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Abstract1

Close contacts between individuals provide opportunities for the transmission of diseases, including COVID-2

19. Individuals take part in many different types of interactions, including those with classmates, co-workers,3

and household members; the conglomeration of all of these interactions produces a complex social contact4

network interconnecting individuals across the population. Thus, while an individual might decide their own5

risk tolerance in response to a threat of infection, the consequences of such decisions are rarely so confined,6

propagating far beyond any one person. We asses the effect of different population-level risk-tolerance7

regimes, population structure in the form of age and household-size distributions, and different interaction8

types on epidemic spread in plausible human contact networks to gain insight into how contact network9

structure affects pathogen spread through a population. In particular, we find that behavioural changes10

by vulnerable individuals in isolation is insufficient to reduce those individuals’ infection risk and that11

population structure can have varied and counter-acting effects on epidemic outcomes. The relative impact12

of each interaction type was contingent on assumptions underlying contact network construction, stressing13

the importance of empirical validation. Taken together, these results promote a nuanced understanding of14

disease spread on contact networks, with implications for public health strategies.15



1 Introduction16

Many respiratory diseases, including influenza, tuberculosis, and COVID-19, are primarily transmitted17

through close contact between an infectious individual and a susceptible one, whether by direct physical18

contact or through expelling contaminated droplets via coughing, sneezing, or breathing [1]. While not all19

such interactions lead to a transmission event, the transmission network (i.e. the actual set of who infects20

whom in a population) is a subset of this wider contact network (i.e. the set of all interactions between21

individuals that could result in in disease transmission) [2].22

The importance of interpersonal contact for disease dynamics has been recognized for centuries, with23

isolation of infected individuals being recorded in fifteenth century Italy [3], and has become more formalized24

in recent decades [4, 5, 6]. Yet, detailing the specific ways in which the structure of contact networks relates25

to differences in disease spread between populations has been hampered by the size and complexity of human26

social networks, which are an agglomeration of many different kinds of interpersonal interactions [7]. A given27

person, for instance, will interact with some people at home (their family or housemates), others when they28

go to work (co-workers and colleagues), and yet others when they go to the local store for groceries (neighbors29

and strangers). Not only do the individuals involved in each of these sub-networks differ for any given person,30

but also the structure and intensity of interactions might likewise differ between contexts.31

Pathogens spread differently in different localities in part because of a difference in social contact network32

structure [8, 9, 10, 6], thus we might also expect disease dynamics to vary across social contexts: to spread33

differently at work than at school, through a home than through a neighbourhood. Yet, unlike the case of34

two distinct localities, these layers of interactions are also not independent from one another, linked by the35

individuals that take part in multiple layers. It is the combination of these layers into an integrated network36

detailing all possible infection pathways that affects the ultimate spread of disease through a population. But37

how much does each type of interaction contribute to this final disease spread? Can the layers be modified38

independently in order to alter a population’s risk in the face of disease spread?39

Operationalizing the connection between contact network structure and disease spread, public health40

interventions such as travel restrictions, business and school closures, and individual isolation and/or quar-41

antining seek to reduce disease spread through direct modification of the contact network [11, 12]. In short,42

such modifications seek to sever potential infection pathways through the contact network before they are43

realized, limiting the number of potential secondary cases available to a given infectious individual. These ap-44

proaches can range from hyper-local—only isolating individuals who have been confirmed to be infected—to45

society-wide—wholesale economic lockdowns and cordons sanitaire [13].46
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In their initial response to the COVID-19 pandemic, many countries imposed strict restrictions on social47

interactions—especially those within schools and workplaces [14]—with the goal of limiting disease spread48

through the mass fragmentation of societal contact networks [15]. While such efforts have, in general, been49

found to be effective both historically [16], and in the current pandemic [17, 18], they are nevertheless50

a blunt intervention. More restrained approaches, such as test-trace-quarantine can be more surgical in51

their application, but their efficacy tends to be limited by insufficient participation and high costs when52

cases are surging [4, 19, 20]. A middle ground could involve restricting certain types of interactions while53

leaving others unaffected, balancing disease mitigation and socio-economic hardship (e.g. closing schools, but54

