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Abstract
Recent relation extraction (RE) works have
shown encouraging improvements by conduct-
ing contrastive learning on silver labels gener-
ated by distant supervision before fine-tuning
on gold labels. Existing methods typically as-
sume all these silver labels are accurate and
treat them equally; however, distant supervi-
sion is inevitably noisy—some silver labels
are more reliable than others. In this paper,
we propose fine-grained contrastive learning
(FineCL) for RE, which leverages fine-grained
information about which silver labels are and
are not noisy to improve the quality of learned
relationship representations for RE. We first
assess the quality of silver labels via a sim-
ple and automatic approach we call “learning
order denoising,” where we train a language
model to learn these relations and record the
order of learned training instances. We show
that learning order largely corresponds to label
accuracy—early-learned silver labels have, on
average, more accurate labels than later-learned
silver labels. Then, during pre-training, we in-
crease the weights of accurate labels within
a novel contrastive learning objective. Exper-
iments on several RE benchmarks show that
FineCL makes consistent and significant per-
formance gains over state-of-the-art methods.

1 Introduction

Relation extraction (RE), a subtask of information
extraction, is a foundational task in Natural Lan-
guage Processing (NLP). The RE task is to deter-
mine a linking relationship between two distinct
entities from text, producing fact triples in the form
[head, relation, tail]. For example, reading the
Wikipedia page on Noam Chomsky, we learn that
Noam was “born to Jewish immigrants in Philadel-
phia,” which corresponds to the fact triple [Noam

Chomsky, born in, Philadelphia]. Fact triples play a
key role in downstream NLP tasks such as question-
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answering, search queries, dialog systems, and
knowledge-graph completion (Xu et al., 2016; Lin
et al., 2015; Madotto et al., 2018; Hogan et al.,
2021; Li et al., 2014).

Current state-of-the-art RE models leverage a two-
phase training: a self-supervised pre-training fol-
lowed by a supervised fine-tuning. Popular pre-
trained language models (PLM) such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019)
feature a generic pre-training objective, namely
masked language modeling (MLM), that allows
them to generalize to various downstream tasks.
However, recent RE works have shown impressive
performance gains by using a pre-training objective
designed specifically for relation extraction (Soares
et al., 2019; Peng et al., 2020; Qin et al., 2021).

Recently, Peng et al. (2020) and Qin et al. (2021)
used a contrastive learning loss function to learn
relationship representations during pre-training.
However, RE-specific pre-training requires large
amounts of automatically labeled data obtained
trough distant supervision for RE (Mintz et al.,
2009) which is inherently noisy—not all labels
from distantly supervised data are correct. Gao
et al. (2021) manually examined distantly super-
vised relation data and found that a significant ratio,
53%, of the assigned labels were incorrect. Further-
more, distantly supervised labels can go beyond
“correct” or “incorrect”—they can have multiple
levels of correctness. Consider the following sen-
tences:
1. “Noam Chomsky was born in Philadelphia.”
2. “Noam Chomsky gave a presentation in Philadelphia.”
3. “Raised in the streets of Philadelphia, Noam Chomsky...”

Pairing this text with the Wikidata knowledge
graph (Vrandečić and Krötzsch, 2014), distant su-
pervision labels each sentence as a positive instance
of [Noam Chomsky, born in, Philadelphia]; how-
ever, only sentence (1) adequately expresses the re-
lationship “born in.” Sentence (2) is incorrectly la-
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Figure 1: The FineCL framework has three stages: Stage 1: we use distantly supervised data (T ) to train a PLM
via cross-entropy to collect ordered subsets of learned (A) and not learned (B) instances over k epochs. Stage 2:
function f(k) weighs relation instances (r0, r1) relative to their learning order in a contrastive learning pre-training
objective that uses cosine similarity to align similar relations. Stage 3: we adapt the model to a discriminative task.

beled, and sentence (3) is, arguably, semi-accurate
since one may infer that someone was born in the
same place they were raised. Conventional con-
trastive learning for RE does not account for dif-
ferences in label accuracy—it treats all instances
equally. This can be problematic when learning ro-
bust and high-quality relationship representations.

This paper proposes a noise-aware contrastive
pre-training, Fine-grained Contrastive Learning
(FineCL) for RE, that leverages additional fine-
grained information about which instances are and
are not noisy to produce high-quality relationship
representations. Figure 1 illustrates the end-to-end
data flow for the proposed FineCL method. We
first assess the noise level of all distantly super-
vised training instances and then incorporate such
fine-grained information into the contrastive pre-
training. Less noisy, or clean, training instances are
weighted more relative to noisy training instances.
We then fine-tune the model on gold-labeled data.
As we demonstrate in this work, this approach
produces high-quality relationship representations
from noisy data and then optimizes performance
using limited amounts of human-annotated data.

