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Abstract

While neural network binary classifiers are often evaluated on metrics such as
Accuracy and Fj-Score, they are commonly trained with a cross-entropy objective.
How can this training-evaluation gap be addressed? While specific techniques have
been adopted to optimize certain confusion matrix based metrics, it is challenging or
impossible in some cases to generalize the techniques to other metrics. Adversarial
learning approaches have also been proposed to optimize networks via confusion
matrix based metrics, but they tend to be much slower than common training
methods. In this work, we propose a unifying approach to training neural network
binary classifiers that combines a differentiable approximation of the Heaviside
function with a probabilistic view of the typical confusion matrix values using soft
sets. Our theoretical analysis shows the benefit of using our method to optimize
for a given evaluation metric, such as Fj-Score, with soft sets. Also, our extensive
experiments show the effectiveness of our approach in several domains.

1 Introduction

Neural network binary classifiers output a probability p € [0, 1] which is often used at training time
to optimize model parameters using the binary cross-entropy (BCE) loss. The network’s output p can
also be translated to a binary value {0, 1} indicating set membership to the negative or positive class.
To determine set membership, the Heaviside step function H is commonly used with a threshold 7,
where p > 1 are considered positive classification outcomes. This notion of set membership is often
used in evaluation metrics for binary classifiers.

It is a common assumption that optimizing a network via the desired evaluation metric is preferable
to optimizing a surrogate objective [12, 18 [29] 33]]. Unfortunately, optimizing a network using the
desired evaluation metric, such as Fj-Score, is typically not feasible. The Heaviside step function
used to compute confusion matrix set membership in terms of true positives, false negatives, false
positives, and true negatives, has a gradient with properties not conducive to optimization via gradient
descent. The Heaviside function’s gradient is not defined at the threshold 7 and is zero everywhere
else.

Empirical results (e.g., [12]]) show that the training-evaluation gap hinders evaluation performance.
The gap means that in many applications, the metric differs significantly from the surrogate loss [33]]
and there may not be a strong correlation between minimizing a surrogate loss and improving an
evaluation metric [29]. Also, it could mean that classifiers are solving “the wrong problem” when
optimizing a surrogate loss, leading to sub-optimal evaluation performance [18]].
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To address the gap between training and evaluating neural network binary classifiers, we propose a
method to make confusion-matrix based evaluation metrics usable for backpropagation. Specifically,
we propose the use of a differentiable approximation of the Heaviside step function along with
confusion matrix values computed using the notion of soft set membership. A desired evaluation
metric can then be made differentiable by calculating it over the soft-set confusion matrix, rather than
using the traditional confusion matrix values.

Our main contributions are: 1) a novel method for training neural network binary classifiers that
allows for the optimization of confusion-matrix based evaluation metrics with soft sets (Sec. [3); 2) a
theoretical analysis of our method (Sec. [); and 3) the application of our approach to various domains
with varying levels of class imbalance, showing its flexibility and superior performance compared to
several basehne methods (Sec. [5). We provide an open-source implementation of our method for
reprodu01b111ty

2 Preliminaries

In binary classification via neural networks, a step function is required to transform the network’s
output to a binary value. A common choice is the Heaviside step function with a threshold value 7:

1 >
H(p,r)—{o Z;: )

Confusion matrix set membership is then computed for a prediction p and ground truth label y via:

_JHp,T) y=1 _J1-Hp 1) y=1
tp(p,y,7) = i fr(p,y,7) = .
0 otherwise 0 otherwise
o.7) (2)
H(p,7) y=0 1-H(p,7r) y=0
fo(p,y,7) = ( ) tn(p,y,T) = ,
0 otherwise 0 otherwise

Consider a set of predictions p € [0, 1], ground truth labels y € {0, 1} and threshold value 7 € (0, 1),
e.g., {(p1,9y1,7), (P2,Y2,T)s -y (P, Yn, 7) }. For n samples, the cardinality of each confusion matrix
set is then computed as:

|TP| = tp(pi,yi,7) |FN| = anpz,yz, |FP| = prpuyz, |TN| = Ztnpz,yu
=1

Common classification metrics are based on these cardinalities. For example, Precision =
TP| + |FP]) is the proportion of positive predictions that are true positive results. Recall =
TP| + |FN |) indicates the proportion of positive examples that are correctly identified.