leaving workplaces open, or vice versa). Finally, not all public health interventions seek to completely sever55

edges in the contact network. Softer approaches, such as masking, increased attention to personal hygiene,56

improved ventilation, and physical distancing can be used to reduce the strength of interactions, i.e. reduce57

the transmission rate given interaction between two individuals, rather than eliminating the interaction58

altogether [21, 22].59

In addition to differences between types of interactions, which might be relatively consistent from one60

individual to another, there are also differences between individuals both in behaviour [23, 24] and in un-61

derlying health conditions that increase the likelihood of experiencing adverse health outcomes in the event62

of infection [25]. While a decision might be made on a personal level (e.g. one person might decide to return63

to in-person work, while another might take advantage of a work-from-home option), the consequences of64

this decision have the potential to propagate far beyond a focal individual, with individuals serving as either65

bridge or firewall in a pathogen’s infection chain.66

In this work, we investigate the impact of plausible human contact network structure [26, 7, 13] on the67

spread of disease across three scales of network structure, using COVID-19 as an example. First, we consider68

differences in individual risk tolerance with respect to an individual’s contact with persons in the network69

who are at greater risk of adverse outcomes following infection (i.e. “vulnerable” individuals). Second, we70

consider the effect of wider population structure on the spread of disease, comparing two locales that differ in71

age- and household-size distributions. Finally, we add to these two considerations the relative contribution72

of two layers in the contact network (i.e. interactions between classmates at school and interactions between73

co-workers at work). We focus on these two layers in particular as they (along with household interactions)74

comprise the majority of potential transmission events in modern society [27, 28], and have been the focus75

of prior research and public health interventions, better allowing us to contextualize any results [20, 14,76

13, 29]. Taken together, the results of this investigation provide a foundation for better understanding the77
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role of contact network structure on the spread of disease, and an avenue for better targeting public-health78

interventions to limit further disease spread.79

2 Methods80

2.1 Network construction81

We constructed human contact networks by sequentially adding interaction layers to a base network of82

individuals grouped into households according to United States (US) 2019 American Community Survey83

data on the distribution of household sizes [30]. Each individual was assigned an age (according to US84

2019 American Community Survey data [31]) and a binary “vulnerable” status. Vulnerability was assigned85

according to age-adjusted hospitalization rates [32]. School-age children were then assigned to classrooms86

(using an approximate classroom size of 20 students), and pre-retirement-age adults (accounting for US87

unemployment rates) to workplaces (according to a modified distribution of US business sizes). To make88

our networks more realistic, we additionally considered the effect of community spread of disease outside89

of the structured settings of work and school (e.g. spread at the grocery store or local shopping center).90

For this, we added a layer connecting all individuals in the network to all others at a low transmission rate91

(i.e. “background transmission”).92

Each of these four network layers is a collection of distinct, fully connected sub-networks that correspond93

to households, classrooms, workplaces, or the community as a whole. By layering these networks together,94

the isolated clusters from any one layer become intertwined through the connections in other layers. For95

example, a student might be connected to an unrelated, vulnerable adult through an interaction chain96

involving a classmate interaction with a friend, a household interaction between the friend and their parent,97

and a workplace interaction between the parent and an elderly co-worker. The strength of interaction in98

the co-worker and classmate interaction layers was varied systematically to explore the relative importance99

of each of these layers, while those in the household layer (as well as background transmission) were held100

constant.101

We considered two US states as case studies for comparing differences in local population structure.102

Using US 2019 American Community Survey data (see Electronic Supplementary Material section S1 for de-103

tailed data sources), we constructed synthetic networks with age- and household-size distributions matching104

those of either Florida—a US state with a relatively high average age and small average household size—or105

Texas—a US state with a relatively low average age and large average household size (Electronic Supple-106
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Table 1: Summary statistics for networks generated for each of the two localities used in the main text.

