for the first time, integrates the
dynamic library model into a fully-automatic sketch-based synthesis procedure.
Second, JDial only handles simple mathematical functions such as Math.pow
or Math.max, and it is not clear how their approach can be extended to support
libraries manipulating objects, with internal states and references, etc., and how
scalable their approach toward more sophisticated libraries. Third, JDial runs
authentic libraries eagerly and not guided by counterexamples, e.g., itsMath.max
example takes more than 90 iterations. By contrast, Toshokan runs the whole
rejected program and only logs those library calls witness the failure, making
the generated library model smaller and more helpful for the synthesizer.

8 Conclusion

We proposedToshokan, a new program synthesis framework in which programs
that use external libraries could be synthesized without any mock or model
from the user. Toshokan extends the classic counterexample-guided inductive
synthesis framework with a bootstrapping, log-based library model. We found
that, comparing to existing synthesis techniques that are able to handle external
libraries through user-provided models or mocks, our methods save the user from
the extra manual work, at the cost of moderate performance overhead.

Acknowledgments. This research was supported in part by the National Science
Foundation under Grant Nos. CCF-1919197 and CCF-2046071.

296 K. Huang and X. Qiu

References

1. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Proceedings of the
29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL 2002. ACM (2002). https://doi.org/10.1145/503272.503275

2. Astorga, A., Madhusudan, P., Saha, S., Wang, S., Xie, T.: Learning stateful pre-
conditions modulo a test generator. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI 2019.
ACM (2019). https://doi.org/10.1145/3314221.3314641

3. Babić, D., et al.: Fudge: fuzz driver generation at scale. In: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE 2019. ACM
(2019). https://doi.org/10.1145/3338906.3340456

4. Bastani, O., Anand, S., Aiken, A.: Specification inference using context-free lan-
guage reachability. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL 2015. ACM (2015).
https://doi.org/10.1145/2676726.2676977

5. Bastani, O., Sharma, R., Aiken, A., Liang, P.: Active learning of points-to specifi-
cations. In: Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI 2018. ACM (2018). https://doi.org/
10.1145/3192366.3192383

6. Bodik, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N., Barman, S., Rodar-
mor, C.: Programming with angelic nondeterminism. In: Proceedings of the 37th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages. POPL 2010. ACM (2010). https://doi.org/10.1145/1706299.1706339

7. Bornholt, J., Torlak, E.: Finding code that explodes under symbolic evaluation.
In: Proc. of the ACM on Programming Languages. OOPSLA 2018, vol. 2. ACM,
October 2018. https://doi.org/10.1145/3276519

8. Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P., Trtik, M.: JBMC: a bounded
model checking tool for verifying Java bytecode. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 183–190. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3 10

9. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: deductive synthesis of
abstract data types in a proof assistant. In: Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
2015. ACM (2015). https://doi.org/10.1145/2676726.2677006

10. Doughty-White, P., Quick, M.: Codebases: millions of lines of code (2015). https://
informationisbeautiful.net/visualizations/million-lines-of-code/

11. Ernst, M.D., et al.: The daikon system for dynamic detection of likely invariants.
Science of Computer Programming 69(1), 35–45 (2007). https://doi.org/10.1016/
j.scico.2007.01.015, special issue on Experimental Software and Toolkits

12. Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-based synthesis
for complex APIs. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages. POPL 2017. ACM (2017). https://doi.org/
10.1145/3009837.3009851

13. Floyd, R.W.: Nondeterministic algorithms. J. ACM (JACM) 14(4), 636–644
(1967). https://doi.org/10.1145/321420.321422

14. Galenson, J., Reames, P., Bodik, R., Hartmann, B., Sen, K.: CodeHint: dynamic
and interactive synthesis of code snippets. In: Proceedings of the 36th International
Conference on Software Engineering. ICSE 2014. ACM (2014). https://doi.org/10.
1145/2568225.2568250

https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/3314221.3314641
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/2676726.2676977
https://doi.org/10.1145/3192366.3192383
https://doi.org/10.1145/3192366.3192383
https://doi.org/10.1145/1706299.1706339
https://doi.org/10.1145/3276519
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1145/2676726.2677006
https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/321420.321422
https://doi.org/10.1145/2568225.2568250
https://doi.org/10.1145/2568225.2568250

