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ABSTRACT 1 

Perimeter metering control is a convenient strategy to mitigate urban congestion by manipulating vehicular 2 
movements around regional perimeters without modeling the detailed behaviors and interactions. Multi-3 
region perimeter metering control holds promise for efficient management of urban traffic in large-scale 4 
networks. However, most existing methods for multi-region control require knowledge of either the traffic 5 
dynamics or network properties (i.e., the critical accumulations), and completely model-free techniques are 6 
still lacking in the literature. To fill this gap, this paper proposes a novel control scheme based upon model-7 
free multi-agent reinforcement learning. The scheme features value function decomposition in the paradigm 8 
of centralized training with decentralized execution, coupled with critical advances of single-agent deep 9 
reinforcement learning and specialized problem reformulation. The effectiveness of the scheme is 10 
demonstrated with numerical experiment conducted on a seven-region urban network.   11 

Keywords: Macroscopic Fundamental Diagram (MFD); multi-region perimeter metering control; model-12 
free multi-agent reinforcement learning (MARL) 13 
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INTRODUCTION 1 

The macroscopic fundamental diagram (MFD) has been recently shown promising in terms of the aggregate 2 
traffic dynamics models and network-level control schemes it facilitates (1–5), both of which are critical 3 
for large-scale urban traffic management. The initial theoretical investigation of the MFD dates back to the 4 
1960s (6), but its existence was not verified until recently (1, 2). These seminal works have since inspired 5 
a large number of research efforts on the existence analysis (7–9) and estimation of MFDs (10–17). Other 6 
than the derivations, properties of well-defined MFDs have also been examined extensively (3, 18–20). 7 
These references have shown that urban networks are subject to instability, hysteresis, and bifurcation 8 
phenomena with heterogeneous distribution of vehicle presence. Fortunately, network partitioning can be 9 
applied to divide a large heterogeneous area into several smaller regions such that congestion homogeneity 10 
is maintained for each region (21–24).  11 

Well-defined MFDs enable low-complexity modeling of traffic dynamics by focusing on aggregate 12 
vehicular movements within and across homogeneous regions. This elegant modeling paradigm has led to 13 
the development of numerous regional control schemes, e.g., congestion pricing (25–27), route guidance 14 
(28–30), and others. The most common application utilizing MFDs is perimeter metering control (PMC), 15 
which entails regulating the inter-regional transfer flows using traffic signals residing on the boundary of 16 
the neighboring regions. The first examination of perimeter control was presented in (1) for a single region, 17 
which formulated the traffic dynamics with MFDs and proposed the optimal Bang-Bang control policy. 18 
Perimeter control for two-region networks, as first formulated in (31), has also attracted substantial research 19 
interests over the years. For example, analytical and data-driven approaches have been adopted to design 20 
solution schemes (4, 32–35), while stability and modeling uncertainty are examined in (36–40). 21 

Another line of PMC research pertains to the efficient operations of traffic flows in a multi-region 22 
setting. Early endeavors in this vein include (41, 42) where the traffic dynamics are formulated for a multi-23 
reservoir and a mixed network. However, in these works the receiving capacity constraint was neglected; 24 
and it was later integrated in (43) where a region-based and subregion-based MFD models were proposed. 25 
To further enhance traffic dynamics modeling, numerous works have been conducted to consider: boundary 26 
queue dynamics (37, 44, 45), time-delay effects (46), demand stochasticity (47), and parameter uncertainty 27 
in MFDs (48). Multi-region PMC embodies great potential for city-level traffic management, for which 28 
various solution methods have been proposed in the literature. Examples include linear quadratic regulator 29 
(41, 44), model predictive control (29, 43), model-free adaptive control (49, 50), and others. Importantly, 30 
(49, 50) proposed solution schemes that are data-driven and model-free, yet the critical accumulation is still 31 
explicitly blended into the controller designs. Other mentioned methods, on the other hand, are heavily 32 
dependent on knowledge of the environment dynamics. Therefore, it is a high research priority to develop 33 
a completely model-free method for multi-region perimeter control. 34 

This paper bridges this gap by proposing a model-free scheme based on multi-agent reinforcement 35 
learning that features centralized training with decentralized execution and value function decomposition. 36 
Moreover, the scheme adopts the Bang-Bang type action design, which was corroborated as the optimal 37 
action form for PMC problems (1, 32, 44). The effectiveness of the proposed scheme is demonstrated via 38 
comparison with the model predictive control by conducting perimeter control on a seven-region network. 39 

The remainder of the paper is structured as follows. The next section provides the traffic dynamics 40 
modeling of multi-region urban networks. Then, the proposed scheme is explained in detail, followed by 41 
the numerical experiment results. Finally, concluding remarks are presented in the last section. 42 