Metric “Florida” mean (sd)1 “Texas” mean (sd)1

Number of individuals 3 001 3 000
Number school-age 503 (20.5) 648 (22.5)
Number employed 1 549 (27.4) 1 595 (27.5)
Number vulnerable 628 (22.2) 535 (20.9)

Number of households 1 212 1 056
Number households with children 462 (15.1) 517 (13.4)
Number of households with vulnerable 508 (16.3) 423 (14.9)

Total number of edges (no contact avoidance)2 24 961 (611.1) 28 411 (578.5)
Household edges 3 425 4 519
Classmate edges 5 890 (307.7) 7 744 (345.0)
co-worker edges 15 646 (593.2) 16 148 (560.5)

Edges when vulnerable individuals avoid work/school interactions 17 655 (564.1) 20 766 (570.6)
Edges when members of vulnerable households avoid interactions 7 857 (539.2) 8 605 (610.1)
1 Values are presented with both mean and standard deviation except when there was no variance, in which case the constant value

is presented.
2 “Background” transmission edges are omitted from this (and other edge) count(s). Because they connect every individual to every

other, there are always N(N − 1)/2 such edges, where N is the number of individuals in the network.

mentary Material section S2 and fig. S1). Each network was further populated with classmate and co-worker107

interaction layers, as detailed above, using the same algorithm and parameters for both localities. Networks108

were generated to have approximately the same number of individuals (3 000), which necessitates a different109

number of households in each network due to the aforementioned differences in average household size.110

Finally, we modified the above networks according to three risk-tolerance scenarios, generalizing be-111

haviours to all individuals in the population. First, we considered a population in which all individuals,112

regardless of inherent vulnerability, behave identically, fully participating in their co-worker and classmate113

interactions. Second, we considered a case where vulnerable individuals avoid those interactions (i.e. do not114

go to work/school and therefore have no co-worker or classmate interactions) in order to reduce their own115

exposure risk. Finally, we considered a case where all members of any household containing at least one116

vulnerable individual avoid co-worker and classmate interactions in an effort to reduce exposure to their117

vulnerable housemates. In all three scenarios, background and household interactions were left unchanged.118

Table 1 details differences between the networks constructed for each of the two locales and under different119

risk-tolerance scenarios.120
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2.2 Disease simulation121

Pathogen spread through the population was simulated according to modified SEIR dynamics, using a122

discrete-time, chain binomial model [33]. Specifically, individuals (nodes) in the network fell into one of123

six classes at each timestep: susceptible to infection (S), exposed but not yet infectious (E), infectious124

and symptomatic (Is), infectious and asymptomatic (Ia), recovered and immune to future infection (R), or125

a victim of disease-induced mortality (D). Transitions between classes were governed by rate parameters126

(table 2) that, when appropriate, could take two discrete values based on an individuals’ inherent vulnerability127

to severe disease.128

Explicitly, susceptible nodes can be infected at each timestep depending on their network connections:129

S
βj,i
x−−→ E.

Where βj,i
x is the rate of transmission between two nodes, one infectious (i) and one susceptible (j),130

connected by interaction type x. A susceptible individual will have the chance to be infected by each of131

their infectious interaction partners on each timestep. We considered three alternative rates of background132

transmission (table 2), but only present figures corresponding to a value of βbackground = 0.001/N (where N133

is the number of nodes in the network) in the main text. See Electronic Supplementary Material section S3134

for figures corresponding to values of 0 and 0.05/N .135

Exposed individuals’ experience disease progression at a constant rate:136

E
σ∗ρ−−→ Is, E

σ∗(1−ρ)−−−−−→ Ia.

Where σ represents the disease progression rate (the inverse of the time between becoming infected and137

becoming infectious) and ρ is the proportion of infected individuals that develop symptoms. Infectious138

individuals recover or die at constant rates (depending on their symptomaticity and inherent vulnerability):139

Is
(1− 2

3 δ(i))γ−−−−−−−→ R, Ia
(1− 2

3 δ(i))γ−−−−−−−→ R, Is
µ+δ(i)ν−−−−−→ D

Where δ(i) is an indicator function that returns 1 if an individual is vulnerable, and 0 otherwise, γ140

represents the rate of recovery, which is (approximately three times) longer for vulnerable individuals [34,141

35], µ represents a baseline mortality rate, and ν represents additional mortality experienced by vulnerable142

individuals. All disease parameters were set to literature values approximated for the initial wave (original143
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Table 2: Estimates and description of parameters for the SARS-CoV-2 model used in this work.