These two metrics represent a trade-off between classifier objectives; it is generally undesirable to

optimize or evaluate for one while ignoring the other [17]. This makes summary evaluation metrics

that balance between these trade-offs popular. Commonly used metrics include:

|TP| + |TN| 2

F'i-Score =
|TP|+ |TN|+ |FP|+ |FN| ! precision ! + recall !

Accuracy =

3)

Accuracy is the rate of correct predictions to all predictions. Fj-Score is a specific instance of
F3-Score, which is the weighted harmonic mean of precision and recall: Fz-Score = (1 + 82) -
(precision - recall) /(32 - precision + recall). The value 3 indicates that recall is considered /3 times
more important than precision.

Some metrics like Fjg-Score are usually computed at a specific threshold 7 whereas others are
computed over a range of 7 values. For example, the area under the receiver operating characteristic
curve (AUROC) is a commonly used ranking performance measure defined in terms of the true

positive rate (TPR) and false positive rate (FPR), each a function of 7: [_“ TPR(7)FPR’(7) dr.

While metrics that rely on confusion matrix set values are commonly used for evaluation, as shown in
Fig. [T] (right), it is difficult to use them as a loss during training. These metrics rely on the Heaviside
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Figure 1: The proposed method. Binary classifiers are typically trained with the BCE loss and

then evaluated on a confusion-matrix based metric. We propose to bridge this gap between training
and evaluation by optimizing model parameters based on a metric that is computed over a soft-set
confusion matrix, which is differentiable. This is done using a differentiable approximation of the
Heaviside step function.

step function, the derivative of which is undefined at the threshold 7 and zero everywhere else. This
means that these metrics do not have a derivative useful to backpropagate errors through the network.

When a binary classification neural network is trained on a loss function that is different from the
evaluation metric, such as BCE, the network parameters are unlikely to be optimal for the desired
evaluation metric. As shown in our theoretical analysis and experimental results, when the goal is to
balance various confusion matrix set values, e.g., with F;-Score, performance is improved by using
our proposed method to optimize Fj-Score.

3 Method

We propose a method (Fig. [I) that aims to better unify the training and evaluation steps of binary
neural network classifiers whose performance is measured with metrics based on the confusion
matrix. Our method has two main steps. First, the Heaviside step function, H, is approximated with
a function H useful for optimization via gradient descent. Then, H is used to compute a soft version
of set membership in the confusion matrix. With the soft-set confusion matrix values, we can then
compute desired confusion-matrix based metrics, such as F}-score, using their standard formula.
This approach makes the metrics end-to-end differentiable so that they can be used as a training loss.

3.1 Heaviside Approximation

A useful Heaviside approximation, , has a non-zero gradient: H'(p,7) # 0, V7. Also, it ensures
that for a single example, the classifier predicts positive and negative probabilities which sum to 1.
Like H, the approximation should meet the properties of a cumulative distribution function (CDF)
which ensures it is right-continuous, non-decreasing, with outputs in [0, 1] following:

lim H(p,7) =0 Vr lim H(p,7) =1 Vr 4)
p—0 p—1

Sigmoid approximation: One approximation method for H, proposed by [23]], is the sigmoid
function s (k; p) = (1 + e~*7)~1. We reparameterize sq to account for 7, so that it can be used for
varying thresholds: H*(k,p, 7) = (14 e~ *(=7))=1 A challenge with the sigmoid approximation is
that as k increases, the sigmoid function better approximates the Heaviside function, but the derivative
is close to zero over a larger range of valid inputs. Another challenge is that when 7 is close to
0 or 1, H?® does not approach H as the input approaches O or 1. These limitations as well as the
hyperparameters k and 7 are further discussed in the Supplementary Material (Sec. [2)).

Linear approximation: An alternative approximation of H is a five-point linearly in-
terpolated function (Fig. |I, left).  This approximation H!, is defined over [0,1] and
is parameterized by a given threshold 7 and a slope parameter &, which define three
linear segments with slopes mi, mso, and msg. The slope of each line segment is:
0 1—-26 0

mo ms

m1 =

Tm 1—7-— 2

2
with 7, = min{7,1 — 7} in order to ensure a gradient suitable for backpropagation. The linear
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Heaviside approximation is thus given by:

p-my ifp<rt— T2
H = p-mz+(1—-0—-—ma(r+ 7)) ifp>7+ 72 5)
p-ma+ (0.5 —maT) otherwise

Considering the threshold 7 in the formulation of 7! ensures #!(p = 7, 7) = 0.5 while maintaining
the limits in Eq. (). See the Supplementary Material, Sec. for the derivation of Eq. (3).

