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Abstract

Learning from label proportions (LLP) is a weakly supervised classification prob-
lem where data points are grouped into bags, and the label proportions within
each bag are observed instead of the instance-level labels. The task is to learn a
classifier to predict the labels of future individual instances. Prior work on LLP
for multi-class data has yet to develop a theoretically grounded algorithm. In this
work, we propose an approach to LLP based on a reduction to learning with label
noise, using the forward correction (FC) loss of Patrini et al. [30]. We establish an
excess risk bound and generalization error analysis for our approach, while also
extending the theory of the FC loss which may be of independent interest. Our
approach demonstrates improved empirical performance in deep learning scenarios
across multiple datasets and architectures, compared to the leading methods.

1 Introduction

In the weakly supervised problem of learning from label proportions (LLP), the learner is presented
with bags of instances, where each bag is annotated with the proportions of the different classes in
the bag. The learner’s objective is to produce a classifier that accurately assigns labels to individual
instances in the future. LLP arises in various applications including high energy physics [7], election
prediction [45], computer vision [4, 20], medical image analysis [2], remote sensing [8], activity
recognition [32], and reproductive medicine [12].

To date, most methods for LLP have addressed the setting of binary classification [50, 36, 39, 34,
41, 44, 24, 37, 38], although multiclass methods have also recently been investigated [9, 22, 46].
The dominant approach to LLP in the literature is “label proportion matching”: train a classifier to
accurately reproduce the observed label proportions on the training data, perhaps with additional
regularization. In the multiclass setting, the Kullback-Leibler (KL) divergence between the observed
and predicted label proportions is adopted by the leading approaches to assess proportion matching.
Unfortunately, while matching the observed label proportions is intuitive and can work well in some
settings, it has little theoretical basis [50, 38], especially in the multiclass setting, and there are natural
settings where it fails [50, 39].

Recently, Scott and Zhang [39] demonstrated a principled approach to LLP with performance
guarantees based on a reduction to learning with label noise (LLN) in the binary setting. Their basic
strategy was to pair bags, and view each pair of bags as an LLN problem, where the observed label
proportions are related to the “label flipping” or “noise transition” probabilities. Using an existing
technique for LLN based on loss correction, which allows the learner to train directly on the noisy
data, they formulated an overall objective based on a (weighted) sum of objectives for each pair of
bags. They established generalization error analysis and consistency for the method, and also showed
that in the context of kernel methods, their approach outperformed the leading kernel methods.
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The objective of the present paper is to develop a theoretically grounded and practical approach to
multiclass LLP, drawing inspiration from Scott and Zhang [39]. The primary challenge stems from
the fact that Scott and Zhang [39] employed the so-called “backward correction” loss, which solves
LLN by scaling the output of a loss function of interest according to the noise transition probabilities
[28, 30, 35]. While this loss correction was demonstrated to work well for kernel methods in a binary
setting, Patrini et al. [30] introduced an alternative loss correction that performs better empirically in
deep learning settings (see also [53]). They proposed the “forward correction” loss, which scales
the inputs to a loss function of interest according to the noise transition probabilities. Patrini et al.
[30] find that backward correction “does not seem to work well in the low noise regime,” and is “a
linear combination of losses” with “coefficients that can be far [apart] by orders of magnitude ” which
“makes the learning harder”.

The present work is thus inspired by Scott and Zhang [39] but uses the forward correction (FC)
loss in a multiclass setting. This requires a number of technical modifications to the arguments of
Scott and Zhang [39]. Most notably, it now becomes necessary to demonstrate that the FC loss is
calibrated with respect to the 0-1 loss, a critical property needed for showing consistency. Such
analysis is inherently not needed when using the backward correction, where the target excess risk
is proportional to the surrogate excess risk (from which calibration follows trivially). Furthermore,
Scott and Zhang [39] does not require analysis of proper composite losses, which are needed in the
FC framework. Finally, the multiclass setting involves new estimation challenges not present in the
binary case. These factors mean that our work is not a straightforward extension of Scott and Zhang
[39]. Indeed, the authors of a recent report acknowledge that it is “difficult to extend [the method of
Scott and Zhang [39]] to multiclass classification" [16].

Additional related work: Much work on LLP has focused on learning specific types of models,
including support vector machines [36, 50, 47, 33, 5, 19, 40], probabilistic models [18, 13, 45, 32,
12], random forests [41], neural networks [21, 1, 9, 22, 46], and clustering-based models, [3, 44].
Many of these works develop learning criteria that are specific to the model being learned.

On the theoretical front, Quadrianto et al. [34] and Patrini et al. [30] initiated the learning theoretic
study of LLP, introducing Rademacher style bounds for linear methods, but they do not address
consistency w.r.t. a classification performance measure. Yu et al. [51] provides support for label
proportion matching but only under the assumption that the bags are very pure. Saket [37] studies
learnability of linear threshold functions. Recently Saket et al. [38] introduced a condition under
which label proportion matching does provably well w.r.t. a squared error loss in the binary setting,
and developed an associated algorithm. This method does not scale easily to large datasets, and further
requires knowledge of how bags are grouped according to different bag-generating distributions.

A handful of recent papers have studied multiclass LLP in deep learning scenarios. Dulac-Arnold et al.
[9] study the KL loss for label proportion matching, and a variant based on optimal transport. Liu et al.
[22, 23] examine an approach based on generative adversarial models. Tsai and Lin [46] study the use
of a regularizer derived from semi-supervised learning. One challenge common to these approaches is
that their implementations employ mini-batches of bags, which becomes computationally prohibitive
for large bag sizes when the batch size is still very small, e.g., 2 or 3 bags. In contrast, our approach
avoids this issue. Finally, a recent technical report presents a risk analysis for multiclass LLP under
the assumption of fixed bag size, which we do not require [16]. Their method is not tractable for
large bag sizes in which case they approximate their objective “using the bag-level loss proposed in
the existing research."