There are several choices of methods to assess
noise levels. We select a simple yet effective
method we call “learning order denoising” that
does not require access to human annotated labels.
We train an off-the-shelf language model to predict
relationships from distantly supervised data and we
record the order of relation instances learned during
training. We show that the order in which instances
are learned corresponds to the label accuracy of
an instance: accurately labeled relation instances
are learned first, followed by noisy, inaccurately
labeled relation instances.

We leverage learning-order denoising to improve
the relationship representations learned during pre-
training by linearly projecting the weights of each
relation instance corresponding to the order in
which the instance was learned. We apply higher
weights to relation instances learned earlier in train-
ing relative to those learned later in training. We
use these weights to inform a contrastive learning
loss function that learns to group instances of simi-
lar relationships.

We compare our method to leading RE pre-training
methods and observe an increase in performance
on various downstream RE tasks, illustrating that
FineCL produces more informative relationship
representations.

The contributions of this work are the following:

• We demonstrate that learning-order denoising is
an effective and automatic method for denoising
distantly labeled data.

• Applying a denoising strategy to a contrastive
learning pre-training objective creates more infor-
mative representations, improving performance
on downstream tasks.

• We openly provide all code, trained models, ex-
perimental settings, and datasets used to substan-
tiate the claims made in this paper.1

2 Related Work

Early RE methods featured pattern-based algo-
rithms (Califf and Mooney, 1997) followed by
advanced statistical-based RE methods (Mintz
et al., 2009; Riedel et al., 2010; Quirk and Poon,
2017). Advances in deep learning led to neural-
based RE methods (Zhang and Wang, 2015; Peng

1https://github.com/wphogan/finecl
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Base Lang. Model Pre-train objective RD ED

BERT BERT MLM ⇥ ⇥
RoBERTa RoBERTa MLM ⇥ ⇥
MTB BERT DPS X ⇥
CP BERT CL + MLM X ⇥
ERICABERT BERT CL + MLM X X
ERICARoBERTa RoBERTa CL + MLM X X
WCL BERT WCL + MLM X ⇥
FineCL RoBERTa FineCL + MLM X X

Table 1: A comparison of RE pre-training methods
highlighting the pre-training objective: Mask Language
Modeling (MLM), Dot Product Similarity (DPS), Con-
trastive Learning (CL), Weighted Contrastive Learn-
ing (WCL), and Fine-grained Contrastive Learning
(FineCL). RD denotes the presence of relation discrimi-
nation in the loss function, and ED denotes the presence
of entity discrimination in the loss function.

et al., 2017; Miwa and Bansal, 2016). The trans-
former (Vaswani et al., 2017) enabled the devel-
opment of wildly successful large pre-trained lan-
guage models (Radford and Narasimhan, 2018; De-
vlin et al., 2019; Liu et al., 2019). At the time of
writing, all current leading models in RE2 lever-
age large pre-trained language models via a two-
step training methodology: a self-supervised pre-
training followed by a supervised fine-tuning (Xu
et al., 2021; Xiao et al., 2021).

Building on BERT (Devlin et al., 2019), Soares
et al. (2019) proposed MTB, a model featuring a
pre-training objective explicitly designed for the
task of relation extraction. MTB uses dot product
similarly to align pairs of randomly masked enti-
ties during pre-training. Its success inspired the de-
velopment of subsequent RE-specific pre-training
methods (Peng et al., 2020; Qin et al., 2021). Peng
et al. (2020) demonstrated the effectiveness of con-
trastive learning used to develop relationship repre-
sentations during pre-training. Their model, named
“CP,” featured a pre-training objective that com-
bined a relation discrimination task with BERT’s
masked language modeling (MLM) task. Their
work inspired ERICA (Qin et al., 2021), which
expanded the contrastive learning pre-training ob-
jective to include entity and relation discrimination,
as well as MLM.

Wan et al. (2022) is a recent extension of Peng
et al. (2020) that proposes a weighted contrastive
learning (WCL) method for RE. The authors first
fine-tune BERT to predict relationships using gold

2https://paperswithcode.com/task/
relation-extraction

training data and then use the fine-tuned model to
predict relationships from distantly labeled data.
Next, they use the softmax probability of each pre-
diction as a confidence value which they then apply
to a weighted contrastive learning function used for
pre-training. Lastly, they fine-tune the WCL model
on gold training data.