Recently, a similar linear function was implemented as an activation function to enforce meaningful
logical outputs in logical neural networks [30]. However, rather than using the linear function for
activation within the larger model architecture, we use it in the training objective of a classifier.

3.2 Soft Sets

We use soft sets, a generalization of fuzzy sets [23]], to compose differentiable versions of confusion-
matrix based evaluation metrics useful for backpropagation. A soft set i in U, the initial universal
set, is defined by the membership function p : U — [0, 1]. For z € U, the set membership function
u(x) specifies a degree of belonging for x to set u.

We use the notion of soft sets to compute confusion-matrix based metrics with a Heaviside approxi-
mation in place of the typically used strict sets. Soft set membership corresponds to the degree to
which a sample tuple (p, y, 7) belongs to a confusion matrix set. We define the soft confusion matrix
set membership functions for prediction and ground truth examples (p, y) relative to 7 as:

_JHP,T) y=1 _J1-HTr) y=1
tps(p,y, 7) = ‘ frs(pyy, 7) = )
0 otherwise 0 otherwise
) (p, ) ©
H(p,7) y=0 1—H(p,7) y=0
fos(0,y, 7) = _ tns(p,y, 7) = .
0 otherwise 0 otherwise

Whereas the values of the confusion matrix (tp, fn, fp, tn) are the sum of zeros and ones, and the
values of the soft confusion matrix (tps, fns, fps, tns) are the sum of continuous values in [0, 1],
rather than integers.

After computing per-sample soft set values, specific metrics can be approximated by summing
over the relevant elements of the confusion matrix. For instance, we approximate precision as
| TPs|/(| TPs| 4 | FPs|), where | TPs| = >~ tps(pi, yi, 7) and |FPg| = >0 fps(pi, yi, 7) forn
samples. In practice, this summation occurs at training time over mini-batches while optimizing via
gradient descent. Because gradient descent and its variants expect a small but representative sample
of the broader data [3]], the proposed method also expects a representative sample.

Decomposability: Metrics based on confusion matrix set values are considered non-decomposable.
Non-decomposable metrics cannot be calculated per datapoint and are not additive across subsets of
data [[19]]. We acknowledge that our optimization method of mini-batch stochastic gradient descent
(SGD) does not provide an unbiased estimator on non-decomposable metrics. However, this is
common in neural network training [[16]. In practice, we find that large enough mini-batches provide
a representative sample for confusion matrix based metrics, allowing the use of mini-batch SGD
in our approach. Moreover, our method does not limit maximum batch size for training, unlike the
adversarial approach to optimize Fj-Score proposed by [14].

Metrics and losses: Any metric composed of confusion matrix set values (TP, FP, FN, TN) can
be approximated using our proposed method and used as a training loss. In our experiments, we train
and evaluate on Accuracy, Fj-Score, AUROC, and Fg-Score [31]. We chose these metrics to show
the flexibility of our approach. Accuracy, Fi-Score and Fg-Score may be selected based on class
imbalance and resulting tradeoffs. AUROC illustrates that our method can be used when computation
over a range of thresholds, 7, is required.

4 Theoretical Grounding

In this section, we first show the Lipschitz continuity of a variety of soft-set based metrics under the
proposed Heaviside function approximations. This indicates that when such metrics are used as the



loss in a neural network, the difference between successive losses is bounded across iterations of
stochastic gradient descent. We then show, under certain assumptions, that metrics computed over
the soft-set confusion matrix values are asymptotically similar to the true metric.

4.1 Lipschitz Continuity of Metrics Based on Soft-Set Confusion Matrix Values

A function f is considered Lipschitz continuous if there exists some constant K such that for all
21, %9 in the domain, |f(x1) — f(z2)| < K|z1 — x2|. Lipschitz continuous functions are always
themselves continuous.

Theorem 4.1. The linear Heaviside approximation H' is Lipschitz continuous with Lipschitz constant
M = max{ml, ma, mg}.

H! is continuous because each piecewise linear component is continuous and ! is defined to be
continuous at the two points p = 7 + 7+, Also, by construction, the slope of any secant line is
positive and bounded by M = max{m1, ms, m3}. Thus, H! is Lipschitz continuous with Lipschitz
constant M. Please see the full proof in Sec. of the Supplementary Material. Note that the H? is
also Lipschitz continuous [32].