Contributions and Outline: Our contributions and the paper structure are summarized as follows.
In Section 2, we review the FC loss as a solution to LLN. In Section 3, we extend the theory of the
FC loss for LLN. In particular, we show that the FC loss is “uniformly calibrated” with respect to
the 0-1 loss using the framework of Steinwart [43], establish an excess risk bound, and determine an
explicit lower bound on the calibration function in terms of the noise transition matrix. In Section 4,
we extend the results of Section 3 to the setting with multiple noise transition matrices, which form
the basis of our approach to LLP. In particular, we establish an excess risk bound and generalization
error analysis for learning with multiple noise transition matrices, which in turn enables proofs of
consistency. In Section 5, we state the probabilistic model for reducing LLP to LLN with multiple
different noise transition matrices and present the LLPFC algorithms. Experiments with deep neural
networks are presented in Section 6, where we observe that our approach outperforms competing
methods by a substantial margin. Proofs appear in the supplemental material.
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2 Learning with Label Noise and the Forward Correction Loss

This section sets notation and introduces the FC loss as a solution to learning with label noise. Let X
be the feature space and Y = {1, 2, . . . , C} be the label space, C 2 N. We define the C-simplex as
�C = {p 2 RC : pi � 0, 8i = 1, 2, . . . , C,

P
C

i=1 pi = 1} and denote its interior by �̊C . Let P be a
probability measure on the space X ⇥ Y .

Viewing P as the “clean” probability measure, a noisy probability measure with label-dependent
label noise can be constructed from P in terms of a C ⇥ C column-stochastic matrix T , referred
to as the noise transition matrix. Formally, we define a measure P̄T on X ⇥ Y ⇥ Y by requiring
8 events A ⇢ X , P̄T (A ⇥ {i} ⇥ {j}) = P (A ⇥ {i})tj,i where tj,i is the element at the j-th row
and i-th column of T . Let (X,Y, Ỹ ) have joint distribution P̄T where X is the feature vector, Y
is the “clean” label, and Ỹ is the “noisy” label. Thus the element of T at row i and column j is
ti,j = P̄T (Ỹ = i|Y = j). In addition, P is the marginal distribution of (X,Y ). Define PT to be the
marginal distribution of (X, Ỹ ). Let F be the collection of all measurable functions from X to �C .

The existence of a regular conditional distribution is guaranteed by the Disintegration Theorem (e.g.
Theorem 6.4 in Kallenberg [14]) under suitable properties (e.g. when X is a Radon space). While
the existence of regular conditional probability is beyond the scope of this paper, we assume fixed
regular conditional distributions for Y and Ỹ given X exist, denoted by P (· | ·) : Y ⇥ X ! [0, 1]
and PT (· | ·) : Y ⇥ X ! [0, 1], respectively. Given x 2 X , we define the probability vectors
⌘(x) = [P (1 | x), . . . , P (C | x)]tr and ⌘T (x) = [PT (1 | x), . . . , PT (C | x)]tr where we use tr to
denote transposition. It directly follows that ⌘T (x) = T⌘(x).

We use R+ to denote the positive real numbers. The goal of LLN is to learn a classifier that optimizes
a performance measure defined w.r.t. P , given access to corrupted training data (Xi, Ỹi)

i.i.d.
⇠ PT . In

this work we assume T is known or can be estimated, as is the case when we apply LLN techniques
to LLP (see Section 5). A more formal formulation of LLP is given in Section 5.

When attempting to minimize the risk associated to the 0-1 loss and the clean distribution P , it
is common to employ a smooth or convex surrogate loss. For LLN problems, the idea of a loss
correction is to modify the surrogate loss so that when optimized using the noisy data, it still achieves
the desired goal. Below, we introduce the forward correction loss, before which we need to define
inner risk and proper loss. For this purpose we focus on loss functions of the form L : �C

⇥ Y ! R.
Definition 1. Let L : �C

⇥ Y ! R be a loss function. The inner L-risk at x with probability
measure P is CL,P,x : �C

! R, CL,P,x(q) := EY⇠P (·|x)L(q, Y ). The minimal inner L-risk at x
with a probability measure P is C⇤

L,P,x
:= infq2�C CL,P,x(q).

Definition 2. ` : �C
⇥ Y ! R is a proper loss if 8 probability measures P on X ⇥ Y , 8x 2

X , C
⇤

`,P,x
= C`,P,x(⌘(x)), and a proper loss is called strictly proper if the minimizer of C`,P,x is

unique for all x 2 X .

Commonly used proper losses include the log loss `log(q, c) = � log qc, the square loss `sq(q, c) =P
C

c0=1( c=c0 � qc0)
2, and the 0-1 loss `01(q, c) = c6=min{argmaxj qj}

, among which only the log
loss and the square loss are strictly proper [49]. Here denotes the indicator function. Note that it is
common to compose proper losses with inverted link functions, leading to familiar losses like the
cross-entropy loss. Such losses are discussed further in Section 4.

We are now ready to introduce the forward correction loss.
Definition 3. Let ` be a strictly proper loss and let T be a noise transition matrix. Define the forward
correction loss of ` as `T : �C

⇥ Y ! R, `T (q, c) := `(Tq, c).

It follows from the definition that, if T is invertible, then the inner `T -risk under the distribution PT

has a unique minimizer ⌘(x). Next we introduce L-risk and L-Bayes risk associated with a loss L.
Definition 4. Let L : �C

⇥ Y ! R and P be a probability measure. Define the L-risk of f with
distribution P to be RL,P : F ! R, RL,P (f) := EP [L(f(X), Y )] and the L-Bayes risk to be
R

⇤

L,P
:= inff2F RL,P (f).