Our work is an extension of ERICA. We introduce
a more nuanced RE contrastive learning objective
that leverages additional, fine-grained data about
which instances are high-quality training signals.
Table 1 qualitatively compares recent pre-training
methods used for RE.

3 Methods

FineCL for RE consists of three discrete stages:
learning order denoising, contrastive pre-training,
and supervised adaptation.

3.1 Learning Order Denoising
For learning order denoising, we automatically la-
bel large amounts of training data via distant su-
pervision for RE (Mintz et al., 2009) which we
use to train a PLM to predict relation classes using
multi-class cross-entropy loss.

LCE = �
NX

i=1

yo,i · log (p (yo,i)) (1)

Where the number of classes N is the number of
relation classes plus one for no relation, y is a
binary indicator that is 1 if and only if i is the
correct classification for observation o, and p(yo,i)
is the Softmax probability that observation o is of
class i.

During training, we record the order of training in-
stances learned. We consider an instance “learned”
upon the initial correct prediction. Likewise, an in-
stance is “not learned” if the model fails to predict
it correctly during training. Training instances are
evaluated by batch within each epoch, exposing the
model to all training data points the same number
of times. We refer to this method as batch-based

learning order.

Thus, the PLM effectively becomes a mapping
function that maps all training instances (T ) into
two subsets: learned (A) and not learned instances
(B) such that A

S
B = T 0 and A

T
B = ;.

The set of learned instances A is further divided
into non-intersecting subsets of learned instances
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Figure 2: Percent of total training instances learned per
epoch when recording batch-based learning order on
distantly labeled data from DocRED.

A1 through Ak where k corresponds to the epoch
in which an instance is learned.

A0

[
A1...

[
Ak = A (2)

Ai

\
Aj = ; for all i 6= j (3)

We use k = 15 epochs, resulting in k+1 subsets of
instances—k subsets of learned instances plus one
subset of not learned instances. Figure 2 shows the
percent of total training instances learned per epoch
during this phase on the DocRED (Yao et al., 2019)
distantly labeled training set which contains 100k
documents, 1.5M intra- and inter-sentence relation
instances, and 96 relation types (not including no
relation).

More challenging relation classes may be underrep-
resented within the set of learned instances. Such
minority classes can be problematic during pre-
training since unlearned instances are weighted less
than learned ones, presenting a challenge for the
model to learn informative representations for mi-
nority classes. To account for this, we ensure that at
least P% of instances of each relation class is con-
tained within the set of learned instances. During
training, we set P = 50 and observed that 2% of re-
lation classes are underrepresented within the set of
learned instances. We upsample underrepresented
classes by randomly selecting unlearned instances
from the corresponding class, placing them into
one of the k subsets of learned instances A. See
Figure 4 in the Appendix for a detailed chart show-
ing the ratio of learned instances by relation class
in each epoch.

Learning order metadata is then inserted into the
original training data T , creating a modified train-
ing set T 0 used for the contrastive pre-training.

3.2 Contrastive Pre-training
This section introduces our pre-training method to
learn high-quality entity and relation representa-
tions. We first construct informative representation
for entities and relationships which we use to im-
plement a three-part pre-training objective that fea-
tures entity discrimination, relation discrimination,
and masked language modeling.

3.2.1 Entity & Relation Representation
We construct entity and relationship representa-
tions following ERICA (Qin et al., 2021). For
the document di, we use a pre-trained language
model to encode di and obtain the hidden states
{h1,h2, . . . ,h|di|}. Then, mean pooling is applied
to the consecutive tokens in entity ej to obtain en-
tity representations. Assuming nstart and nend are
the start index and end index of entity ej in doc-
ument di, the entity representation of ej is repre-
sented as:

mej = MeanPool(hnstart , . . . ,hnend) (4)

To form a relation representation, we concatenate
the representations of two entities ej1 and ej2:
rj1j2 = [ej1; ej2].