Theorem 4.2. Every entry of the soft-sets confusion matrix based on the Heaviside approximations
is Lipschitz continuous in the output of a neural network.

The proof of Theorem [.2]is in the Supplementary Material (Sec. [I.T).

The value of a Lipschitz continuous loss function composed of soft-set confusion matrix values
is Lipschitz continuous. This is because compositions of Lipschitz continuous functions are also
Lipschitz continuous. Following [9], we note that the confusion-matrix based metrics Accuracy,
Balanced Accuracy, F, Jaccard, and G-Mean are all Lipschitz continuous. These metrics are also
Lipschitz continuous under our proposed method computed via soft sets.

Lipschitz continuity of the loss function in a neural network optimized via stochastic gradient descent
indicates convergence without extreme variations in losses throughout training. Let K be the Lipschitz
constant for the objective function ¢(w) on network weights w. Because of Lipschitz continuity,
when updating w; 11 — w; — a;¢'(w;) using stochastic gradient descent with a learning rate a;, a
small local change in the weights |w; 1 — w;| = a;|¢'(w;)| corresponds to a small local change in
the value of the objective function of |[{(w;11) — £(w;)] < Kay|€' (w;)].

4.2 Approximation of Confusion-Matrix Based Metrics with Soft Sets

We provide a statistical analysis showing that in the limit, as the number of examples goes to infinity,
I -Score calculated with soft sets approximates the expected true F} -score under a set of assumptions.
Similar proofs for Accuracy and AUROC are provided in the Supplementary Material (Sec. [I.2).

Consider a dataset of size n with {x1, ..., z,, } examples and {y1, ..., y, } labels. Suppose a network
outputs a probability p; that the label y; = 1. In this section, since the specific outputs p; are unknown
and may change across iterations, we assume p; is a random variable. When calculating F}-Score,
p; is passed through the Heaviside function H, which generates an output 7 = H(p;, 7), where
95 € {0,1}. The Fy-Score can be expressed as:
F = 21;1 ytng _ 2 Z?:l yzng o)
S vl + 5 i (= ya)gf +ui(=9f) (i +4f)

To calculate I -Score with soft sets (F}’), p; is passed through the Heaviside approximation H, which
cH ‘ ~H ) ; ; .
generates an output §;* = H(p;, 7), where §/* € [0, 1]. Fy-Score with soft-sets can be expressed as:

22?:1 leZ{

Ff = =1 ——
! (i +9t)

®)

Consider a network trained on a dataset with rn positive and (1 — r)n negative elements, where
r € [0, 1] is some constant. Suppose this classifier correctly classifies any positive example as a true
positive with probability u and any negative example as a false positive with probability v. Also,
assume that all classifications are independent. Because F;-Score is calculated with discrete 7, we



assume that the classifier will classify examples as a random variable g7 ~ Bernoulli(uy;+v(1—y;)).
Thus, 7 ~ Bernoulli(u) if y; = 1, and g ~ Bernoulli(v) if y; = 0.

Since F} can take on continuous values in [0, 1], we consider that /¢ is a random variable drawn
from a Beta distribution, which has support [0, 1]. In particular, assume §* ~ Beta(c,y; + a, (1 —
Vi), Buyi + Bu(1 — y;)). Hence, §}* ~ Beta(ay, B.) if y; = 1, and §* ~ Beta(ay, 3,) if y; = 0.
Let ;%5 = wand ;%5 = v,soforany i, E [§]*] = uify; = 1,and E [g}*] = vify; = 0.

Under the above assumptions, both £ and F} have the same average classification correctness: for
any given i, E [§7 ] = E [§7]. Also, there exists some cy, By, ty, B, such that the distributions of

97 = H(p;, ) and §* = H(p;, T) can both hold simultaneously under the same network for all 7.

If we let U ~ Binomial(nr, u) and V' ~ Binomial(n(1—1r), v) be the independent random variables
denoting the number of true positives and false positives in a sequence of n independent predictions,
then F from Eq. (7) becomes:

D D/ S D DIy VS N U B U/n
Fl - n ~H =2 n ~H =2 =2 (9)
doic (v +3) nr+ 0, nr+U+V r+U/n+V/n

1
n(l—r)

as n — oco. Hence, % 2 ru and % 2¥(1 — r)v. We therefore have, from the Continuous Mapping
Theorem, that as n — oo:

By the Strong Law of Large Numbers, n—17 U %y and V 2 v both converge with probability 1