 43 
TRAFFIC DYNAMICS OF MULTI-REGION URBAN NETWORKS 44 

The general traffic dynamics for an 𝑅𝑅-region urban network are introduced here; see Fig. 1 for an illustration 45 
of a network with 𝑅𝑅 = 7. The regions are assumed to be homogenous in terms of congestion distribution; 46 
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however, if this assumption does not hold, network partitioning can be applied to maintain homogeneity 1 
(21–23). As such, a well-defined MFD function 𝑓𝑓𝑖𝑖(𝑛𝑛𝑖𝑖(𝑡𝑡)) that relates trip completion rate to the regional 2 
accumulation 𝑛𝑛𝑖𝑖(𝑡𝑡) is assumed to be able to model each region. The evolution of accumulations in region 3 
𝑖𝑖 can then be expressed as (28, 43): 4 

𝑛𝑛𝑖𝑖(𝑡𝑡) = �𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑗𝑗∈ℛ

(1) 5 

𝑛̇𝑛𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) −𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) + � 𝑢𝑢ℎ𝑖𝑖(𝑡𝑡) ⋅ 𝑀𝑀ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)
ℎ∈𝑁𝑁𝑖𝑖 

(2) 6 

𝑛̇𝑛𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡) + � 𝑢𝑢ℎ𝑖𝑖(𝑡𝑡) ⋅ 𝑀𝑀ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)
ℎ∈𝑁𝑁𝑖𝑖;ℎ≠𝑗𝑗

− � 𝑢𝑢𝑖𝑖ℎ(𝑡𝑡) ⋅ 𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡)
ℎ∈𝑁𝑁𝑖𝑖

(3) 7 

where ℛ = {1,2,⋯ ,𝑅𝑅} denotes the network, 𝑛𝑛𝑖𝑖𝑖𝑖 and 𝑞𝑞𝑖𝑖𝑖𝑖 are the number of vehicles and traffic demands in 8 
𝑅𝑅𝑖𝑖 destined for 𝑅𝑅𝑗𝑗, with 𝑛𝑛𝑖𝑖𝑖𝑖 and 𝑞𝑞𝑖𝑖𝑖𝑖 defined similarly. 𝑢𝑢𝑖𝑖ℎ is the perimeter controller (𝑢𝑢𝑖𝑖ℎ ∈ [𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚] 9 
with 0 ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1) that specifies the allowable ratio of transfer flow from 𝑅𝑅𝑖𝑖  to 𝑅𝑅ℎ , with ℎ 10 
belonging to the neighboring regions of 𝑅𝑅𝑖𝑖,𝑁𝑁𝑖𝑖. 𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) represents the transfer flow from 𝑅𝑅𝑖𝑖 to 𝑅𝑅𝑗𝑗 via the 11 
next region ℎ, while 𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) is the exit flow of region 𝑖𝑖, as calculated by: 12 

𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) = 𝜃𝜃𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) ⋅
𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑛𝑛𝑖𝑖(𝑡𝑡)

⋅ 𝑓𝑓𝑖𝑖�𝑛𝑛𝑖𝑖(𝑡𝑡)�, 𝑖𝑖 ≠ 𝑗𝑗,ℎ ∈ 𝑁𝑁𝑖𝑖 (4) 13 

𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) =
𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑛𝑛𝑖𝑖(𝑡𝑡)

⋅ 𝑓𝑓𝑖𝑖�𝑛𝑛𝑖𝑖(𝑡𝑡)� (5) 14 

where 𝜃𝜃𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) ∈ [0, 1] is the route choice term for vehicles traveling from 𝑅𝑅𝑖𝑖 to 𝑅𝑅𝑗𝑗 via the next region ℎ 15 
(hence ∑ 𝜃𝜃𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) = 1ℎ∈𝑁𝑁𝑖𝑖 ) and is inversely related to the travel time of paths utilizing 𝑅𝑅ℎ. 16 

The receiving capacity of regions with high accumulations might be insufficient to contain all 17 
inflow vehicles, thus restraining the full penetration of transfer flows. As such, the capacity-restrained 18 
transfer flows 𝑀𝑀�𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) are defined as (28, 43): 19 

𝑀𝑀�𝑖𝑖ℎ𝑗𝑗(𝑡𝑡) = min�𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡),𝐶𝐶𝑖𝑖ℎ�𝑛𝑛ℎ(𝑡𝑡)� ⋅
𝑀𝑀𝑖𝑖ℎ𝑗𝑗(𝑡𝑡)

∑ 𝑀𝑀𝑖𝑖ℎ𝑘𝑘(𝑡𝑡)𝑘𝑘∈𝑅𝑅,𝑘𝑘≠𝑖𝑖
� (6) 20 

where 𝐶𝐶𝑖𝑖ℎ�𝑛𝑛ℎ(𝑡𝑡)� is the boundary capacity between 𝑅𝑅𝑖𝑖 and 𝑅𝑅ℎ and is a function of 𝑛𝑛ℎ(𝑡𝑡) as in: 21 