Bootstrapping Library-Based Synthesis 297

15. Gascón, A., Tiwari, A., Carmer, B., Mathur, U.: Look for the proof to find the pro-
gram: decorated-component-based program synthesis. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 86–103. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63390-9 5

16. Heule, S., Sridharan, M., Chandra, S.: Mimic: computing models for opaque code.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-
neering - ESEC/FSE 2015 (2015). https://doi.org/10.1145/2786805.2786875

17. Hu, Q., Samanta, R., Singh, R., D’Antoni, L.: Direct manipulation for imperative
programs. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 347–367.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2 17

18. JDial Debugger (2021). https://github.com/JDial-Debugger/backend/tree/
master/SkechObject/benchmarks

19. Jeon, J., Qiu, X., Fetter-Degges, J., Foster, J.S., Solar-Lezama, A.: Synthesizing
framework models for symbolic execution. In: ICSE 2016. ACM (2016). https://
doi.org/10.1145/2884781.2884856

20. Jeon, J., Qiu, X., Foster, J.S., Solar-Lezama, A.: Jsketch: sketching for Java. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing. ESEC/FSE 2015. ACM (2015). https://doi.org/10.1145/2786805.2803189

21. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: Proceedings of the 32nd ACM/IEEE International Conf. on
Software Engineering. ICSE 2010, vol. 1. ACM (2010). https://doi.org/10.1145/
1806799.1806833

22. Li, W., Seshia, S.A.: Sparse coding for specification mining and error localization.
In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 64–81. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-35632-2 9

23. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. Int. J. Softw. Tools
Technol. Transf. 603–618 (2012). https://doi.org/10.1007/s10009-012-0236-z

24. Mandelin, D., Xu, L., Bod́ık, R., Kimelman, D.: Jungloid mining: helping to nav-
igate the API jungle. In: Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI 2005. ACM (2005).
https://doi.org/10.1145/1065010.1065018

25. Mariano, B., et al.: Program synthesis with algebraic library specifications. In:
Proceedings of the ACM on Programming Languages. OOPSLA 2019, vol. 3. ACM
(Oct 2019). https://doi.org/10.1145/3360558

26. Miltner, A., Nuñez, A.T., Brendel, A., Chaudhuri, S., Dillig, I.: Bottom-up syn-
thesis of recursive functional programs using angelic execution. In: Proceedings of
the ACM on Programming Languages. POPL 2022, vol. 6. ACM, January 2022.
https://doi.org/10.1145/3498682

27. Murali, V., Qi, L., Chaudhuri, S., Jermaine, C.: Neural sketch learning for condi-
tional program generation. In: International Conference on Learning Representa-
tions (2018). https://openreview.net/forum?id=HkfXMz-Ab

28. OpenJDK (2014). https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/
classes/java/util/ArrayList.java

29. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: 29th International Conference on Software Engineering (ICSE
2007), May 2007. https://doi.org/10.1109/ICSE.2007.37

30. Pei, Y., Furia, C.A., Nordio, M., Wei, Y., Meyer, B., Zeller, A.: Automated fixing of
programs with contracts. IEEE Trans. Softw. Eng. 40(5), 427–449 (2014). https://
doi.org/10.1109/TSE.2014.2312918

https://doi.org/10.1007/978-3-319-63390-9_5
https://doi.org/10.1007/978-3-319-63390-9_5
https://doi.org/10.1145/2786805.2786875
https://doi.org/10.1007/978-3-030-32304-2_17
https://github.com/JDial-Debugger/backend/tree/master/SkechObject/benchmarks
https://github.com/JDial-Debugger/backend/tree/master/SkechObject/benchmarks
https://doi.org/10.1145/2884781.2884856
https://doi.org/10.1145/2884781.2884856
https://doi.org/10.1145/2786805.2803189
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1007/978-3-642-35632-2_9
https://doi.org/10.1007/s10009-012-0236-z
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1145/3360558
https://doi.org/10.1145/3498682
https://openreview.net/forum?id=HkfXMz-Ab
https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.java
https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.java
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1109/TSE.2014.2312918
https://doi.org/10.1109/TSE.2014.2312918