U/n as. ru 2ru
=2 —-—r" 2 = 10
! (r—&-U/n—FV/n)% (T+ru+(l—r)v> r+ru+v—1rv (19)

For F},letU® = Zyi:1 gt and Vo = Zyizo 9]t be the independent random variables denoting the
total amount of true positives and false positives in the soft set case. Then, F}’ from Eq. becomes:

" aiad n L H s s
Fp = 2z Vi _2< L1 Ui >_2< v >:2( U*/n )(11)

Yoy + ) nr+ > g nr+Us+ Vs r+Us/n+Vs/n

Ay

oy +Bu’
by the Strong Law of Large Numbers, 1T U2 9 — . Similarly, n(ll—’r) Vsi 2w — g also

Since U* is the sum of nr i.i.d. random variables distributed as Beta(c,, 8, ), which has mean

nr Ay +Bu ay+By
converges with probability 1 as n — oo. Hence, [{—f B ru and VT g(l — r)v. We therefore have,
from the Continuous Mapping Theorem, that as n — oo,

s U®/n as. U 2ru
Ff =2 ——1—— 1332 = 12
! <7“—|—Us/n—|—VS/n) (r+ru+(1—r)v) r4+ru4+v—rov (12)

Thus, F1 and Fy both converge almost surely to the same value as n — oco. Since 0 < H_ﬂ?ﬁ <

1 is bounded, E[Fy], E[F}] — m—m%ﬁ by the Bounded Convergence Theorem. This means that
the F} value is an asymptotically unbiased estimator for the expected true F';-Score, and we expect
average F-Score values to converge to F} as n — oo, under our setup. However, the F;-Score

computed from soft sets is not an unbiased estimator for the expected true F;-Score for finite n.

The proof of almost sure convergence generalizes for any metric that is a continuous function in the
ratio of each entry of the confusion matrix to n, as shown in the Supplementary Material (Sec. [I.2).
This suggests that optimizing over the desired evaluation metric using our proposed method (e.g.,
F-Score computed with soft sets) is justified, as the loss should follow our true final loss closely
for a large enough n. However, note that some metrics may be poor indicators of true classifier
performance, such as Accuracy when data is imbalanced [17]. In such cases, it may not be desirable
to optimize for such metrics using our method, as further discussed in the next section.



5 Experiments

This section presents three experiments to (1) evaluate the performance of our approach against
several baselines on tabular data, (2) evaluate our approach on higher-dimensional image data, and
(3) evaluate the ability of our method to balance precision and recall during training.

Datasets: Experiments were conducted on five publicly available datasets in a variety of domains
and were chosen for their varying levels of class imbalance as explained later. All datasets were
minimally pre-processed and split into separate train, test, and validation sets. See Sec. [4.1]of the
Supplementary Material for details.

Architecture and training: Our experiments aim to fairly evaluate our method using different
confusion-matrix based objective functions. Therefore, the same network architecture and training
scheme was used unless otherwise noted. Performance was evaluated over 10 repeated trials to
control for the effects of random weight initialization. We report the mean of results evaluated over
threshold values 7' = {0.1,0.2, ..., 0.9} for metrics that require a threshold choice at evaluation. The
details of the network architecture and training scheme are in Sec. .2 of the Supplementary Material.

Baselines: We trained networks using the typical BCE loss as well as two existing approaches for
optimizing specific confusion matrix metrics: an adversarial approach for F-score [14]], and using
an approximation of the Wilcoxon-Mann-Whitney (WMW) statistic for AUROC [39]]. Also, the Sup-
plementary Material provides comparisons with other, less related methods for binary classification.

5.1 Experiments on Tabular Data

We evaluate our proposed approach using four tabular datasets with different levels of class imbalance.
The CocktailParty dataset [40] has a 30.29% positive class balance making it the most class-balanced
dataset of those considered in this experiment. Salary classification data in the Adult dataset, from
the UCI Machine Learning Repository [11]], has a 23.93% positive class balance. Classifications of
microcalcifications in the Mammography dataset [38] is heavily skewed with a 2.32% positive class
balance. Lastly, the Kaggle Credit Card Fraud Detection dataset [36] has the most extreme class
balance with only a 0.17% positive class balance.

We compare baseline methods against the performance of neural networks trained using our method
to optimize Fj-Score, Accuracy, and AUROC. We instantiated our method using the Heaviside
approximations and soft sets. Results using the linear approximation are presented in Table[I] See the
Supplementary Material, Sec. [} for results using the sigmoid approximation, which were comparable.