We callRL,P (f)�R
⇤

L,P
the excess L-risk of f under distribution P . Given a proper loss `, Theorem

2 of Patrini et al. [30] establishes Fisher consistency of the FC loss, meaning the minimizer of `-risk
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under the clean distribution P is the same as the minimizer of `T -risk under noisy distribution PT :
argmin

f2F
RL,P (f) = argmin

f2F
R`T ,PT (f). Next, we present a stronger result relating the

excess `T -risk under the noisy distribution PT to the excess 0-1 risk under the clean distribution P .

3 Calibration Analysis for the Forward Correction Loss

Our objective in this section is to show that when L is the 0-1 loss and ` is a continuous strictly proper
surrogate loss, there exists a strictly increasing, invertible function ✓ with ✓(0) = 0 such that 8f 2 F

and 8 distributions P , ✓
�
RL,P (f)�R

⇤

L,P

�
 R`T ,PT (f)�R

⇤

`T ,PT
. Given such a bound, it follows

that consistency w.r.t the surrogate risk implies consistency w.r.t. the target risk. The results in
this section are standalone results for the FC loss that may be of independent interest, and will be
extended in the next section in relation to LLP. The following theorem guarantees the existence of
such function ✓, given that T is invertible.

Theorem 5. Let ` be a continuous strictly proper loss and T be an invertible column-stochastic
matrix. Let L be the 0-1 loss. Assume R

⇤

`T ,PT
< 1. Then 9✓ : [0, 1] ! [0,1] that is

strictly increasing and continuous, satisfying ✓(0) = 0, such that 8f 2 F ,RL,P (f) � R
⇤

L,P


✓
�1
⇣
R`T ,PT (f)�R

⇤

`T ,PT

⌘
.

The function ✓ in Theorem 5 depends on ` and T . The following proposition provides a convex lower
bound on ✓ for the commonly used log loss `log(q, c) = � log qc. LetM 2 RC⇥C be a matrix and let
k · k be a norm on RC . The subordinate matrix norm induced by k · k is kMk := sup

x2RC :x 6=0
kMxk

kxk
.

When k · k is the 1-norm on RC , the induced norm is denoted kMk1, referred to as the matrix 1-norm,
and can be computed as kMk1 = max1jC

P
C

i=1 |M(i, j)| [10].

Proposition 6. Let T 2 RC⇥C be an invertible, column-stochastic matrix. Define ✓
T
: [0,1] !

[0,1] by ✓
T
(✏) = 1

2
✏
2

kT�1k2
1
. If L is the 0/1 loss, ` is the log loss, then for all f 2 F and distributions

P , RL,P (f)�R
⇤

L,P
 ✓

�1
T

⇣
R`T ,PT (f)�R

⇤

`T ,PT

⌘
=

p
2kT�1

k1

q
R`T ,PT (f)�R

⇤

`T ,PT

The factor kT�1
k1 may be viewed as a constant that captures the overall amount of label noise.

The more noise, the larger the constant. For example, let I and N be the identity and the all 1/C’s
matrices, respectively. Let ↵ 2 [0, 1] and T = (1�↵)I +↵N . Thus, ↵ = 0 represents the noise-free
case and ↵ = 1 the noise-only case. It is easy to verify that T�1 = (1 � ↵)�1(I � ↵N) and
kT

�1
k1 = (1� ↵)�1(1 + (1� 2/C)↵).

4 Learning with Multiple Noise Transition Matrices

Our algorithms for LLP, formally stated in subsection 5.4, reduce the problem of LLP to LLN by
partitioning bags into groups and modeling each group as an LLN problem. Since each group has its
own noise transition matrix, this leads to a new problem that we refer to as learning with multiple
noise transition matrices (LMNTM). In this section, we show how to extend the calibration analysis
of section 3 to this setting. In addition, we offer a generalization error bound that justifies an empirical
risk minimization learning procedure based on a weighted sum of FC losses.

4.1 Learning with Multiple Noise Transition Matrices

We first define the LMNTM problem formally. For all n 2 N, denote Nn = {1, 2, . . . , n}. Consider
a clean distribution P on X ⇥ Y and noise transition matrices T1, T2, . . . , TN . For each i we denote
the noisy prior as the ↵i 2 �̊C where, 8c 2 Y , ↵i(c) = PTi(Ỹ = c). We assume the ↵i’s are known
for theoretical analysis. In practice, ↵i is estimable as discussed below. In LMNTM, we observe data
points S =

�
Xi,c,j : i 2 NN , c 2 Y, j 2 Nni,c

 
where Xi,c,j

iid
⇠ PTi(· | c), and ni,c 2 N is the

number of data points drawn from the class conditional distribution PTi(· | c). Assume all Xi,c,j’s
are mutually independent. We make additional remarks on this setting in Section C.1 in the appendix.
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4.2 A Risk for LMNTM

The following result extends Theorem 5 to LMNTM. It establishes that the risk eR`,P,T , which can be
estimated from LMNTM training data, is a valid surrogate risk. This type of result is not needed for
the backward correction approach of Scott and Zhang [39].
Theorem 7. Let L be the 0-1 loss and N 2 N. Consider a sequence of invertible column-stochastic
matrices T = {Ti}

N

i=1 and a continuous strictly proper loss function `. Let w = (wi)
N

i=1 2 �N .
Define eR`,P,T : F ! R by eR`,P,T (f) :=

P
N

i=1 wiR`Ti ,PTi
(f) and eR⇤

`,P,T
= inff2F

eR`,P,T (f).
Assume 8i 2 {1, 2, . . . , N},R

⇤

`Ti ,PTi
< 1. Then 9 a strictly increasing continuous function ✓ :

[0, 1] ! [0,1] with ✓(0) = 0 s.t. for all P , 8f 2 F , ✓
�
RL,P (f)�R

⇤

L,P

�
 eR`,P,T (f)� eR⇤

`,P,T
.

The weights wi allow the user flexibility, for example, to place different weights on noisier or larger
subsets of data. Unlike Scott and Zhang [39], however, because the weights appear in both our excess
risk bound and generalization error bound, it is not straightforward to optimize them a priori. We
discuss weight optimization in detail in Section F in the appendix.