Parameter Description Point Estimate∗ Reference(s)
βbackground The transmission rate for community interac-

tions
0, 0.001/N , or 0.05/N

βhousehold The transmission rate for interactions between
household members

0.13
Rosenberg et al. [36],

Bar-On et al. [37]

βclassmate The transmission rate for interactions between
classmates

none†

βco−worker The transmission rate for interactions between
co-workers

none†

σ The incubation period (the inverse of the av-
erage latent period duration)

1/5.5 Bar-On et al. [37]

ρ Proportion of new infectious individuals that
are symptomatic

0.35‡ Wang et al. [38],
Bar-On et al. [37]

γ The recovery rate (the inverse of the average
duration of the infectious period)

1/4.5 Bar-On et al. [37]

µ Baseline mortality rate for symptomatic, non-
vulnerable individuals

1/27 000
The World Bank [39],

Ugarte et al. [40]

ν Additional mortality due to vulnerability 1/1 000 Bar-On et al. [37]
∗ Units are days−1 unless otherwise noted; N signifies the number of individuals in the network.
† values sampled from 10[−3,−0.5] (one for each transmission rate per simulation), where [a, b] represents a range from a to b

(inclusive) from which values were uniformly randomly sampled.
‡ this value is unit-less

Wuhan strain) of COVID-19 (table 2).144

Note that we assume: 1) per-contact transmission rates are independent of the symptomaticity of the145

infectious interaction partner, 2) all mortality is disease induced, and 3) that only symptomatic individuals146

suffer disease-induced mortality.147

Populations were seeded with a single (randomly selected) infected individual and simulations were148

allowed to run until no further infections were possible. A total of 10 000 unique combinations of classmate149

(βclassmate) and co-worker (βco−worker) transmission rates were sampled using a Latin-Hypercube approach150

[41], each parameter combination was run for each of the two localities and three risk-tolerance regimes,151

leading to a total of 60 000 simulated epidemics.152

2.3 Epidemic outcome quantification153

Epidemic spread was quantified using the total number of individuals infected, the total number of vul-154

nerable individuals infected, the average number of individuals concurrently infectious, the total number of155

individuals that died, the maximum number of concurrently infectious individuals, the number of timesteps156

to reach that peak, the number of timesteps that passed before the first vulnerable individual was infected,157
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the percentage of vulnerable households (i.e. households with at least one vulnerable member) that escape in-158

fection, and the timepoint with the highest number of deaths in the simulation (full definitions of each metric159

and correlations between metrics available in the Electronic Supplementary Material section S4 and fig. S10).160

This last metric could be considered a proxy for the anticipated time until peak hospital demand. While we161

only present a subset of these in the main text, all outcomes can be viewed in the Electronic Supplementary162

Material(in particular section S5 for those corresponding to the main text parameterization). Epidemio-163

logical outcome variables were, in general log-transformed prior to analysis, and normalized according to164

relevant aspects of network size when comparing between locales.165

All simulations were conducted in C++ version 8.1.0, with data manipulation and plotting done in R166

version 4.2.0 [42]. For specific packages used, see Electronic Supplementary Material section S6. Code167

to replicate all aspects of these analyses is available online: https://github.com/mjsmith037/Layered_168

Interactions_COVID_Model.169

3 Results & discussion170

3.1 Quantifying the effect of differential risk-tolerance behaviour171

As expected, increasing the transmission rate for classmates or co-workers increased the number of sec-172

ondary infections in an otherwise fully susceptible population (the reproduction number R0), the number173

of infectious individuals, the number of vulnerable people infected and the total number of individuals that174

died (fig. 1). Yet, for this effect was modulated by behaviour: in particular, we found that the actions of175

vulnerable individuals in isolation marginally reduced the total disease burden on the population in terms of176

number of cases and deaths, except when transmission rates were already low. However, there was a substan-177

tial reduction in these values when household members likewise avoided work/school interactions themselves178

from other individuals in the network (fig. 1). Specifically, considering only simulations in which at least179