Fy computed with soft sets. Our method of optimizing F over the soft-set confusion matrix out-
performs baselines when evaluated on F}-Score for all datasets. In Table ([T} line (1) has a higher
F1-Score than lines (2) and (6). Additionally, even when evaluated on the other metrics (Accuracy
and AUROC), networks trained using our method on F} perform similarly or better than BCE.

Accuracy computed with soft sets. Our method of optimizing Accuracy over the soft-set confusion
matrix has comparable performance to the BCE baseline when evaluated on Accuracy for all datasets.
In Table|l] line (3) has comparable Accuracy to line (6). Note that Accuracy can reward prediction of
only the dominant-class in imbalanced datasets [17], potentially resulting in no positive predictions
and an Fy-Score of 0, as in line (3) of Table[T] for the Mammography dataset.

Our theoretical analysis (Sec. [4.2) indicates that our proposed method of optimizing confusion-matrix
based metrics using soft-set F or soft-set Accuracy should converge to the evaluation metric (F or
Accuracy respectively) in the limit. The alternative of using BCE loss performs comparably to our
proposed method in some cases; however, BCE = —1 3" | (y;logp; + (1 — ;) log(1 — p;)) and

Accuracy = (|T'P| + |T'N|)/n are different expressions that don’t generally converge to each other
asn — oo.

AUROC computed with soft sets. Neither optimizing AUROC using our method nor optimizing
AUROC via the WMW statistic [39] consistently outperforms traditional BCE. In Table E, lines (4)
and (5) have lower F}-Score, Accuracy, and AUROC than line (6). This may be due in part to the
AUROC metric’s challenge with scale assumptions [[15]. Moreover, AUROC is not linear-fractional
[21]], unlike Fg-Score and Accuracy. Therefore, AUROC does not necessarily have an unbiased
estimator of gradient direction [[1], which may also contribute to lackluster performance.



Table 1: Losses (rows): F}, Accuracy, and AUROC via the proposed method (*) using the linear
approximation; F;-Scoref via adversarial approach [14] and AUROCT via WMW statistic [39]]. Bold
indicates performance better than or equal to the BCE baseline.

CocktailParty (1 + o) Adult (1 £+ o)
Loss  Fi-Score Accuracy AUROC F-Score Accuracy AUROC
(@) F* 0.75+0.01 0.85+0.01 0.82+001 063+0.02 0.78+0.04 0.78+0.02
2) Fit 030£0.06 0.76£0.01 0.60£0.02 0.16£0.02 0.78+0.00 0.55%+0.01

(3) Accuracy* 0.70£0.02 0.85+0.01 0.78+0.01 0.35+0.04 0.81+0.01 0.61-+0.02
(4) AUROC* 0.51£0.01 0414£0.01 0.57£0.00 042=+0.01 0.324+0.02 0.55+0.01
(5) AUROCi 0.01+0.03 0.70+£0.03 0.50+0.00 0.00£0.00 0.76=£0.00 0.50=£0.00

(6) BCE 0.70+0.02 0.85+£0.01 0.78+0.01 0.26+0.06 0.80£0.01 0.584+0.02
Mammography (¢ £ o) Kaggle (1« £ o)
Loss F1-Score Accuracy AUROC F1-Score Accuracy AUROC
@) F* 0.63+0.04 098+0.00 0.78+0.03 0.83+0.02 1.00£0.00 0.90+0.02
2) Fit 0464+0.08 0.98+0.00 0.66+0.04 0.76+0.06 1.00+0.00 0.83 £0.04

(3) Accuracy* 0.00£0.00 0.97£0.00 0.50£0.00 0.62+0.33 1.00+0.00 0.78 £0.15
(4) AUROC* 0.11£0.01 0.18£0.04 0.57£0.02 0.06+0.01 0.11+0.00 0.55=£0.00
(5) AUROC: 0.00£0.01 0.88£0.12 0.50£0.00 0.00+£0.00 0.93+0.15 0.50=+£0.00
(6) BCE 0.56£0.11 0.99+£0.00 0.71+£0.06 0.50£0.33 1.00+£0.00 0.73+0.16

Table 2: Losses (rows): F; and Accuracy via our proposed method. Bold indicates performance
better than or equal to BCE baseline.