4.3 Generalization Error Bound

The aggregate risk eR`,P,T is desirable because it can naturally be estimated from the given data. We
propose the empirical risk

R̂w,S(f) =
NX

i=1

wi

CX

c=1

↵i(c)

ni,c

ni,cX

j=1

`Ti(f(Xi,c,j), c). (1)

It should be noted that R̂w,S(f) is an unbiased estimate of R̃`,P,T (f). Here we establish a general-
ization error bound for this estimate which builds on Rademacher complexity analysis .

To state the bound, we must first introduce the notion of a proper composite loss [49]. This stems
from the fact that in practice, a function f outputting values in�C is typically obtained by composing
a RC-valued function (such as a neural network with C output layer nodes), with another function
RC

! �C such as the softmax function. Thus, let  : U ⇢ �C
! V be an invertible function where

V is a subset of a normed space, referred to as an invertible link function. Consider G ⇢  � F :=
{ � f : f 2 F}, and observe that 8g 2 G, 

�1
� g 2 F . In practice,  is fixed and we seek to learn

g 2 G that leads to an f 2 F with a risk close to the Bayes risk. An example of  �1 is the softmax
function so that  : U ! V, i(p) = log pi �

1
C

P
C

k=1 log pk, ( 
�1)

i
(s) = e

siPC
k=1 e

sk
where U is

the interior of �C and V = {s 2 RC :
P

C

i=1 si = 0}. This motivates the following definition.

Definition 8. Given an invertible link function  : U ⇢ �C
! V , we define the proper composite

loss �` of a proper loss ` : �C
⇥ Y ! R to be �` : V ⇥ Y ! R, �`(v, c) = `

�
 
�1(v), c

�
.

For example, when ` is the log loss and  
�1 is the softmax function, �` is the cross-entropy (or

multinomial logistic) loss. With this notation, we are now able to state our generalization error bound
for LMNTM. We study two popular choices of function classes, the reproducing kernel Hilbert space
(RKHS) and the multilayer perceptron (MLP). We use G1 to denote the Cartesian product of C balls
of radius R in the RKHS and G2 to denote a multilayer perceptron with C outputs.
Definition 9. Let k be a symmetric positive definite (SPD) kernel, and let H be the associated
reproducing kernel Hilbert space (RKHS). Assume k is bounded byK, meaning 8x, kk(·, x)k

H
 K.

Let Gk

K,R
denote the ball of radius R in H. Define G1 = G

k

K,R
⇥ G

k

K,R
⇥ · · ·⇥ G

k

K,R
(C copies).

We follow Zhang et al. [54] and define real-valued MLPs inductively:
Definition 10. Define N1 =

�
x ! hx, vi : v 2 Rd

, kvk2  �
 
, and for m > 2, inductively define

Nm =
n
x !

P
d

j=1 vjµ(fj(x)) : v 2 Rd
, kvk1  �, fj 2 Nm�1

o
, where � 2 R+ and µ is a 1-

Lipschitz activation function. Define an MLP which outputs a vector in RC by G2 = Nm ⇥Nm ⇥

· · ·⇥Nm (C copies). We additionally assume that the choice of µ satisfies 8m 2 N, 0 2 µ �Nm.
Theorem 11. Let T1, T2, . . . , TN be invertible column-stochastic matrices. Let ` be a proper loss
such that 8i, c the function �`Ti

(·, c) is Lipschitz continuous w.r.t. the 2-norm. Let S be the set of
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data points as defined in Section 4.1. Assume sup
x2X ,g2Gq

kg(x)k2  Aq for some constant Aq,

8q 2 {1, 2}. Let R̂w,S be as defined in equation (1). eR(g) := eR`,P,T

�
 
�1

� g
�
= ES

h
R̂w,S(g)

i
.

Then for each q 2 {1, 2}, 8� 2 [0, 1], with probability at least 1� �,

sup
g2Gq

���R̂w,S(g)� eR(g)
���  (max

i

(
���`Ti

��Aq +
���`Ti

��
0
)

r
2 log

2

�
+ CBq max

i

���`Ti

��)

vuut
NX

i=1

CX

c=1

w
2
i

ni,c

.

where Bq is a constant depending on Gq ,
���`Ti

��
0
= maxc

���`Ti
(0, c)

��, and
���`Ti

�� is the smallest real
number such that it is a Lipschitz constant of �`Ti

(·, c) for all c.

Theorem 11 is a special case of of Lemma 26 which extends the notion of Rademacher complexity to
the LMNTM setting and applies to arbitrary function classes. Lemma 26 is presented in the appendix.

Let HMi denote the harmonic mean of ni,1, . . . , ni,C , i.e., HMi = CPC
c=1

1
ni,c

. The

term
qP

N

i=1

P
C

c=1
w

2
i

ni,c
could be written as

q
C
P

N

i=1
w

2
i

HMi
and is optimized by wi =

HMi/
P

N

m=1 HMm, leading to
qP

N

i=1

P
C

c=1
w

2
i

ni,c
=
q

CPN
i=1 HMi

. The term
q

CPN
i=1 HMi

van-
ishes (needed to establish consistency) when N goes to infinity, or when 9i s.t. 8c, ni,c goes to
infinity. For the special case where all bags have the same size n and all weights wi are 1/N ,qP

N

i=1

P
C

c=1
w

2
i

ni,c
=
q

C

Nn
. Thus, consistency is possible even if bag size remains bounded. As-

suming ` is the log loss and  
�1 is the softmax function, we next study the constants

���`Ti

�� and���`Ti

��
0
.

Proposition 12. Let ` be the log loss,  �1 be the softmax function, and T be a column-stochastic
matrix. Then |�`T | 

p
2.