5% of the population is infected (i.e. an epidemic occurs), for a given pair of classmate and co-worker trans-180

mission rates, we see an average reduction in peak number of infectious individuals of 42% when vulnerable181

individuals reduce their contacts, but a reduction of 77% when entire households reduce interactions. For182

deaths, a reduction of 41% when individuals reduce interactions, but over 99% when households also reduce183

their interactions. In contrast, R0 showed less difference between risk-tolerance regimes, decreasing by two184

individuals (on average) when individuals isolated, but three individuals when households also reduced their185

interactions.186
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This trend was consistent across other metrics of epidemiological outcomes, such as, the number of187

vulnerable individuals infected and the time until the first vulnerable individual is infected (Electronic Sup-188

plementary Material fig. S11). Likewise, we saw consistency across a range of transmission rates between189

classmates and between co-workers. Importantly, however, if background transmission rates are high enough,190

classmate and co-worker transmission is rendered irrelevant, precluding any substantial differences between191

behaviour treatments (average reductions in total mortality of 3% and 7%, for individuals and households192

reducing interactions, respectively; Electronic Supplementary Material fig. S6). These patterns were con-193

sistent across local population structures (i.e. Texas or Florida), so we aggregated results across locales194

for figs. 1, S2, S5, S6, S9 and S17. Additionally, these patterns were robust to alternative assumptions195

of network construction, for instance, the implementation of age-structured weighted of transmission rates196

(average reductions in total mortality of 12% and 79%, for individuals and households reducing interactions,197

respectively; Electronic Supplementary Material section S7 and fig. S14). Interestingly, these effects in198

the age-structured case occurred despite almost no change in R0 between risk-tolerance regimes (Electronic199

Supplementary Material fig. S16).200

We emphasize that the reduction in prevalence and mortality that we see when removing edges associated201

with decreased risk tolerance is not a product of reducing the number of interactions in the network, per202

se. Performing additional simulations in which the same number of edges from each interaction layer in203

the network is removed as in the risk-tolerance regime simulations described above, but choosing which204

edges within each layer to remove at random (i.e. irrespective of an individuals (contact with) vulnerable205

individuals), yields no substantial difference between link-removal treatments (average reductions in peak206

prevalence of 3% and 15%, for individuals and households reducing interactions, respectively; section S8207

and fig. S17). Put another way, it is not how many edges are removed, but rather which edges are removed208

that is critical for effective disease management.209

The absence of reduced disease burden when only vulnerable individuals change their behaviour can210

be attributed, at least in part, to the high-interaction strength expected for within-household interactions,211

limiting the efficacy of contact-reduction for vulnerable individuals sharing households with less vulnerable212

individuals. Unless the whole household takes actions to reduce their exposure, we see limited benefits213

of reducing a particular individuals exposure in isolation. This is true even if we only look at the rates214

of infection in the vulnerable individuals themselves. Moreover, because the vast majority of deaths from215

COVID-19 are individuals with underlying health conditions that provide an inherent vulnerability to adverse216

outcomes [43], reducing the number of vulnerable individuals infected has a direct effect of reducing mortality217

9



as well.218

It is important to also note that not all interaction decisions are the product of (or even align with)219

a particular individual’s risk tolerance, but rather are the combined product of individual decisions and220

systemic social and workplace structures that constrain individual behaviour. This is a critical consideration221

in the construction of policy, especially when such policies tend to be focused on individuals themselves222

and (occasionally) those directly under their care, rather than a consideration of potential interactions with223

(and consequent transmission risk to) other vulnerable individuals [44]. For instance, those with underlying224

health conditions might be able to apply for remote work with a note from a medical provider, however,225

they are less likely to be granted accommodation if their housemate is the vulnerable individual. Relatedly,226

such policies have historically been applicable only after an individual is infected, rather than allow for the227

reduction of transmission prophylactically. More effective protection of vulnerable individuals would require228

facilitating household-wide action to reduce exposures [45, 46].229

3.2 Quantifying the effect of population structure230

Beyond individual risk-management, we found intrinsic differences in epidemic dynamics between populations231

that differed in their age or household size distributions. Comparing a “Florida-like” population to a “Texas-232

like” population (just “Florida” and “Texas”, hereafter), we find consistent, slight differences in the maximum233

proportion of the population concurrently infectious (“peak proportion infectious”; means of 16% vs. 17%,234