298 K. Huang and X. Qiu

31. Polgreen, E., Reynolds, A., Seshia, S.A.: Satisfiability and synthesis modulo oracles.
In: Finkbeiner, B., Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 263–284.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94583-1 13

32. Raychev, V., Bielik, P., Vechev, M., Krause, A.: Learning programs from noisy
data. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL 2016. ACM (2016). https://doi.
org/10.1145/2837614.2837671

33. Shi, K., Steinhardt, J., Liang, P.: Frangel: component-based synthesis with control
structures. In: Proceedings of the ACM on Programming Languages. POPL 2019,
vol. 3. ACM, January 2019. https://doi.org/10.1145/3290386

34. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for intro-
ductory programming assignments. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI 2013.
ACM (2013). https://doi.org/10.1145/2491956.2462195

35. Singh, R., Singh, R., Xu, Z., Krosnick, R., Solar-Lezama, A.: Modular synthesis of
sketches using models. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS,
vol. 8318, pp. 395–414. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54013-4 22

36. Sketch (2021). https://github.com/asolarlez/sketch-frontend/blob/master/src/
experiments/sk/models/

37. Skrupsky, N., Monshizadeh, M., Bisht, P., Hinrichs, T., Venkatakrishnan, V.N.,
Zuck, L.: Waves: automatic synthesis of client-side validation code for web appli-
cations. In: 2012 International Conference on Cyber Security, December 2012.
https://doi.org/10.1109/CyberSecurity.2012.13

38. Smith, C., Albarghouthi, A.: Program synthesis with equivalence reduction. In:
Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 24–47. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11245-5 2

39. Solar-Lezama, A.: The sketch programmers manual (2020). https://people.csail.
mit.edu/asolar/manual.pdf, version 1.7.6

40. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems.
ACM (2006). https://doi.org/10.1145/1168857.1168907

41. Srivastava, S., Gulwani, S., Chaudhuri, S., Foster, J.S.: Path-based inductive syn-
thesis for program inversion. In: Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. PLDI 2011. ACM
(2011). https://doi.org/10.1145/1993498.1993557

42. Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host
languages. In: Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI 2014. ACM (2014). https://doi.
org/10.1145/2594291.2594340

43. Yang, Z., Hua, J., Wang, K., Khurshid, S.: EdSynth: synthesizing API sequences
with conditionals and loops. In: 2018 IEEE 11th International Conference on Soft-
ware Testing, Verification and Validation. ICST 2018, April 2018. https://doi.org/
10.1109/ICST.2018.00025

https://doi.org/10.1007/978-3-030-94583-1_13
https://doi.org/10.1145/2837614.2837671
https://doi.org/10.1145/2837614.2837671
https://doi.org/10.1145/3290386
https://doi.org/10.1145/2491956.2462195
https://doi.org/10.1007/978-3-642-54013-4_22
https://doi.org/10.1007/978-3-642-54013-4_22
https://github.com/asolarlez/sketch-frontend/blob/master/src/experiments/sk/models/
https://github.com/asolarlez/sketch-frontend/blob/master/src/experiments/sk/models/
https://doi.org/10.1109/CyberSecurity.2012.13
https://doi.org/10.1007/978-3-030-11245-5_2
https://people.csail.mit.edu/asolar/manual.pdf
https://people.csail.mit.edu/asolar/manual.pdf
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1993498.1993557
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1109/ICST.2018.00025
https://doi.org/10.1109/ICST.2018.00025

	Bootstrapping Library-Based Synthesis
	1 Introduction
	2 Overview
	3 The Toshokan Framework
	3.1 Libraries
	3.2 The Library-Based Synthesis Problem
	3.3 Inductive Synthesis with Angelic Libraries
	3.4 Verifier and Logger
	3.5 The Main Synthesis Algorithm

	4 Angelic Inductive Synthesis
	5 The Logger
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