The constant |�`T |0 = maxc|�`T (0, c)| = maxc � log( 1
C

P
C

j=1 tc,j). The invertibility of T guar-
antees

P
C

j=1 tc,j is positive and hence the finiteness of |�`T |0. However, if we have a “bad" T ,
P

C

j=1 tc,j could be arbitrarily close to 0 leading to a large |�`T |0.

Following Theorem 11, if the function class G has a universal approximation property, such as an
RKHS associated to a universal kernel, or an MLP with increasing number of nodes, consistency for
LMNTM via (regularized) minimization of R̂w,S(g) can be shown by leveraging standard techniques,
provided N ! 1 (bag size may remain bounded). Then the excess risk bound in Theorem 7 would
automatically imply consistency with respect to 0-1 loss.

5 The LLPFC algorithms

In this section, we define a probabilistic model for LLP, show how LLP reduces to LMNTM, and
introduce algorithms that we refer to as the LLPFC algorithms.

5.1 Probabilistic Model for LLP

Given a measure P on the space X ⇥ Y , let {Pc : c 2 Y} denote the class-conditional distributions
of X , i.e., 8 events A ⇢ X , Pc(A) = P (A | Y = c). Let �(c) = P (Y = c), 8c 2 Y and call � =
(�(1), . . . ,�(C)) the clean prior. Assume 8c 2 Y,�(c) 6= 0. Given z = (z(1), . . . , z(C)) 2 �C , let
Pz be the probability measure on X ⇥ Y s.t. 8 events A ⇢ X , 8i 2 Y, Pz(A⇥ {i}) = z(i)Pi(A).
Thus Pz has the same class-conditional distributions as P but a variable prior z.

We first define a model for a single bag. Given z 2 �C , we say that bag b is governed by
z 2 �C if b is a collection of feature vectors

�
Xj : j 2 N|b|

 
annotated by label proportion

ẑ = (ẑ(1), ẑ(2), . . . , ẑ(C)), where |b| denotes the cardinality of the bag, each Xj is paired with
an unobserved label Yj s.t. (Xj , Yj)

iid
⇠ Pz , and ẑ(c) = 1

|b|

P
|b|

j=1 Yj=c. Note EPz [ẑ] = z and
Pz(Yj = c) = z(c). We think of z as the true label proportion and ẑ as the empirical label proportion.
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Figure 1: The gray triangle represents the probability
simplex �3. The squares represent �1, �2, and �3. The
cross is �. The ternary graph on the left visualizes an
example where Assumption 13 holds. The one on the
right visualizes an example where Assumption 13 fails.

Using this model for individual bags, we now formally state a model for LLP. Given bags {bk},
let each bk be governed by �k. Each bk is a collection of feature vectors

�
X

k

j
: j 2 N|bk|

 
where

(Xk

j
, Y

k

j
)

i.i.d.
⇠ P�k and Y

k

j
is unknown. Further assume the Xk

j
’s are independent for all k and j.

In practice, �k is unknown and we observe �̂k with �̂k(c) =
1

|bk|

P
|bk|

j=1 Y
k
j =c

instead. The goal is
learn an f that minimizes the risk RL,P = E(X,Y )⇠P [L(f(X), Y )] where L is the 0-1 loss, given
access to the training data {(bk, �̂k)}.

5.2 The Case of C Bags: Reduction to LLN

To explain our reduction of LLP to LLN, we first consider the case of exactly C bags b1, b2, . . . , bC ,
governed by respective (unobserved) �1, . . . , �C 2 �C , and annotated with label proportions
�̂1, . . . �̂C . Define � 2 RC⇥C by �(i, j) = �i(j), and let �tr denote the transpose of �. Re-
call that � is the class prior associated to P . To model LLP with C bags as an LLN problem, we
make the following assumption on � and �:

Assumption 13. 9 unique ↵ 2 �̊C
s.t. �tr

↵ = �.

We write ↵ = (↵(1), . . . ,↵(C)). Assumption 13 is equivalent to: {�1, . . . , �C} is a linearly
independent set and � is in the interior of the convex hull of {�1, . . . , �C}. Ternary plots in Figure
5.2 visualize examples where assumption 13 holds and fails when C = 3. Intuitively, assumption
13 is more likely to hold when {�i : i 2 NC} are more “spread out” in�C , in which case it is more
likely for � to reside in the convex hull of {�i : i 2 NC}.

To reduce LLP with C bags to LLN, we simply propose to assign the “noisy label” Ỹ = i to all
elements of bag bi and to construct a noise transition matrix T with T (i, j) = �i(j)↵(i)/�(j).
Assumption 13 ensures T is indeed a column-stochastic matrix. Thus, the probability measure P̄T

on X ⇥ Y ⇥ Y satisfies ↵(i) = P̄T (Ỹ = i) and P�i(·) = P̄T (· | Ỹ = i), which further implies
�i(c) = P̄T (Y = c | Ỹ = i). We confirm these facts in Section E in the appendix. Such construction
transforms LLP with C bags into LLN with an estimable noise transition matrix T . Each element
of a bag can then be viewed as a triplet (X,Y, Ỹ ), with Y unobserved, such that (X,Y ) is drawn
from P�Ỹ

. After assigning the noisy labels, we have a dataset
S

C

c=1

��
X

c

j
, c
�
: j 2 N|bc|

 
along

with the noise transition matrix T . This allows us to leverage the forward correction loss `T to
minimize the objective R`T ,PT (f) = EPT [`T (f(X), Ỹ )] which can be estimated by the empirical
risk

P
C

c=1
↵(c)
|bc|

P
|bc|

j=1 `T

�
f(Xc

j
), c

�
.

5.3 The General Case: Reduction to LMNTM

More generally, consider LLP with NC bags, N 2 N. We propose to randomly partition the bags
into N groups, each with C bags indexed from 1 to C. Let ki,c denote the index of the c-th bag in the
i-th group. Thus, bki,c is the c-th bag in the i-th group and it is governed by �ki,c . For i 2 NN , define
the matrix �i 2 RC⇥C by �i(c1, c2) = �ki,c1

(c2), 8c1, c2 2 Y . We make the following assumption
on the �i’s and �:

Assumption 14. For each i 2 NN , 9 unique ↵i 2 �̊C
s.t. �tr

i
↵i = �.