𝐶𝐶𝑖𝑖ℎ�𝑛𝑛ℎ(𝑡𝑡)� = �
𝐶𝐶𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚,                        0 ≤ 𝑛𝑛ℎ(𝑡𝑡) ≤ 𝛼𝛼 ⋅ 𝑛𝑛ℎ

𝑗𝑗𝑗𝑗𝑗𝑗

𝐶𝐶𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚

1 − 𝛼𝛼
⋅ (1 −

𝑛𝑛ℎ(𝑡𝑡)

𝑛𝑛ℎ
𝑗𝑗𝑗𝑗𝑗𝑗 ),     𝛼𝛼 ⋅ 𝑛𝑛ℎ

𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 𝑛𝑛ℎ(𝑡𝑡) ≤ 𝑛𝑛ℎ
𝑗𝑗𝑗𝑗𝑗𝑗 (7) 22 

where 𝐶𝐶𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum boundary capacity between region 𝑖𝑖 and ℎ, 𝑛𝑛ℎ
𝑗𝑗𝑗𝑗𝑗𝑗 is the accumulation value 23 

of region ℎ where gridlock arises, and 𝛼𝛼 ∈ (0,1) is a parameter that signals the decrease of receiving 24 
capacity with the increase of accumulation. 25 

 26 
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 1 
Fig.  1. A seven-region urban network. The dash lines represent the perimeter controllers. 2 

 3 
METHODOLOGY 4 

This section reformulates the seven-region control problem in the context of multi-agent reinforcement 5 
learning (MARL), followed by detailed explanations of the proposed scheme. 6 

 7 
Problem Reformulation 8 
The multi-region PMC problem can be viewed as a cooperative multi-agent task where a group of 𝑛𝑛 agents 9 
(𝒩𝒩 = {1,⋯ ,𝑛𝑛}) learn to achieve a common goal via individualized interactions with the same environment. 10 
In this work, each agent is supposed to regulate two inter-regional vehicle movements by selecting values 11 
for a pair of perimeter controller on a regional boundary. Formally, the multi-region PMC problem is 12 
presented as a decentralized partially observable Markov decision process defined by a tuple <13 
𝓢𝓢,𝓞𝓞,𝓤𝓤,𝓟𝓟, 𝒓𝒓,𝝅𝝅,𝜸𝜸,𝓝𝓝 >: 14 

• State space, 𝓢𝓢, and observation space, 𝓞𝓞. The state contains the global information about the 15 
entire network. However, due to partial observability, the agents can only observe local instances 16 
of the state and act based on these observations. In this work, the state 𝑠𝑠𝑡𝑡 consists of all regional 17 
accumulations, traffic demands, and a binary congestion indicator that denotes whether the regions 18 
are congested or not. The observation 𝑜𝑜𝑡𝑡 includes similar information for a pair of regions, i.e., two 19 
regional accumulations, traffic demands between the two regions, and the congestion indicator. 20 

• Action space, 𝓤𝓤. The Bang-Bang control policy, i.e., to alternate the controller between the 21 
minimum and maximum values, has been shown as the optimal form of actions for perimeter 22 
control (1, 32, 44). Motivated by this, the agents assume the Bang-Bang type actions, i.e., either 23 
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 for each perimeter controller. 24 

• Transition dynamics, 𝓟𝓟. The selected actions of the individual agents form a joint action, which 25 
is executed in the environment and leads a transition to a new state, according to the dynamics 26 
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𝒫𝒫(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 ,𝒖𝒖𝑡𝑡):𝓢𝓢 × 𝓤𝓤 → 𝓢𝓢. Note that, the proposed scheme is model-free and thus internalizes 1 
such dynamics through the learning process without explicit modeling. 2 

• Reward function, 𝒓𝒓. After executing the joint action, the environment returns a real-time scalar 3 
reward back to the agents as a quality assessment. The reward 𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝒖𝒖𝑡𝑡) helps guide the agents to 4 
achieve the control objective, i.e., to maximize the cumulative trip completion; and therefore, it is 5 
defined as the trip completion in a time step.  6 

• Policy, 𝝅𝝅, and discount factor, 𝜸𝜸. The agents select actions for the perimeter controllers based 7 
upon the local observation 𝑜𝑜𝑡𝑡𝑎𝑎  according to the policy 𝜋𝜋𝑎𝑎(𝑢𝑢𝑎𝑎|𝑜𝑜𝑎𝑎). To differentiate immediate 8 
rewards from delayed ones, a discount factor 𝛾𝛾 ∈ [0,1] is utilized. Collectively, the agents learn via 9 
trial and error to maximize the expected total discounted reward, i.e., the return, as calculated by 10 
𝐺𝐺𝑡𝑡 = ∑ 𝛾𝛾𝜏𝜏−𝑡𝑡𝑟𝑟𝜏𝜏+1𝑇𝑇