CIFAR-10-Transportation (1 + o) CIFAR-10-Frog (1 & o)

Loss F1-Score Accuracy F1-Score Accuracy
(1) Fi*  0.91+0.00 0.93 +£0.00 0.73+0.01 0.95+0.00
(2) Accuracy* 0.92 +0.00 0.93 +£0.00 0.74+0.01 0.95+0.00
3) BCE 0.88 +0.01 0.91 £0.00 0.59 4+ 0.04 0.94 £+ 0.00

Note that in comparison to [14], the adversarial approach Fj{ did not perform as well in our
experiments. The difference could be due to different datasets, and because we used a PyTorch
implementation provided by the author while [14]] utilized Julia and Flux ML. Training networks
for the tabular datasets on F}-Score using our method on a CPU took a median time of 2.3 4+ 0.16
minutes whereas the adversarial approach on CPU took a median time of 70 £ 118 minutes.

5.2 Experiments on Image Data

We conducted experiments similar to the those in Sec. with higher dimensional data using
two different binary image datasets created from the CIFAR-10 dataset [22]]. The CIFAR-10-
Transportation and CIFAR-10-Frog datasets had a 40% and 10% positive class balance, respectively.

We focused on Accuracy and F-Score, given the limitations with AUROC found in earlier experi-
ments. We also excluded the adversarial approach to optimize F-Score [14] due to long runtime on
tabular data. Otherwise, we use the same set up from Sec.

Overall, our findings with image data in Table [2]are consistent with tabular results from Sec. [5.I. Our
method of optimizing F;-Score over the soft-set confusion matrix performed better than traditional
BCE for both datasets when evaluated on both F;-Score and Accuracy. In Table[2] line (1) has higher
scores than line (3). Results from our method of optimizing Accuracy over the soft-set confusion
matrix (line (2) in Table [2) are better than the results for BCE (line (3) in Table[2).

5.3 Experiments on Graph Data

We applied our method to a more structured representation of the examples in the CocktailParty
dataset [40]. Following Thompson et al. [35], we constructed a fully-connected graph in which each



Table 3: Graph data from the CocktailParty (1 4= o) dataset classified using a Graph Neural Network
(GNN) following Thompson et al. [35]. F; and Accuracy and via our proposed method. Bold
indicates performance better than or equal to BCE baseline.

Loss Fi-Score Accuracy

1) Fy* 0.83+0.01 0.77+0.01
(2)  Accuracy*  0.77 £0.02 0.72 £ 0.02
3) BCE 0.81 +0.03 0.75 4+ 0.03

Table 4: Mammography (i + o) dataset: Fz (8 = {1, 2, 3}) loss using the proposed method, to
balance between precision and recall while maximizing F3-Score.

Loss Fi-Score F5-Score F53-Score Precision Recall

(1) kK* 061006 057+£0.06 0.56+0.06 0.70+£0.06 0.55=£0.07
2) Fy* 063+0.04 0.67+£0.04 0.69+0.04 0.57£0.05 0.71+£0.04
3) F3* 057+0.03 0.69+0.02 0.75+0.02 0.44+£0.04 0.81£0.03

person corresponded to a node in the graph and edges held distances between people. We then used
a message-passing Graph Neural Network (GNN) [2]] to predict pairwise affinities corresponding
to whether two individuals were part of the same conversational group. This task was similar to
the experiment on tabular data (Sec. using the CocktailParty dataset, but instead of predicting
interactions among pairs of potential interactants independently, we made predictions for all the pairs
seen in a frame of the dataset simultaneously. Using the hyperparameters proposed by Thompson et
al. [35]], we obtained results (Table[3)) in line with those for the tabular data (Sec. [5.1).

5.4 Balancing Between Precision and Recall

Our method also allows training-time optimization that balances between precision and recall using
F3-Score. This approach to training is particularly useful in real-world scenarios where there is a
high cost associated with missed detections. This type of metric is difficult to optimize effectively for
using a typical BCE loss because BCE is not aware of any preference towards precision or recall.

Results in Table 4{show that using the proposed method to optimize Fg-Score is an effective way of
maintaining maximum classifier performance while balancing between precision and recall at a ratio
appropriate for a given task. Increasing values of 3 correspond to an increased preference toward
recall with small loss of total performance measured by F-Score. Similar results on optimizing for
F3-Score with additional datasets are provided in Sec. of the Supplementary Material.