Thus, every group i can be modeled as above as an LLN problem with noise transition matrix Ti

where Ti(c1, c2) = �ki,c1
(c2)↵i(c1)/�(c2). Data points in the bag assigned with noisy label c in

the i-th group can be viewed as drawn i.i.d. from the class conditional distribution PTi(· | c). This
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Algorithm 1 LLPFC-ideal
1: Input: {(bk, �k)}

NC

k=1 and w 2 �N where
bk =

�
X

k

j
: j 2 N|bk|

 
.

2: Randomly partition the bags into N groups
{Gi}

N

i=1 s.t. Gi =
�
(bki,c , �ki,c) : c 2 Y

 

3: for i = 1 : N do
4: �i  [�ki,1 , �ki,2 , . . . , �ki,C ]

tr

5: ↵i  ��tr

i
�

6: for c1 = 1 : C, c2 = 1 : C do
7: Ti(c1, c2)  �ki,c1

(c2)↵i(c1)/�(c2)
8: end for
9: end for
10: Train f with the empirical objective (1)

Algorithm 2 LLPFC-uniform
1: Input: {(bk, �̂k)}

NC

k=1 and w 2 �N where
bk =

�
X

k

j
: j 2 N|bk|

 
.

2: Partition the bags as step 2 in Algorithm 1.
3: for i = 1 : N do
4: �̂i  [�̂ki,1 , �̂ki,2 , . . . , �̂ki,C ]

tr

5: ni  
P

C

c=1

��bki,c

��

6: ↵̂i(c)  |bki,c |/ni for each c = 1 : C

7: �̂i  �̂tr

i
↵̂i

8: for c1 = 1 : C, c2 = 1 : C do
9: T̂i(c1, c2)  �̂ki,c1

(c2)↵̂i(c1)/�̂i(c2)
10: end for
11: end for
12: Train with

P
i,c

wi
ni

P
j
`
T̂i
(f(X

ki,c

j
), c).

problem now maps directly to LMNTM as described in Section 4.1, and satisfies the associated
performance guarantees. In the next subsection, we spell out the associated algorithm.

5.4 Algorithms

As above, assume we have NC bags where N 2 N. Let each bag bk be governed by �k 2 �C and
be annotated by label proportion �̂k. We first present the LLPFC-ideal algorithm in an ideal setting
where �, the �k’s and the ↵i’s are known precisely and Assumption 14 holds. We then present the
real-world adaptations LLPFC-uniform and LLPFC-approx in practical settings.

The LLPFC-ideal algorithm is presented in Algorithm 1. We follow the idea in section 5.3 to partition
the bags into N groups of C bags, and model each group as an LLN problem. In Algorithm 1,
we assume �k and � are known and Assumption 14 holds. The theoretical analysis in Section 4 is
immediately applicable to the LLPFC-ideal algorithm. We partition the bags by uniformly randomly
partitioning the set of indices NNC into disjoint subsets {ki,c : c 2 Y}, i 2 NN , where ki,c denotes
the index of the c-th bag in the i-th group. We denote the inverse transpose of �i by �i

�tr.

In practice, when �k is unknown, we replace �k with �̂k as a plug-in method. Hence, we work with
�̂ =

PNC
k=1|bk|�̂kPNC
k=1 |bk|

and �̂i = [�̂ki,1 , �̂ki,2 , . . . , �̂ki,C ]
tr instead of � and �i in Algorithm 1, respectively.

Here �̂ is the label proportion of all training data points and we use it as an estimate of the clean
prior �. Likewise, ↵i = ��tr

i
� in Algorithm 1 should be replaced with ↵̂i = �̂�tr

i
�̂ and we

would like to use �̂i, �̂, and ↵̂i to calculate T̂i as an estimate of Ti. For this to make sense, we
need ↵̂i = �̂�tr

i
�̂ 2 �̊C , which is equivalent to �̂ being in the interior of the convex hull of�

�̂ki,c : c 2 Y
 
for all i. However, this may not be the case in practice. Thus, we consider two

Algorithm 3 LLPFC-approx
1: Input: {(bk, �̂k)}

NC

k=1 and w 2 �N where
bk =

�
X

k

j
: j 2 N|bk|

 
.

2: �̂  

PNC
k=1|bk|�̂kPNC
k=1 |bk|

3: Partition the bags as step 2 in Algorithm 1.
4: for i = 1 : N do
5: �̂i  [�̂ki,1 , �̂ki,2 , . . . , �̂ki,C ]

tr

6: ↵̂i  argmin
↵2�C ||�̂ � �̂tr

i
↵||

2
2

7: �̂i  �̂tr

i
↵̂i

8: for c1 = 1 : C, c2 = 1 : C do
9: T̂i(c1, c2)  �̂ki,c1

(c2)↵̂i(c1)/�̂i(c2)
10: end for
11: end for
12: Train with

P
i,c

wi↵̂i(c)

|bki,c |

P
j
`
T̂i
(f(X

ki,c

j
), c)
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heuristics to estimate T̂i as real-world adaptations of the LLPFC-ideal algorithm. The first, called
LLPFC-uniform, is presented in Algorithm 2 which sets ↵̂i by counting the occurrences of the
noisy labels. This is motivated by our model wherein ↵i is the noisy class prior for the i-th group.
The second, called LLPFC-approx, is presented in Algorithm 3 and sets ↵̂i to be the solution of
argmin

↵2�C ||�̂ � �̂i↵||
2
2. It should be noted that in both practical algorithms, we use a different

�̂i as an estimate of � for each group, to ensure that each T̂i is a column-stochastic matrix. In
experiments where we have NC + k number of bags with 0 < k < C, we can randomly resample
NC number of bags and regroup them in every few epochs. Both real-world adaptations perform
reasonably well in experiments.