𝜏𝜏=𝑡𝑡  where 𝑇𝑇 is the total number of time steps. 11 
 12 
Algorithms 13 
This section first introduces a canonical single-agent deep reinforcement learning method, which provide 14 
theoretical background for the proposed scheme that is to be explained subsequently.  15 

 16 
Double Deep Q Networks (Double DQN) 17 
As a foundational reinforcement learning technique, Q-learning (51) has received sustained interests over 18 
the years. Using a tabular form, it stores the long-term quality measurements of distinct state-action pairs, 19 
i.e., the Q value 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑢𝑢𝑡𝑡) that denotes the expected return from the environment after taking action 𝑢𝑢𝑡𝑡 at 20 
state 𝑠𝑠𝑡𝑡. During the learning process, the Q values are updated iteratively, according to: 21 

𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑢𝑢𝑡𝑡) ← 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑢𝑢𝑡𝑡) + 𝜅𝜅 ⋅ �𝑟𝑟𝑡𝑡+1 + 𝛾𝛾 ⋅ max
𝑢𝑢

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑢𝑢) − 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑢𝑢𝑡𝑡)� (8) 22 

where 𝜅𝜅 is the learning rate. With sufficient learning updates, the Q values tend towards invariant, and the 23 
final learned policy can be derived in a greedy manner with respect to the Q values. 24 

Despite its popularity, the tabular form of Q-learning limits its applicability to large problems that 25 
feature an abundance of state-action pairs. To mitigate this, research efforts have long been performed on 26 
value function approximation and its stability analysis (52–54), with the first success presented in the Deep 27 
Q-Networks (DQN) algorithm (55). This work has revealed the significant potential of deep reinforcement 28 
learning and has since inspired the development of more advanced learning techniques (56–60). Despite its 29 
success, however, the DQN method is prone to overestimation of the Q values (56). In the latter reference, 30 
an improved algorithm named Double DQN is proposed, which revises the learning target of DQN by using 31 
the Q-network for action selection and target network for evaluation, as follows: 32 

𝑌𝑌𝑡𝑡 = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝛾𝛾 �𝑠𝑠𝑡𝑡+1, arg max
𝑢𝑢

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑢𝑢;𝜽𝜽𝑡𝑡) ;𝜽𝜽𝑡𝑡−� (9) 33 

where 𝑄𝑄(: , : ;𝜽𝜽𝑡𝑡) and 𝑄𝑄(: , : ;𝜽𝜽𝑡𝑡−) represent the Q- and target networks. The target network is a periodic 34 
copy of the Q-network, and its utilization provides relatively static targets and helps with learning stability. 35 

 36 
Reinforcement learning controller design for multi-region perimeter control (MR-RL) 37 
The success of single-agent RL has significantly boosted its extension to multi-agent systems. However, 38 
directly applying single-agent techniques to multi-agent tasks is generally infeasible due to the curse of 39 
dimensionality which renders it difficult to estimate the joint Q value. The most common paradigm to 40 
alleviate this issue is centralized training with decentralized execution (CTDE, (61)), which adopts full 41 
centralization conditioning on the global state during learning and decentralization conditioning on local 42 
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observations during action taking. Despite notable experimental results, the CTDE paradigm has a major 1 
scalability limitation due to fully centralized training. As such, value function decomposition has been 2 
proposed (62) as a mitigation strategy. Specifically, these methods factorize the centralized Q value as a 3 
function of the local Q values estimated by the agents conditioning on the local observations and actions. 4 
Importantly, this factorization ensures scalability as the joint action information is no longer required. As a 5 
representative method, QMIX (63) decomposes the joint Q value as a nonlinear but monotonic composition 6 
of the local Q values, and this decomposition has been widely adopted in later efforts, e.g., (64). 7 

The multi-region control problem is a fully cooperative task where all agents collaborate to achieve 8 
the highest trip completion. Naturally, higher local trip completions lead to higher total trip completion. 9 
Hence, the monotonicity assumption holds and the QMIX is adopted to devise the proposed scheme, as 10 
denoted by MR-RL that stands for Multi-Region Reinforcement Learning. The learning algorithm for the 11 
proposed MR-RL is shown in Fig. 2, and its building components are explained in the following. 12 

 13 

 14 
Fig.  2. A diagram of the learning algorithm for the MR-RL scheme. 15 

 16 
The MR-RL scheme holds a group of agents for multi-region perimeter control, and each agent is 17 

constructed as a multi-layer perceptron, a structure widely used in the literature (59, 63, 65). To improve 18 
training efficiency, parameters of the agent network are shared. Hence, the agents with shared parameters 19 
can be represented as 𝑄𝑄(𝑜𝑜𝑎𝑎 ,𝑢𝑢𝑎𝑎;𝜃𝜃𝑄𝑄), where 𝜃𝜃𝑄𝑄 is the network parameters. The agents receive as input the 20 
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local observations 𝑜𝑜𝑎𝑎 and estimate the 4-dimensional local Q values for the two perimeter controllers (each 1 
controller has two options, 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚). The local actions can then be derived with the 𝜖𝜖 −greedy 2 
strategy regarding these values, i.e., the greedy action arg max