3.2.2 Entity Discrimination
For entity discrimination, we use the same method
described in ERICA. The goal of entity discrimina-
tion (ED) is inferring the tail entity in a document
given a head entity and a relation (Qin et al., 2021).
The model distinguishes the ground-truth tail entity
from other entities in the text. Given a sampled in-
stance tuple tijk = (di, eij , rijk, eik), our model is
trained to distinguish the tail entity eik from other
entities in the document di. Specifically, we con-
catenate the relation name of rijk, the head entity
eij and a special token [SEP] in front of di to get
d⇤i . Then, we encode d⇤i to get the entity represen-
tations using the method from Section 3.2.1. The
contrastive learning objective for entity discrimina-
tion is formulated as:

LED = �
P

tijk2T 0 log
exp(cos(eij ,eik)/⌧)

P|Ei|
l=1,l 6=j exp(cos(eij ,eil)/⌧)

where cos(·, ·) denotes the cosine similarity be-
tween two entity representations and ⌧ is a tem-
perature hyper-parameter.

3.2.3 Relation Discrimination
To effectively learn representation for downstream
task relation extraction, we conduct a Relation Dis-
crimination (RD) task during pre-training. RD
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aims to distinguish whether two relations are se-
mantically similar (Qin et al., 2021). Existing meth-
ods (Peng et al., 2020; Qin et al., 2021) require
large amounts of automatically labeled data from
distant supervision which is noisy because not all
sentences will adequately express a relationship.

In this case, the learning order can be introduced to
make the model aware of the noise level of relation
instances. To efficiently incorporate learning order
into the training process, we propose fine-grained,
noise-aware relation discrimination.

In this new method, the noise level of all distantly
supervised training instances controls the optimiza-
tion process by re-weighting the contrastive ob-
jective. Intuitively, the model should learn more
from high-quality, accurately labeled training in-
stances than noisy, inaccurately labeled instances.
Hence, we assign higher weights to earlier learned
instances from the learning order denoising stage.

In practice, we sample a tuple pair of relation
instance tA = (dA, eA1 , rA, eA2 , kA) and tB =
(dB, eB1 , rB, eB2 , kB) from T 0 and rA = rB ,
where d is a document; e is a entity in d; r is the
relationship between two entities and k is the first
learned order introduced in Section 3.1. Using the
method mentioned in Section 3.2.1, we obtain the
positive relation representations rtA and rtB . To
discriminate positive examples from negative ones,
the fine-grained RD is defined as follows:

LRD = �
X

tA,tB2T 0

f(kA) log
exp (cos (rtA , rtB ) /⌧)

Z

Z =
NX

tC2T 0/{tA}

f(kC) exp (cos (rtA , rtC ) /⌧)

where cos(·, ·) denotes the cosine similarity; ⌧ is
the temperature; N is a hyper-parameter and tC is
a negative instance (rA 6= rC) sampled from T 0.
Relation instances tA and tC are re-weighted by
function f which is defined as:

f(k) = ↵
kmax�k

kmax�kmin (5)

where ↵ (↵ > 1) is a hyper-parameter of the func-
tion f ; max and min are maximum and minimum
first-learned order, respectively. We increase the
weight of negative tC if it is a high-quality training
instance (i.e., k is small). Because all positives and
negatives are discriminated from instance tA, we
control the overall weight by the learning order kA.

3.2.4 Overall Objective
We include the MLM task (Devlin et al., 2019) to
avoid catastrophic forgetting of language under-
standing (McCloskey and Cohen, 1989) and con-
struct the following overall objective for FineCL:

LFineCL = LED + LRD + LMLM (6)

3.3 Supervised Adaptation
The primary focus of our work is to improve rela-
tionship representations learned during pre-training
and, in doing so, improve performance on down-
stream RE tasks. To illustrate the effectiveness
of our pre-training method, we use cross-entropy
loss, as described in equation 1, to fine-tune our
pre-trained FineCL model on document-level and
sentence-level RE tasks.

4 Experiments

4.1 Learning Order as Noise Level Hypothesis
We first seek to confirm our hypothesis that the
learning order automatically orders distantly su-
pervised data from clean, high-quality instances
to noisy, low-quality instances. However, given
the large amount of pre-training data, statistically
significant confirmation via manual annotation is
prohibitively expensive. So, we devise the follow-
ing experiment to test our hypothesis in lieu of a
significant manual annotation effort.

We begin with the assumption that a model trained
on a dataset without noise will perform better than
a model trained on a dataset with noise. Sup-
pose learning order denoising successfully orders
instances relative to their noise; then, we should
observe a boost in performance by training on a
subset of early-learned instances compared to a
model trained on the complete, noisy dataset.