respectively) and in the proportion of vulnerable individuals in the network that are infected over the course235

of the epidemic (75% vs. 85%; fig. 2). Note that while vulnerable individuals make up a larger proportion236

of the population, on average, in Florida (21% vs 18% in Texas), we see a higher proportion of vulnerable237

individuals getting infected in the Texas population. This is a result of the higher rate of spread (also238

indicated by the higher peak proportion infectious) in the latter population, due in part to the larger average239

household size (2.8 in Texas vs. 2.5 in Florida), and consequent higher number of strong within-household240

interactions (table 1).241

It is noteworthy that these small differences in peak proportion infectious and proportion of vulnerable242

individuals infected were insufficient to fully counter the greater intrinsic mortality risk of the Florida pop-243

ulation (6.2% of the population dying in the Florida population, 5.9% in Texas). This could be due, in part244

to the counter-acting effects of age and household size distributions. In short, the household size distribution245

of Texas tends to lead to larger outbreaks, but the larger proportion of vulnerable individuals in Florida246

means that a similar number of individuals die despite fewer total people being infected.247
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Maximum percentage of
population concurrently infectious

Percentage of vulnerable
individuals infected

Percentage of total
population that died

Florida Texas Florida Texas Florida Texas
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5%

10%

20%

30%

Figure 2: Comparing the difference in peak proportion infectious, overall prevalence among vulnerable in-
dividuals, and overall mortality between simulations of epidemics in two possible population structures,
as characterized by age- and household-size distributions (see Electronic Supplementary Material and ta-
ble 1). Florida has an (on average) older age distribution than Texas, while Texas has (on average) larger
households. Each point represents a single simulated epidemic, conducted across a range of classmate-
and co-worker transmission rates. Only simulations with no difference in behaviour based on vulnerability
and only outcomes from epidemics resulting in greater than 5% of the total population being infected are
shown (5 778 simulations for Florida, 6 297 for Texas). N.b. each panel has independent vertical axes limits.
See Electronic Supplementary Material section S3 and figs. S3 and S7 for analogous figures under different
background transmission rates and fig. S12 for alternative epidemiological outcome measures.
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These results point to the importance of understanding trade-offs and nuances in population structure248

when implementing public health interventions. For instance, when distributing effort to minimize lives-lost,249

one must consider both properties of individuals in the population (e.g. what proportion of the population250

is at increased vulnerability to adverse outcomes?) and properties of the social contact network that in-251

terconnects those individuals (e.g. what are the most likely infection pathways by which those vulnerable252

people can become infected?). The efficacy and cost efficiency of any public health efforts will depend on253

understanding these nuances and their interaction. For instance, it may be more effective to isolate young254

family members of vulnerable individuals than vulnerable individuals themselves, since the latter tend to be255

older and have fewer social interactions to begin with [27].256

Of course, the social and economic consequences of any intervention (which may be related to the total257

number of interactions removed under intervention) must likewise be taken into consideration [47]. Criti-258

cally, the effects of public policies have unequal effects across a population: school closure most negatively259

affects less-educated families [48], wealthier individuals are more able to tolerate (and comply with) travel260

restrictions [49, 47], and already marginalized communities often bear the brunt of adverse medical out-261

comes [50]. Likewise, the distribution of underlying medical conditions is not distributed uniformly across262

the population, often correlating with race and socio-economic status [51, 52]. Thus, an intervention focused263

on (families of) vulnerable individuals, will necessarily also have disparate social and financial impact on264

these already marginalized individuals. In short, while this study focuses on generic effects of contact net-265

work structure on disease spread, real-world applications must additionally consider the specifics of which266

individuals are affected by a policy decision.267

3.3 Quantifying effects of interaction types268

While it is difficult to disentangle the web of interactions that make up modern societies, we used linear269

models to investigate the effects of a given change in interaction strength in one layer on the rate or extent270

of disease spread in the population.271

We found that a change in the co-worker transmission rate consistently resulted in a larger change in272

epidemic outcome than a similarly sized change in the classmate transmission rate (fig. 3). For example, an273

increase in co-worker transmission rate will have approximately twice the effect on peak proportion infectious,274

total death burden, and time to that peak than will a similar increase in classmate transmission. When275

considering the scenario of no change in behaviour based on vulnerability, this ratio climbs to approximately276