𝑢𝑢𝑎𝑎
𝑄𝑄(𝑜𝑜𝑎𝑎 ,𝑢𝑢𝑎𝑎;𝜃𝜃𝑄𝑄) is chosen with probability 3 

1 − 𝜖𝜖 and a random action otherwise. To better balance exploration and exploitation, the 𝜖𝜖 value is decayed 4 
through time, with the decay schedule to be presented shortly. 5 

The mixing network, as denoted by 𝑚𝑚(⋅), combines the estimated local Q values to provide the 6 
joint Q value and is central to value decomposition methods. The QMIX algorithm enforces monotonic 7 
decomposition by utilizing non-negative weights for the mixing network, and separate hypernetworks are 8 
exploited to produce such weights. Specifically, the hypernetworks take into the global state 𝑠𝑠𝑡𝑡 and generate 9 
the weights in a feed-forward structure with an absolute activation function. The hypernetworks also create 10 
biases for the mixing network, but these are not restricted to be non-negative.  11 

The Double DQN update rule, along with the QMIX type value decomposition, is used to construct 12 
learning targets (see Fig. 2) for the proposed MR-RL scheme, as follows: 13 

𝑌𝑌𝑡𝑡 = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾 ⋅ 𝑚𝑚 �𝑠𝑠𝑡𝑡+1, �𝑄𝑄 �𝑜𝑜𝑡𝑡+1𝑎𝑎 , arg max
𝑢𝑢𝑎𝑎

𝑄𝑄�𝑜𝑜𝑡𝑡+1𝑎𝑎 ,𝑢𝑢𝑎𝑎;𝜃𝜃𝑡𝑡
𝑄𝑄� ; 𝜃𝜃𝑡𝑡

𝑄𝑄−��
𝑎𝑎=1

𝑛𝑛
; 𝜃𝜃𝑡𝑡𝑚𝑚−� (10) 14 

where arg max𝑄𝑄�⋅,⋅;𝜃𝜃𝑡𝑡
𝑄𝑄� is the local action selection using the shared agent network, 𝑄𝑄(⋅,⋅;𝜃𝜃𝑡𝑡

𝑄𝑄−) is the 15 
action evaluation with the target agent network, and 𝑚𝑚(⋅,⋅;𝜃𝜃𝑡𝑡𝑚𝑚−) represents the target mixing network 16 
whose inputs include the global state for non-negative weights construction. The major distinction between 17 
this and the Double DQN target (Eq. (9)) is the mixing network which involves a group of local Q values. 18 
Importantly though, this additional complexity precipitates significantly improved scalability to larger 19 
multi-agent systems. The network parameters of the MR-RL scheme can be updated by minimizing the 20 
following loss: 21 

ℒ�𝜃𝜃𝑡𝑡
𝑄𝑄 ,𝜃𝜃𝑡𝑡𝑚𝑚� = ��𝑌𝑌𝑡𝑡𝑖𝑖 − 𝑚𝑚�𝑠𝑠𝑡𝑡𝑖𝑖 , �𝑄𝑄�𝑜𝑜𝑡𝑡

𝑎𝑎,𝑖𝑖,𝑢𝑢𝑡𝑡
𝑎𝑎,𝑖𝑖; 𝜃𝜃𝑡𝑡

𝑄𝑄��𝑎𝑎=1
𝑛𝑛

;𝜃𝜃𝑡𝑡𝑚𝑚��
2

𝑏𝑏

𝑖𝑖=1

 (11) 22 

where 𝑏𝑏 is the batch size of sampled transitions from the replay buffer used for network updates, and 𝑌𝑌𝑡𝑡𝑖𝑖 is 23 
the learning target for the 𝑖𝑖-th transition. 24 

The proposed MR-RL scheme is model-free in that it does not require a priori knowledge of the 25 
environment dynamics. Instead, it learns the control policy from pure interactions with the environment, 26 
and the interactions are stored in a replay buffer in the form of state-action-reward pairs, i.e., the transitions 27 
in Fig. 2. The use of a replay buffer was initially presented in (66) and later consolidated in (55) as a critical 28 
component of deep reinforcement learning. Specifically, the replay buffer is first utilized to store the 29 
collected transitions; then during training, minibatches of transitions are randomly sampled from the buffer 30 
to update the network parameters i.e., the shared agent network, hypernetworks, and the mixing network. 31 
The replay buffer has been shown helpful to stabilize the learning process as the random sampling helps 32 
remove correlations between the transitions. Further, to guarantee effective learning for the MR-RL scheme, 33 
the Ape-X distributed architecture (65) is adopted. Concretely, the architecture maintains numerous 34 
instantiations of the environment in parallel, with which the MR-RL interacts to collect an increased number 35 
of transitions. These derived transitions are then pooled together in the replay buffer for future updates of 36 
the network parameters. With enough training updates, the final learned control strategy can be obtained 37 
by applying the greedy policy on the fully trained agent network, i.e., 𝑢𝑢𝑡𝑡𝑎𝑎 = 𝜋𝜋(𝑜𝑜𝑡𝑡𝑎𝑎) = arg max