As reported by Gao et al. (2021), up to 53% of
relation instances labeled via distant supervision
are incorrect. Using this estimation, we attempt to
use learning order denoising to remove the roughly
50% of instances that are noisy instances from the
DocRED’s distantly supervised training set. To
do this, we first obtain the learning order of rela-
tion instances using the methodology described in
Section 3.1. Without loss of generalization, we
choose RoBERTa (Liu et al., 2019), specifically
the roberta-base checkpoint3, as the base model to

3https://huggingface.co/roberta-base
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Learning order Training set Training set size F1

None T 100% 45.8

Batch-based TAB
0

45.0% 46.6

Epoch-based TAE
0

64.9% 46.0

Table 2: Results comparing performance on the Do-
cRED test set using trimmed sets of distantly supervised
training data. The batch-based and epoch-based train-
ing sets consist of training instances determined by the
instances learned within the first epoch using the respec-
tive learning order collection methods.

develop the order of learned instances.

We observe that the set of training instances learned
via batch-based learning order in the first epoch,
AB

0 , consists of 45% of the total training instances.
We use AB

0 to construct a trimmed training set TAB
0

.
We then compare performance in two settings: (1)
RoBERTa trained with the complete distantly super-
vised training dataset T and (2) RoBERTa trained
on the trimmed, denoised training data TAB

0
. Ta-

ble 2 reports the results of this experiment. Signifi-
cantly, the denoised training set consisting of only
45% training data outperforms the baseline model.

We also conduct an informal manual analysis of
the learning order. We randomly selected 120 in-
stances from the first six training epochs—60 cor-
rectly, and 60 incorrectly predicted instances. We
find that 93% of the correct predictions have accu-
rate labels within the first three epochs. However,
in epochs 4 through 6, label accuracy drops to 53%
among correct predictions. Furthermore, we find a
relatively low label accuracy of 50% from the first
three epochs of incorrect predictions, illustrating
that the model struggles to learn noisy instances
compared to clean instances early in training. We
use these results and the results presented in Ta-
ble 2 to argue that learning order successfully or-
ders instances from clean, high-quality to noisy,
low-quality instances.

4.2 Learning Order: Batch- vs. Epoch-based
We experiment with two methods of collecting
learning order data: batch-based and epoch-based

(see Appendix A.1 for pseudo-code describing
these methods).
Batch-based: As previously mentioned, for batch-

based learning order we collect learned instances
per batch across each epoch during training. How-
ever, we recognize that this may bias the set of

learned instances by the random batch for which
they are selected. For example, accurately labeled
relation instances selected for the first few batches
during training may not be predicted correctly be-
cause the model has not learned much.
Epoch-based: To reduce potential selection order
bias from batch-based learning order, we experi-
ment with epoch-based learning order by evaluat-
ing the model on the entire training set at the end
of each epoch. We rerun the experiment detailed
in Section 4.1 using epoch-based learning order to
construct the trimmed dataset TAE

0
and present the

results in Table 2.

Using epoch-based learning order, we observe that
the model learns 64.9% of the training instances
within the first epoch, an increase compared to
the 45.0% of learned instances from batch-based

learning order. However, training RoBERTa on the
epoch-based training subset, we obtain an F1 score
of 46.0, which under-performs relative to the 46.6
F1 score from the batch-based learning order ex-
periment. We hypothesize that, while epoch-based

learning order may capture more learned instances,
it leads to noisier instances leaking into the sets of
learned data because the model is more prone to
simply memorizing noisy labels encountered previ-
ously in the epoch.

Note that we do not use DocRED’s human-
annotated training data in these learning order ex-
periments. Instead, we train on the distantly su-
pervised training data and test on human-annotated
data. This is done to assess the quality of the vari-
ous subsets of distantly labeled data. It is why the
performance of these tests is considerably lower
than the results from the experiments in Section 4.4
that leverage human-annotated training data.

4.3 Pre-training Details

To ensure a fair comparison and highlight the ef-
fectiveness of FineCL, we align our pre-training
data and settings to those used by ERICA. The
ERICA pre-training dataset is constructed using
distant supervision for RE by pairing documents
from Wikipedia (English) with the Wikidata knowl-
edge graph. This distantly labeled dataset creation
method mirrors the method used to create the dis-
tantly labeled training set in DocRED but differs
in that it is much larger and more diverse. It con-
tains 1M documents, 7.2M relation instances, and
1040 relation types compared to DocRED’s 100k
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Size 1% 10% 100%