3. Consistent with results in fig. 1, we saw smaller slopes (and reduced differences between the effects of277
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different network layers)for total number of deaths when households containing vulnerable individuals limited278

exposure. Consistent with fig. 2, we saw that changes in transmission rates tended to have a larger effect279

(i.e. model coefficient magnitude) on epidemic size in Texas, and on mortality in Florida (driven mostly by280

workplace interactions).281

This is driven in part by the difference in the number of interactions in the network associated with each282

layer of the network. Because there are more individuals of working age than of school age, and because283

workplaces can potentially be much larger than classrooms, there tends to be more co-worker interactions284

in a given network than classmate interactions. While this is dependent upon the assumptions underlying285

construction of these simulated contact networks, it is also generically true of the real human contact net-286

works that inspired our approach. In most real-world societies, there are more working-age individuals than287

children, and workplaces can potentially be orders of magnitude larger than school classrooms. The fact288

that these results seem to be robust to imbalance in interaction strength suggests that network structure289

(broadly construed) may have a larger role to play than pairwise interaction strength, at least for a highly290

transmissible disease like COVID-19.291

While the surface-level implication of these results is that efforts should be focused on workplaces, rather292

than classrooms (and this is reinforced by evidence that, at least for early strains of SARS-CoV-2, trans-293

mission to, from, and among children may be less than that among adults; [36, 53, 54, 55]), schools still294

contribute meaningfully to disease spread, especially when considering some of the more recent (and more295

transmissible) strains of SARS-CoV-2 [56]. Critically, alternative assumptions of mixing patterns could lead296

to a different distribution of interactions between network layers. For instance, modelling schools as single297

units and using age-structure to inform transmission rates between students (rather than clustering students298

into discrete classroom units) produces networks with more classmate interactions than co-worker interac-299

tions (Electronic Supplementary Material section S7, table S1). In these networks, classmate interactions300

are therefore seen to been more consequential for some epidemiological outcomes, such as peak proportion301

infectious, while for others co-worker interactions still have a greater effect, such as total number of individ-302

uals infected (Electronic Supplementary Material fig. S15). It is also important to note that, in both cases,303

the internal structure of workplace interaction networks are likewise highly connected. Compartmentalizing304

workers, improving personal hygiene, ensuring adequate ventilation and air filtration, and supporting per-305

sonal protective equipment usage can all alter the number and strength of interactions within the network.306

Such interventions would reduce the overall impact of workplace interactions on disease spread.307
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4 Limitations & future directions308

While the networks used in this study are inspired by empirical human contact networks, there were nonethe-309

less many assumptions built into their construction that are necessarily unrealistic. Future studies could,310

for example, consider differences in fine-scale network structure between interaction types, add additional311

explicit interaction layers, and increase network size to better reflect a whole urban area. In particular,312

one might nest individual classrooms within a less-strongly connected collection to represent a school, where313

interactions can likewise occur in public spaces such as the cafeteria or library [26, 57]. Such interactions314

are increasingly likely as schools relax their physical distancing requirements. Similarly, there might be315

differences in between- and within-classroom structure for differently aged students. Within workplaces,316

there might be a hierarchical network structure, where some peoples (e.g. managers) might interact with a317

collection of individuals that otherwise have little interaction with one another. Finally, we focused on only318

two types of interactions: those between classmates and those between co-workers. Clearly, there are myriad319

other ways in which individuals interact with one another, each of which might be structured in unique ways.320

Simulating disease upon interaction networks is, in general, computationally limited by the number of321

edges in the network. To reduce simulation complexity and maximize modelled population sizes, we modelled322

the fully-connected background transmission layer (in which every individual is connected to all others323

in the population) implicitly as as a prevalence-mediated risk of spontaneous infection at each timestep.324

That is, the higher the community prevalence, the more likely an individual is to be infected by some325

pathway other than the explicit connections in classrooms, workplaces, and households. In the Electronic326