𝑢𝑢
𝑄𝑄(𝑜𝑜𝑡𝑡𝑎𝑎,𝑢𝑢; 𝜃𝜃𝑡𝑡

𝑄𝑄).  38 

With these expositions, the proposed MR-RL scheme built with the learning algorithm and the 39 
Ape-X architecture is formalized in Algorithm 1. Note that, 𝜃𝜃𝑡𝑡𝑚𝑚  expresses the weights of the mixing 40 
network which include weights of the hypernetworks as a constituent element. In addition, the generator 41 
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refers to the instantiated environment, i.e., a transition generator. Finally, the list of hyperparameters along 1 
with their values is presented in Table 1. 2 

 3 
Algorithm 1. Reinforcement Learning controller for Multi-Region perimeter control (MR-RL) 4 
1: Randomly initialize shared agent network 𝜽𝜽0

𝑄𝑄 and mixing network 𝜽𝜽0𝑚𝑚 (hypernetworks included) 5 
Initialize target agent and mixing networks 𝜽𝜽0

𝑄𝑄− = 𝜽𝜽0
𝑄𝑄 ,𝜽𝜽0𝑚𝑚− = 𝜽𝜽0𝑚𝑚 6 

Initailize replay buffer, buffer size B, sample size b, iteration number I, and genetaor number 𝐺𝐺  7 
2: for iter = 1 to 𝐼𝐼 do 8 
3:  Compute the decayed 𝜖𝜖 value for 𝜖𝜖 −greedy exploration 9 
4:  for generator = 1 to 𝐺𝐺 do 10 
5:   Load the shared agent network 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄 = 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1
𝑄𝑄  11 

6:   𝑠𝑠0,𝒐𝒐0 ← Environment.Reset() 12 
7:   for 𝑡𝑡 = 1 to T do 13 
8:    𝑢𝑢𝑡𝑡−1𝑎𝑎 = arg max

𝑢𝑢
𝑄𝑄(𝑜𝑜𝑡𝑡−1𝑎𝑎 ,𝑢𝑢;𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄 ) with probability 1 − 𝜖𝜖 14 
     a random action with proability 𝜖𝜖 15 
    𝒖𝒖𝑡𝑡−1 = {𝑢𝑢𝑡𝑡−1𝑎𝑎 }𝑎𝑎=1𝑛𝑛  16 
9:    (𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡 ,𝒐𝒐𝑡𝑡) ← Environment.Step(𝑠𝑠𝑡𝑡−1,𝒐𝒐𝑡𝑡−1,𝒖𝒖𝑡𝑡−1) 17 
10:    Store (𝑠𝑠𝑡𝑡−1,𝒐𝒐𝑡𝑡−1,𝒖𝒖𝑡𝑡−1, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡 ,𝒐𝒐𝑡𝑡) into the replay buffer 18 
11:   end for 19 
12:  end for 20 
13:  if the number of stored transitions exceeds the buffer size B then 21 
14:   Remove outdated transitions 22 
15:  end if 23 
16:  Training samples ← a batch of b transitions randomly drawn from the buffer 24 
17:  Periodically target networks 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄− = 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1
𝑄𝑄 ,𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚− = 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1𝑚𝑚  25 

18:  𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑄𝑄 ,𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 ← Update the network parameters by minimizing the loss as in Eq. (11) 26 

19: end for 27 
 28 
 29 

Table 1. List of hyperparameters and their values 30 
Hyperparameter Value  Description 
Iteration number (𝐼𝐼) 250 The number of training iterations 
Generator number (𝐺𝐺) 6 The number of experiment instantiations to collect transitions 
Replay buffer size (𝐵𝐵) 10000 The storage capacity of the replay buffer 
Sample size (𝑏𝑏) 1000 The number of transitions sampled for network updates  
Initial 𝜖𝜖 0.90 The initial value of 𝜖𝜖 in 𝜖𝜖 − greedy exploration 
𝜖𝜖 decay 0.98 The exponential decay factor for the 𝜖𝜖 value 
Final 𝜖𝜖 0.01 The final value of 𝜖𝜖 in 𝜖𝜖 − greedy exploration 
Update epoch 5 The times to update the network parameters at each iteration 
Initial learning rate 0.003 The initial learning rate used by RMSprop for the network updates 
Learning rate decay 0.95 The exponential learning rate decay factor at each iteration 
Minimum learning rate 0.0001 The minimum learning rate used by RMSprop 
Discount factor 0.8 The discount factor used to compute the learning targets (Eq. (10)) 
Target networks lifetime  10 The number of iterations to update the target networks 