Metrics F1 IgF1 F1 IgF1 F1 IgF1

CNN* - - - - 42.3 40.3
BiLSTM* - - - - 51.1 50.3

HINBERT* - - - - 55.6 53.7
CorefBERT* 32.8 31.2 46.0 43.7 57.0 54.5
SpanBERT* 32.2 30.4 46.4 44.5 57.3 55.0
ERNIE* 26.7 25.5 46.7 44.2 56.6 54.2
MTB* 29.0 27.6 46.1 44.1 56.9 54.3
CP* 30.3 28.7 44.8 42.6 55.2 52.7
BERT 19.9 18.8 45.2 43.1 56.6 54.4
RoBERTa 29.6 27.9 47.6 45.7 58.2 55.9
ERICABERT 22.9 21.7 48.5 46.4 57.4 55.2
ERICARoBERTa 30.0 28.2 50.1 48.1 59.1 56.9
WCLRoBERTa 22.3 20.8 49.4 47.5 58.5 56.2

FineCL 33.2 31.2 50.3 48.3 59.5 57.1

Table 3: F1-micro scores reported on the DocRED test
set. IgF1 ignores performance on fact triples in the
test set overlapping with triples in the train/dev sets. (*
denotes performance as reported in (Qin et al., 2021);
all other numbers are from our implementations).

documents, 1.5M relation instances, and 96 rela-
tion types (not including no relation). Additional
checks are performed to ensure no fact triples over-
lap between the training data and the test sets of
the various downstream RE tasks. Detailed pre-
training settings can found in Appendix A.2.

4.4 Relation Extraction

Document-level RE: To assess our framework’s
ability to extract document-level relations, we re-
port performance on DocRED (Yao et al., 2019).
We compare our model to the following baselines:
(1) CNN (Zeng et al., 2014), (2) BiLSTM (Hochre-
iter and Schmidhuber, 1997), (3) BERT (Devlin
et al., 2019), (4) RoBERTa (Liu et al., 2019), (5)
MTB (Soares et al., 2019), (6) CP (Peng et al.,
2020), (7 & 8) ERICABERT & ERICARoBERTa (Qin
et al., 2021), (9) WCL (Wan et al., 2022). We fine-
tune the pre-trained models on DocRED’s human-
annotated train/dev/test splits (see Appendix A.3.1
for detailed experimental settings). We implement
WCL with identical settings from our other pre-
training experiments and, for fair comparison, we
use RoBERTa instead of BERT as the base model
for WCL, given the superior performance we ob-
serve from RoBERTa in all other experiments. Ta-
ble 3 reports performance across multiple data re-
duction settings (1%, 10%, and 100%), using an
overall F1-micro score and an F1-micro score com-
puted by ignoring fact triples in the test set that

Metric F1-macro F1-macro-weighted

BERT 37.3 54.9
RoBERTa 39.6 56.9
ERICABERT 37.9 55.8
ERICARoBERTa 40.1 57.8
WCLRoBERTA 39.9 57.2

FineCL 40.7 58.2

Table 4: F1-macro and F1-macro-weighted scores re-
ported from the DocRED test set.

Dataset TACRED SemEval

Size 1% 10% 100% 1% 10% 100%

MTB* 35.7 58.8 68.2 44.2 79.2 88.2
CP* 37.1 60.6 68.1 40.3 80.0 88.5
BERT 22.2 53.5 63.7 41.0 76.5 87.8
RoBERTa 27.3 61.1 69.3 43.6 77.7 87.5
ERICABERT 34.9 56.0 64.9 46.4 79.8 88.1
ERICARoBERTa 41.1 61.7 69.5 50.3 80.9 88.4
WCLRoBERTA 37.6 61.3 69.7 47.0 80.0 88.3

FineCL 43.7 62.7 70.3 51.2 81.0 88.7

Table 5: F1-micro scores reported from the TACRED
and SemEval test sets (* denotes performance as re-
ported in (Qin et al., 2021); all other numbers are from
our implementations).

overlap with fact triples in the training and develop-
ment splits. We observe that FineCL outperforms
all baselines in all experimental settings, offering
evidence that FineCL produces better relationship
representations from noisy data.

Given that learning-order denoising weighs ear-
lier learned instances over later learned instances,
FineCL may be biased towards easier, or common
relation classes. The increase in F1-micro per-
formance may result from improved predictions
on common relation classes at the expense of pre-
dictions on rare classes. To better understand the
performance gains, we also report F1-macro and
F1-macro weighted in Table 4. The results show
that FineCL outperforms the top baselines in both
F1-macro metrics indicating that, on average, our
method improves performance across all relation
classes. However, the low F1-macro scores from
all the models highlight an area for improvement—
future pre-trained RE models should focus on im-
proving performance on long-tail relation classes.