Supplementary Material (section S7), we consider an alternative construction, where background edges are327

explicitly described by age-structured interactions [58]. In these simulations, we favoured age-structure over328

compartmentalization as a guiding assumption for network construction, leading to more connected networks,329

albeit with greater variation in interaction strength. Yet, this added realism (in some respects) comes with330

a cost of a reduction in the maximally computationally-feasible population size. The ability to simulate331

upon larger populations would moreover allow for additional levels of organization in our communities, for332

instance considering the inherent compartmentalization of small towns distributed on a landscape.333

This study was in part limited by available data sources. While national-level data is readily available334

for most elements of our network generation, the same data for localities (even at the level of US states) is335

less accessible. An additional consideration is covariance between different aspects of population structure,336

where most data sources are segmented. For instance, one might assume that larger households have a lower337

average age (i.e. more children), yet age and household-size distributions are only available independently338
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through the US Census American Community Survey.339

In our disease model, we utilized disease parameters corresponding to the initial wave of COVID-19,340

despite substantial strain evolution since that time. Because our focus in this work is not on any one disease341

in particular, we opted to use an older strain for the increased availability and reliability of parameter342

estimates. These literature-based parameters additionally result in mortality being almost exclusively among343

vulnerable individuals—a trait we treated as binary and assigned based on post hoc empirical hospitalization344

rates. A more robust approach would be to consider the distribution of specific underlying health conditions345

within the population and their relative contribution to adverse outcomes. Critically, this approach also346

assumes constant mortality rates, disregarding a known relationship in which increased hospital occupancy347

results in worse disease outcomes [59].348

5 A note on generality349

In the midst of an ongoing pandemic of COVID-19, much of the inspiration for this work, and literature350

referenced herein has considered this one disease in particular. Nevertheless, the results presented here stem351

from a disease model that could be applied to many transmissible diseases with minimal modification. Even in352

the consideration of SARS-CoV-2, as new strains arise, resulting in altered rates of transmission, progression,353

recovery, and/or mortality, we expect the fundamental effects of network structure on disease spread to354

persist. For instance, as COVID-19 mortality rates have sequentially declined over the past two years,355

focus has shifted from mortality to hospitalization. As the drivers behind hospitalization and mortality are356

largely equivalent [60, 61], one could apply this same framework in the context of hospitalization. Likewise,357

vaccination (depending on efficacy) can be thought of as equivalent to either removing interactions (as in358

isolation) or reducing interaction strength (as in increased mask usage). Thus, omitting consideration of the359

additional benefits of reduced disease severity on the vaccinated individual, vaccination strategy could mirror360

consideration of physical distancing recommendations in this work. Importantly, when reduction of disease361

severity is additionally considered, previous work has suggested that prioritizing vulnerable individuals is362

most efficacious [62].363

6 Conclusion364

Our simulations reinforce the consequences of our highly connected, modern society on disease spread. In365

short, we find that decisions are rarely “personal” when it comes to public health, and the policies and health366
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decisions of a population can have dramatic effects of the spread of disease. Action by vulnerable individuals367

in isolation does little to reduce their disease burden, suggesting that policies should additionally consider368

the potential for next-order transmission to vulnerable individuals from the less-vulnerable individuals that369

interact with them. Additionally, a population’s composition and social contact network structure can370

have marked effects on disease prevalence and mortality, though in our analysis these relationships were371

slight and sometimes resulted in counter-intuitive results whereby rapid disease spread can counteract the372

benefit of an otherwise less-vulnerable population. Finally, the structure of workplaces potentially provides373

greater avenues for disease spread than do schools, but these effects are highly dependent on both how374

workplaces/schools are structured, as well as the utilization and efficacy of non-pharmaceutical interventions375

in each of these contexts.376

While over-interpretation of specific values should be avoided in purely simulation-based studies such as377

these, comparisons between different simulations can nevertheless provide insight into the relative importance378

of different components of a contact network on the rate and extent of disease spread. By comparing379

simulations across constrained axes of variation, such as types of interactions, differences in personal risk380

tolerance (or systemic structures and policies), and different population structures, we glean insights into381

how the different layers of social contact networks can have different levels of importance when it comes382

to containing epidemic spread. We can use this nuanced understanding to better inform and differentiate383

between public health strategies.384
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