 31 
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EXPERIMENTS 1 

In this section, the proposed MR-RL is applied for perimeter control on a seven-region network (with 2 
configurations shown in Fig. 1), and its performance is compared with two benchmarking methods to 3 
evaluate its effectiveness. Note that, there are 24 perimeter controllers for 12 pairs of neighboring regions 4 
in the network (see again Fig. 1), hence 12 agents are utilized. 5 

 6 
Experiment Setup 7 
In this work, a unit MFD consistent with the one observed in Yokohama (2) is utilized, with critical and 8 
jam values of 8,240 veh and 34,000 veh, respectively (35, 67). Note that, the unit MFD assumes a piecewise 9 
functional form rather than a 3-rd polynomial for the traffic dynamics to be more realistic. For all 10 
experiments, each region is modeled with a slightly scaled (within ±10%) version of unit MFD, as similarly 11 
done in (29). In addition, the parameters for the boundary capacity constraints are set to 𝐶𝐶𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = 4.6 veh/s 12 
and 𝛼𝛼 = 0.48. 13 

The traffic demand profiles adopted for the numerical experiments are shown in Fig. 3. A two-hour 14 
control period is simulated with high inflows to region 4 and relatively small demands among the periphery 15 
regions, which mimics traffic conditions during a morning peak. The duration of a time step is set as Δ𝑡𝑡 =16 
60𝑠𝑠 , which is a realistic cycle length for the signalized intersections on the regional boundaries that 17 
implement perimeter control. In addition, the boundary values for the perimeter controllers are 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 =18 
0.1,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9. Finally, region 4 assumes a congested initial state with an accumulation value of 8,750 19 
veh while all other regions are assumed to be uncongested initially with accumulations of 3,850 veh. 20 

 21 

 22 
Fig.  3. Traffic demands 23 

 24 
Two benchmarking methods, model predictive control (MPC) and no control (NC), are adopted to 25 

compare the performances with the MR-RL, in terms of the cumulative trip completion (CTC) they achieve. 26 
The NC method does not impose limitations on the transfer flows and instead uses the maximum value for 27 
all perimeter controllers; it is usually adopted as a baseline method that provides the lower-bound control 28 
performances. In contrast, the MPC is a model-based rolling horizon optimization scheme that has achieved 29 
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state-of-the-art control performances. However, one major disadvantage of the MPC is that it builds upon 1 
full knowledge of the environment dynamics (i.e., the MFDs and dynamic equations governing vehicle 2 
movement between regions), which are generally difficult to obtain in the first place. In this paper, the MPC 3 
is implemented as per the perimeter control-only scheme in (29) with a control horizon of 2 and a prediction 4 
horizon of 3, as similarly adopted in numerous other works (5, 49, 50). Note that for the seven-region 5 
perimeter control problem, a larger prediction horizon does not necessarily lead to better control 6 
performance since the solution space of the formulated nonconvex optimization problem becomes so large 7 
that finding the global optimum is increasingly difficult.   8 

 9 
Experiment Results 10 
For the experiment scenario considered, the traffic dynamics assumed by the MPC in the prediction model 11 
are the same as those in the plant. The MR-RL is trained with five fixed random seeds and its performance 12 
curves are shown in Fig. 4, where the darker line and shad ed area respectively represent the mean and 95% 13 
confidence interval of the control gains (in terms of CTC). The MPC and NC are also run five times to 14 
report their performance curves, but the curves are relatively invariant as they are not learning-based 15 
methods. Note that there is built-in randomness associated with the travel time calculation of different paths 16 
used to determine the route choice term (see Eq. (4)); hence these two methods also exhibit a (negligibly 17 
small) range of CTC values. 18 

 19 

 20 
Fig.  4. Performance curves of different methods for the no uncertainty scenario.  21 

 22 
As shown in Fig. 4, the NC method realizes the lower CTC value, which is expected since unlimited 23 

vehicle inflow into region 4 aggravates the congestion therein and adversely impacts other inter-region 24 
vehicular movements. More importantly, the proposed MR-RL can consistently learn and achieve control 25 
gains that are commensurate with (sometimes even better than) the MPC. This showcases the significant 26 
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potential of model-free reinforcement learning methods over model-based approaches. The MPC is an 1 
optimization-based approach and derives control actions by solving a large nonlinear nonconvex program 2 
that features a sizable solution space. As such, it may fail to find the global optimum, which leads to slight 3 
underperformance to the proposed scheme, though the MPC could theoretically be the optimal control 4 
technique with improved performances via guaranteed global optimum finding. However, implementing 5 
this is not conceivably straightforward. Comparatively, the MR-RL learns the control policy via trial and 6 
error, and through this process it can encounter better acting strategy than the MPC. Finally, note that 7 
training performances of the MR-RL in the early period are noticeably worse than the NC method. This is 8 
reasonable since during this period the MR-RL is principally exploring the environment. In this paper, the 9 
training process is presumed to be completed with numerical simulations. Therefore, the initial control 10 
performances are not important as only the fully trained MR-RL scheme will be applied.  11 