Sentence-level RE: To assess our framework’s abil-
ity to extract sentence-level relations, we report
performance on TACRED (Zhang et al., 2017) and
SemEval-2010 Task 8 (Hendrickx et al., 2010). We
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compare our model to MTB, CP, BERT, RoBERTa,
ERICABERT, ERICARoBERTa, and WCL (see Ap-
pendix A.3.2 for detailed experimental settings).
Table 5 reports F1 scores across multiple data re-
duction settings (1%, 10%, 100%). Again, we
observe that FineCL outperforms all baselines in
all settings.

5 Ablation Studies

We conduct a suite of ablation experiments to un-
derstand how learning order denoising affects the
quality of relationship representations learned dur-
ing pre-training. We note that the FineCL method is
identical to ERICA when we remove fine-grained
data and treat all instances equally. As such, ER-
ICA can be considered an ablation experiment of
FineCL without fine-grained data.

5.1 Learning Order Epochs
In our first ablation experiment, we vary the num-
ber of training epochs (k) used to obtain learning or-
der data to determine how the different amounts of
batch-based learning order data affect pre-training.
We test k = {1, 3, 5, 10, 15} as well as a baseline
that does not use learning order denoising. To re-
duce the high computational requirements for pre-
training, we use a shortened pre-training for these
experiments where we pre-train for 1000 training
steps compared to the full 6000 step training used
for our main experiments. We then fine-tune the
models using the same settings described in Sec-
tion 4.4. Notably, our pre-trained model trained
at 1000 steps achieves an F1 score of 59.0, which
is reasonably close to the 59.5 F1 score from the
FineCL trained for 6000 steps. Table 6 contains
the results from this ablation experiment. We ob-
serve that k = 15 epochs of learned instances pro-
duce the best performance, indicating that a more
extensive set of learned instances produces better
relationship representations.

5.2 Different Learning Order Models
We chose the RoBERTa base model for the first
stage of our FineCL framework to reduce the adop-
tion barrier for our methodology. Popular pre-
trained models such as roberta-base are easy to
implement and require fewer resources compared
to larger state-of-the-art (SOTA) RE models. How-
ever, given that RoBERTa is not a leading RE
model, we seek to answer the question—how do
sets of learned training instances differ between

Epochs of learning order data % Learned F1 IgF1

Baseline N/A 58.7 56.5
1 Epoch 45 58.6 56.4
3 Epochs 76 58.6 56.3
5 Epochs 83 58.7 56.5
10 Epochs 92 58.8 56.6
15 Epochs 94 59.0 56.7

Table 6: Ablation experiment results on the DocRED
test set with pre-trained models that use learning order
data obtained with various training durations. Percent
learned refers to the percent of training instances learned
in the set of learned instances (A). “Baseline” is a pre-
trained model that does not leverage learning order (i.e.,
all instances are weighted equally during pre-training).
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Figure 3: Cumulative Jaccard Similarity between sets of
learned instances by epoch from RoBERTa and SSAN
using distantly labeled training data from DocRED.

RoBERTa and the SOTA RE model? At the time of
writing, the leading RE model on DocRED4 is the
SSAN model (Xu et al., 2021). Therefore, we com-
pare sets of learned instances from SSAN (AS) and
RoBERTa (AR) by epoch (k) using a cumulative
Jaccard Similarity Index:

J(AR,AS) =
kX

i=0

|AR
i \AS

i |
|AR

i [AS
i |

Figure 3 plots the cumulative Jaccard Similarity
Index (JSI) between sets of learned instances from
RoBERTa and SSAN. The total cumulative JSI be-
tween the two models after k = 15 epochs is 0.771,
showing high similarity between sets of learned
instances. While the sets are not perfectly aligned,
we argue that this high similarity justifies using
the smaller and more convenient RoBERTa model
in determining learning order. We leave a more
thorough examination of the differences in sets
of learned instances obtained using various RE
models to future work and present our findings
as a proof of concept, demonstrating that obtaining
learning order from relatively small and convenient

4https://paperswithcode.com/sota/
relation-extraction-on-docred
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Metric F1-micro

BERT 32.9
RoBERTa 35.8
ERICABERT 34.7
ERICARoBERTa 34.4
WCLRoBERTA 35.7

FineCL 36.1

Table 7: F1-micro scores on a subset of difficult relation
classes from the DocRED dataset.

language models is sufficient in improving repre-
sentations learned during pre-training.