6 Experiments
1 We compare against three previous works that have studied LLP applying deep learning to image

Table 1: Test Accuracy for Wide ResNet-16-4
Data set Method 32 64 128 256 512 1024 2048

CIFAR10

KL .4255 ± .13 .6817 ± .16 .5346 ± .11 .3749 ± .14 .2938 ± .04 Out of RAM Out of RAM
LLPVAT .4911 ± .15 .5137 ± .22 .4744 ± .12 .4423 ± .16 Out of RAM Out of RAM Out of RAM

LLPFC-uniform .7926 ± .01 .7683 ± .02 .7399 ± .02 .7381 ± .01 .7224 ± .01 .7182 ± .01 .6925 ± .03
LLPFC-approx .7993 ± .00 .7671 ± .01 .7528 ± .01 .7404 ± .00 .7409 ± .02 .7205 ± .03 .7283 ± .02

SVHN

KL .2465 ± .10 .1152 ± .07 .1022 ± .03 .1294 ± .04 .1039 ± .04 Out of RAM Out of RAM
LLPVAT .2675 ± .36 .1398 ± .08 .1004 ± .03 .1294 ± .04 Out of RAM Out of RAM Out of RAM

LLPFC-uniform .9012 ± .02 .8855 ± .02 .8760 ± .02 .8736 ± .01 .8681 ± .02 .8709 ± .02 .8717 ± .01
LLPFC-approx .8903 ± .02 .8844 ± .02 .8815 ± .03 .8808 ± .01 .8771 ± .02 .8701 ± .02 .8738 ± .01

EMNIST

KL .8413 ± .04 .8637 ± .04 .9111 ± .00 .5361 ± .12 .0845 ± .01 .0826 ± .01 Out of RAM
LLPVAT .8254 ± .04 .9045 ± .02 .9136 ± .00 .5071 ± .09 .0859 ± .01 Out of RAM Out of RAM

LLPFC-uniform .9165 ± .01 .9061 ± .01 .9015 ± .01 .8790 ± .03 .8886 ± .02 .8461 ± .05 .8817 ± .01
LLPFC-approx .9092 ± .01 .9074 ± .01 .9065 ± .00 .8993 ± .01 .9048 ± .00 .8969 ± .01 .9007 ± .01

Table 2: Test Accuracy for ResNet18
Data set Method 32 64 128 256 512 1024 2048

CIFAR10

KL .7837 ± .01 .7565 ± .01 .6918 ± .01 .6106 ± .04 .5696 ± .05 .5197 ± .04 .4576 ± .03
LLPVAT .7907 ± .01 .7499 ± .01 .6946 ± .01 .6115 ± .03 .5670 ± .04 .4881 ± .02 .4624 ± .02

LLPFC-uniform .6601 ± .01 .6310 ± .01 .5867 ± .01 .5603 ± .01 .5670 ± .01 .5623 ± .01 .5288 ± .03
LLPFC-approx .6567 ± .01 .6136 ± .01 .5997 ± .01 .5931 ± .02 .6062 ± .01 .6169 ± .01 .5591 ± .04

SVHN

KL .1279 ± .06 .0716 ± .01 .3042 ± .30 .1026 ± .04 .2489 ± .24 .3123 ± .29 .2797 ± .12
LLPVAT .1279 ± .06 .1939 ± .27 .6962 ± .34 .3673 ± .39 .4003 ± .31 .3999 ± .33 .3736 ± .24

LLPFC-uniform .8823 ± .01 .8644 ± .01 .8433 ± .01 .8390 ± .01 .8360 ± .00 .8086 ± .02 .8188 ± .01
LLPFC-approx .8824 ± .01 .8672 ± .01 .8570 ± .01 .8483 ± .01 .8492 ± .01 .8498 ± .01 .8534 ± .01

EMNIST

KL .9319 ± .00 .9295 ± .00 .9306 ± .00 .9269 ± .00 .9267 ± .00 .9239 ± .00 .9106 ± .01
LLPVAT .9308 ± .00 .9299 ± .00 .9299 ± .00 .9281 ± .00 .9248 ± .00 .9222 ± .00 .9128 ± .00

LLPFC-uniform .9144 ± .00 .8954 ± .00 .8744 ± .00 .8600 ± .00 .8448 ± .00 .8388 ± .01 .8245 ± .01
LLPFC-approx .9146 ± .00 .8998 ± .00 .8874 ± .00 .8764 ± .01 .8670 ± .00 .8736 ± .01 .8660 ± .01

Table 3: Test Accuracy for VGG16
Data set Method 32 64 128 256 512 1024 2048

CIFAR10

KL .2513 ± .11 .2130 ± .06 .1794 ± .04 .1160 ± .02 .1117 ± .01 .1221 ± .00 .1049 ± .01
LLPVAT .4634 ± .07 .2093 ± .03 .1399 ± .03 .1145 ± .02 .1172 ± .02 .1189 ± .00 Out of RAM

LLPFC-uniform .7602 ± .00 .7372 ± .01 .7300 ± .01 .7226 ± .01 .7136 ± .01 .7111 ± .01 .7033 ± .03
LLPFC-approx .7566 ± .00 .7310 ± .01 .7003 ± .01 .7004 ± .01 .6870 ± .03 .6857 ± .02 .6645 ± .03

SVHN

KL .1277 ± .06 .0893 ± .04 .1054 ± .05 .1024 ± .05 .1104 ± .04 .0885 ± .01 .1372 ± .03
LLPVAT .1117 ± .05 .0736 ± .01 .1051 ± .05 .1023 ± .06 .1125 ± .04 .1061 ± .05 Out of RAM