To further demonstrate the effectiveness of the MR-RL, its control outcomes are examined more 12 
carefully in the following. Fig. 5 presents the evolution of accumulations for each region, as achieved by 13 
different control methods. The critical accumulations are also provided in dotted lines which helps 14 
determine the congestion situation for the regions. As can be observed, under the NC method, region 4 15 
becomes extremely congested in the end while the accumulations in other regions are generally smaller 16 
than realized by the MPC or the MR-RL. This is understandable as the region 4-bounded flows are much 17 
larger than the others. However, notable congestion in region 4 leads to small trip completion therein, which 18 
also makes inter-regional travel time-consuming. For example, region 6-bounded vehicles in region 2 that 19 
normally would travel via region 4 might need to take a longer route to reach their destinations. 20 
Consequently, the trip completions in other regions will be negatively influenced and the NC method ends 21 
up with the lowest CTC. Comparatively, both the MPC and MR-RL can significantly reduce the congestion 22 
in region 4, while in the meantime keeping the accumulations in other regions under the critical values. 23 
This implies that these methods can indeed perform effective perimeter control as the most destination-24 
loaded region (i.e., region 4) are protected from over-congestion, which is consistent with the AB strategy 25 
proposed in (1). Finally, the similarity of accumulations in all regions between the MPC and MR-RL 26 
indicates great comparability between them. 27 

 28 

 29 
Fig.  5. Accumulation plots for all regions. The dotted lines represent the critical accumulations. 30 
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 1 
Fig. 6 presents the control actions 𝑢𝑢𝑖𝑖4 of the MPC and MR-RL, while all other controllers are 2 

omitted from the presentation here. The selective presentation is done intentionally since other controllers 3 
are nearly inactive, i.e., they all adopt the maximum value 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚. This is expected since the implementation 4 
of perimeter control here is mostly designed at protecting region 4 from severe congestion, for which 𝑢𝑢𝑖𝑖4 5 
being active is sufficient. Likewise, the NC actions are not included for comparison either since they are all 6 
equal to the maximum value. Fig. 6 reveals that the MR-RL imposes stricter limitation on the transfer flows 7 
to region 4 from regions 5, 6, and 7; hence the accumulations in these three regions are generally larger 8 
than those resulted from the MPC actions. Similarly, the accumulations in regions 1, 2, and 3 are smaller 9 
than those realized by the MPC since more transfer flows can be completed under the MR-RL policy that 10 
exhibits looser control (i.e., more 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚  values in the actions). In addition, both methods select the 11 
maximum value for all controllers in the initial period, which is sensible as there does not exist pronounced 12 
congestion within the network (even region 4 is only moderately congested). Overall, these control actions 13 
help explain the resulting evolutions of accumulations, which also illustrates how the proposed MR-RL is 14 
comparable to the MPC. 15 

 16 

 17 
Fig.  6. Control actions 𝒖𝒖𝒊𝒊𝒊𝒊 of the MPC and proposed MR-RL. 18 

 19 
CONCLUDING REMARKS 20 

This paper presents a novel MR-RL scheme for multi-region perimeter control based on model-free multi-21 
agent reinforcement learning. Specifically, the proposed MR-RL features value function decomposition, 22 
which significantly helps with scalability, recent breakthrough of single-agent deep reinforcement learning 23 
(such as the Ape-X architecture, double Q-learning update rule, experience replay, target networks, etc.), 24 
and suitable problem reformulation governed by domain expertise (e.g., the Bang-Bang type action space 25 
design). The control efficacy of the MR-RL is demonstrated with numerical experiments on a simulated 26 
seven-region urban network, and the results suggest that the scheme can consistently learn and converge to 27 
final control performances that are comparable to the MPC method. It is worth reiterating that, the proposed 28 
MR-RL is completely model-free which does not require a priori information about the environment. Hence, 29 
it is not affected by a wide range of modeling mismatch, e.g., scaling errors and the time-changing feature 30 
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of MFDs, to which recent data-driven approaches are liable (49, 50). Further, note that this paper presents 1 
the first examination of completely model-free methods on seven-region perimeter control. 2 

Future works to this paper could consider integrating low-level intra-regional signal control, which 3 
holds promise for realistic city-wide traffic management. In addition, it would be interesting to investigate 4 
whether the pretrained scheme from numerical simulations can be transferred to a microsimulation platform 5 
and continue its learning course with real-time interactions. This could help evaluate an extra level of 6 
transferability for the MR-RL and its ability to keep learning in a different platform. 7 
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