5.3 Performance Relative to Class Difficulty

As mentioned in Section 3.1, it is possible that
learning-order denoising biases the model to eas-
ier relation classes, as easier classes may be over-
represented in the set of learned instances. To un-
derstand the effectiveness of our approach relative
to class difficulty, we assess the end-to-end per-
formance of FineCL on a set of difficult relation
classes.

We recognize that there are multiple ways to define
a “difficult” relation class. Difficult classes can be
classes with few training instances, classes with a
significant number of inaccurate or semi-accurate
labels, or classes that suffer from low overall ac-
curacy after training completes. For this ablation
study, we define the set of difficult relation classes
as classes that attain relatively low accuracy from
the training in Stage 1 of FineCL. We claim that
any class which achieves less than 80% accuracy
after Stage 1 training completes is a “difficult” re-
lation class. This subset of the lowest-performing
classes from the DocRED dataset makes up 24%
of all the classes in the dataset.

We compare the end-to-end performance of FineCL
to baselines that do not leverage fine-grained con-
trastive learning on the set of difficult relation
classes. Table 7 contains the results from this ex-
periment. We observe that FineCL achieves an F1
score of 36.1% on the subset of difficult classes
compared to the best-performing baseline which
achieves 35.8%. We argue that these results, as
well as the results from Table 4, offer evidence that
the FineCL approach is capable of improving per-
formance on both difficult classes as well as easy
classes. However, the low overall performance

from all models on difficult classes highlights an
area for future work.

6 Conclusion

In this work, we expand on contrastive learning
for relation extraction by introducing Fine-grained
Contrastive Learning for RE—a method that uses
additional, fine-grained information about distantly
supervised training data to improve relationship
representations learned during pre-training. These
improved representations lead to increases in per-
formance across a variety of downstream RE tasks.
This report shows that learning order denoising
effectively and automatically orders distantly su-
pervised training data from clean to noisy instances.
In future work, we hope to explore the usefulness
of this method when applied to manually annotated
data where learning order may instead reflect the
level of difficulty of training instances. This could
be an easy and automatic way to introduce curricula
learning within the fine-tuning training phase. We
also intend to explore the pairing of other denoising
methods with FineCL.
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7 Limitations

The limitations of our method are as follows:
1. Our method requires access to a robust knowl-

edge graph to define the concepts and the rela-
tionships for distant supervision.

2. Our method minimizes the need for but still
requires human-annotated data, which is both
expensive and time-consuming to create.

3. The low F1-macro scores of our model and all
other leading RE models highlight the need
to improve performance on long-tail relation
classes in future works.
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A Appendix

A.1 Learning order methods: batch- vs
epoch-based

Algorithm 1: Batch-based learning order
1 k = 15 epochs
2 for i = 0 to k do
3 foreach batch of training data do
4 predictions model(batch)
5 Ai.insert(correct predictions)
6 Calculate loss
7 Back propagate

Algorithm 2: Epoch-based learning order
1 k = 15 epochs
2 for i = 0 to k do
3 foreach batch of training data do
4 Calculate loss
5 Back propagate
6 predictions model(all training data)
7 Ai.insert(correct predictions)

A.2 Pre-training Settings
We initialize our model with roberta-base released
by Huggingface5. The optimizer is AdamW and
we set the learning rate to 3⇥ 10�5, weight decay
to 1 ⇥ 10�5, batch size to 768 and temperature ⌧
to 5⇥ 10�2. The hyper-parameter ↵ that controls
the weights of contrastive learning is e (the base
of natural logarithm). We randomly sample 64
negatives for each document. We train our model
with 3 NVIDIA Tesla V100 GPUs for 6,000 steps.

A.3 Downstream Training Settings
A.3.1 DocRED
We fine-tune our model on DocRED using the
following settings: batch size=32, epochs=200,
max sequence length=512, gradient accumula-
tion steps=1, learning rate=4e-5, weight decay=0,
adam epsilon=1e-8, max gradient norm=1.0, hid-
den size=768, and a seed=42. Results are reported
on the official DocRED test set as an average of
three runs.

A.3.2 SemEval and TACRED
We fine tune our moodel on SemEval and TA-
CRED using the following settings: batch size=64,
max sequence length=100, learning rate=5e-5,

5https://huggingface.co/roberta-base

adam epsilon=1e-8, weight decay=1e-5, max gra-
dient norm=1.0, warm up steps=500, and hidden
size=768. We ran tests on training proportions
0.01/0.1/1.0 using 80/20/8 epochs and a dropout of
0.2/0.1/0.35, respectively.

Results are reported as an average of five runs using
the following seed values: 42, 43, 44, 45, and 46.
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