LLPFC-uniform .4177 ± .15 .4708 ± .23 .5402 ± .21 .1734 ± .11 .4249 ± .30 .5691 ± .27 .6869 ± .13
LLPFC-approx .4299 ± .28 .4994 ± .23 .1091 ± .04 .1188 ± .05 .1903 ± .14 .4097 ± .17 .4429 ± .18

EMNIST

KL .5952 ±.45 .2348 ±.22 .0974 ±.01 .0842 ±.02 .0702 ±.01 .0692 ±.01 .0597 ±.02
LLPVAT .8593 ± .16 .3329 ± .33 .1042 ± .01 .0833 ± .02 .0696 ± .01 .0711 ± .00 Out of RAM

LLPFC-uniform .9311 ± .00 .9279 ± .00 .9258 ± .00 .9242 ± .00 .9239 ± .00 .9233 ± .00 .9220 ± .00
LLPFC-approx .9310 ± .00 .9280 ± .00 .9249 ± .00 .9240 ± .00 .9227 ± .00 .9206 ± .00 .9205 ± .00

Table 4: Test Accuracy for LLPGAN architecture
Data set Method 32 64 128 256 512 1024 2048

CIFAR10
LLPGAN .3630 ± .01 .3133 ± .02 .3328 ± .03 .3363 ± .03 .3460 ± .03 .2824 ± .05 .2236 ± .08

LLPFC-uniform .6145 ± .01 .5826 ± .01 .5565 ± .03 .5452 ± .01 .5511 ± .02 .5358 ± .01 .5438 ± .03
LLPFC-approx .6169 ± .01 .5875 ± .01 .5642 ± .02 .5687 ± .02 .5621 ± .03 .5610 ± .01 .5567 ± .02

SVHN
LLPGAN .2378 ± .24 .7135 ± .06 .7680 ± .04 .6058 ± .29 .4863 ± .22 .1725 ± .06 .1382 ± .04

LLPFC-uniform .8800 ± .00 .8581 ± .01 .8480 ± .01 .8393 ± .01 .8347 ± .01 .8258 ± .01 .8327 ± .01
LLPFC-approx .8779 ± .01 .8519 ± .01 .7061 ± .33 .8453 ± .02 .8423 ± .01 .8386 ± .01 .8527 ± .01

data: Dulac-Arnold et al. [9] study the KL loss described in the introduction, and a novel loss
1Code is available at https://github.com/Z-Jianxin/LLPFC
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based on optimal transport. They find that KL performs just as well as the novel loss. Liu et al.
[22] employ the KL loss within a generative adversarial framework (LLPGAN). Tsai and Lin [46]
propose augmenting the KL loss with a regularizer from semi-supervised learning and show improved
performance (LLPVAT). We compare both LLPFC-uniform and LLPFC-approx against the KL loss,
LLPGAN, and LLPVAT to clearly establish which empirical objective is better. Recent papers on
multiclass LLP for which code is not available were not included [23, 16].

We generate bags with fixed, equal sizes in {32, 64, 128, 256, 512, 1024, 2048}. To generate each
bag, we first sample a label proportion � from the uniform distribution on �C . Then we sample data
points from a benchmark dataset without replacement using a multinomial distribution with parameter
�. It should be noted that Tsai and Lin [46], Dulac-Arnold et al. [9], and Liu et al. [22] generate bags
by shuffling all data points and making every B data points a bag where B is a fixed bag size. Their
method is equivalent to sampling data points without replacement using a multinomial distribution
with a fixed parameter � =

�
1
C
,
1
C
, . . . ,

1
C

 
. As noted by Scott and Zhang [39], this leads to bags

with very similar label proportions which makes the learning task much more challenging.

We repeat each experiment 5 times and report the mean test accuracy and standard deviation. All
models are trained on a single Nvidia Tesla v100 GPU with 16GB RAM. In our implementation
of LLPFC algorithms, the weight w is set to be ( 1

N
, . . . ,

1
N
) 2 �N and our choice of the proper

composite loss is the cross-entropy loss.

For the comparison against KL and LLPVAT, we perform experiments on three benchmark image
datasets: the “letter” split of EMNIST [6], SVHN [29], and CIFAR10 [17]. To show that our
approach is robust to the choice of architecture, we experiment with three different networks: Wide
ResNet-16-4 [52], ResNet18 [11], and VGG16 [42]. We train these networks with the parameters
suggested in the original papers. The test accuracies are reported in Tables 1, 2, and 3. Since
convergence in the GAN framework is sensitive to the choice of architecture and hyperparameters,
we compare LLPFC against LLPGAN using the architecture proposed in the original paper along
with the hyperparameters suggested in their code2. It should be noted that for LLPFC we only use the
discriminator for classification and did not use the generator to augment data. Since Liu et al. [22]
only provide hyperparameters for colored images, we perform experiments on SVHN and CIFAR10
only. The test accuracies are reported in Table 4.

LLPFC-uniform and LLPFC-approx substantially outperform the competitors in a clear majority of
settings. The experiment results clearly establish our methods as the state-of-the-art by a substantial
margin. All three competitors perform gradient descent with minibatches of bags and the GPU at
times runs out of memory when the bag size is large. Our implementation, which also uses stochastic
optimization, does not suffer from this phenomenon. Full experimental details are in the appendix.

7 Conclusions and Future Work

We propose a theoretically supported approach to LLP by reducing it to learning with label noise
and using the forward correction (FC) loss. An excess risk bound and generalization error analysis
are established. Our approach outperforms leading existing methods in deep learning scenarios
across multiple datasets and architectures. A limitation of our approach is that the theory makes an
assumption that may not be verifiable in practice. Future research directions include optimizing the
grouping of bags and adapting LLPFC to other objectives beyond accuracy.

Acknowledgement The authors were supported in part by the National Science Foundation under
awards 1838179 and 2008074, and by the Department of Defense, Defense Threat Reduction Agency
under award HDTRA1-20-2-0002.
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