6 Related work

Our work is inspired by research on the direct optimization of evaluation metrics for binary classifica-
tion. This includes plug-in methods that empirically estimate a threshold for a classifier on a metric.
For example, [26] demonstrated the applicability of plug-in classifiers to optimize F}-Score with
linear models. For metrics based on linear combinations of confusion matrix set cardinalities, [21]]
identified an optimal plug-in classifier with a metric-dependent threshold. Also, [20] explored the
Precision@K metric for linear models in the context of ranking. Our approach is not a competitor
to plug-in methods, but rather an approach to train a neural network classifier on a differentiable
approximation of a metric based on the confusion matrix. As such, it could be used in conjunction
with a plug-in method, if desired.

Works such as [[7, [19] optimized specific metrics like Precision@K and F;-Score in online learning,
which is characterized by the sequential availability of data. Our work does not address online
learning, but batch learning methods. Additionally, other work has focused on optimizing AUROC
[18L139], F-score [10}41], and AUPRC in the context of ranking [[12]]. Rather than focusing on a single
specific metric, we provide a flexible method for optimizing a neural network using approximations
of varied metrics based on the confusion matrix. For example, our experiments in Sec. [5.4/ show how
tradeoffs between precision and recall can be made by adjusting the /5 parameter of the Fz-score
during training with our method.



In the field of computer vision, differentiable surrogate losses have been proposed for the F;-Score
[6, 18]], Jaccard Index [3} 28, 29]], and Dice score [4, 24, 27, 134]]. However, since these methods are
applied to difficult problems in computer vision, they incorporate a particular surrogate, such as a
surrogate for the F}-Score, into a larger composition of losses. Mean average precision (mAP) [13]],
for example, is composed of a number of intersection-over-union (IoU) values at different thresholds
for multiple classes. We leave the study of metrics which require complex aggregation to future work.
In our experiments, we focus on evaluating the impact of individual losses approximating a desired
evaluation metric. We also evaluate the theoretical merits of optimizing a differentiable surrogate for
confusion-matrix based metrics using an approximation of the Heaviside step function and soft-set
confusion matrix values.

Recently, adversarial approaches have emerged as another related area of research. Wang et al.
[37]] used a structured support vector machine and reported performance on Precision@K as well
as Fiy-Score. Fathony and Kolter [[14], which we compare against, improved performance via a
marginalization technique that ensured polynomial time convergence. The authors evaluated their
adversarial approach on Accuracy and Fj-Score, among other metrics, while reporting performance
relative to BCE [14]]. Downsides of the latter approach are that it is limited to a small batch size, on
the order of 25 samples, and has cubic runtime complexity. Our approach does not limit batch sizes
and has a worst-case runtime complexity equivalent to the runtime complexity of the confusion-matrix
based metric being used as a loss.

7 Broader impact and ethics

Our work was motivated by the potentially wide ranging impact that more flexible and robust binary
classifiers could have across application domains such as social group dynamics, sociology, and
economics, which we explored in our experiments. Improving the tools used in these areas of research
has the potential to positively impact human quality of life, but are still susceptible to data bias. These
tools should be used with care when building safe and responsible artificial intelligence systems.

8 Conclusion

We proposed a novel method to optimize for confusion-matrix based metrics by using a Heaviside
function approximation and soft-set membership. Our method addresses the common training-
evaluation gap when working with binary neural network classifiers: these networks are typically
trained with BCE loss, but evaluated using a confusion-matrix based metric, such as F3-Score.

Our theoretical analyses showed that soft-set confusion matrix based metrics, such as F}, are Lipschitz
continuous and are likely to converge in expectation to the true metric’s expectation. Additionally, our
experiments showed the feasibility of using our method to optimize confusion-matrix based metrics.
While many factors play into final classifier performance, such as balance of samples in the dataset,
the desired evaluation metric, the approximation of H, and network hyperparameters, we found
that in many cases, final classifier performance can be improved by bridging the training-evaluation
gap using our method. In fact, optimizing model parameters for F; with soft sets resulted in better
evaluation results with F}-Score and better or comparable evaluation results with Accuracy and
AUROC. Our approach also outperformed other methods that directly optimize for a specific metric.
For example, Fathony and Kolter’s [14] adversarial approach applied to F;-Score had much longer
training time and resulted in worse performance than our approach.

In the future, we are interested in further investigation of other aspects of our approach such as
analyzing statistical sample efficiency as well as the approximation error and the generalization error.
Further, we believe studying how our method can be applied to multi-class classification problems is
an interesting area for future work.
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