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Abstract

As modern machine learning models continue to advance the computational fron-
tier, it has become increasingly important to develop precise estimates for expected
performance improvements under different model and data scaling regimes. Cur-
rently, theoretical understanding of the learning curves that characterize how the
prediction error depends on the number of samples is restricted to either large-
sample asymptotics (m ! 1) or, for certain simple data distributions, to the
high-dimensional asymptotics in which the number of samples scales linearly with
the dimension (m / d). There is a wide gulf between these two regimes, including
all higher-order scaling relations m / dr, which are the subject of the present
paper. We focus on the problem of kernel ridge regression for dot-product kernels
and present precise formulas for the mean of the test error, bias, and variance, for
data drawn uniformly from the sphere with isotropic random labels in the rth-order
asymptotic scaling regime m ! 1 with m/dr held constant. We observe a peak
in the learning curve whenever m ⇡ dr/r! for any integer r, leading to multiple
sample-wise descent and nontrivial behavior at multiple scales. We include a colab2

notebook that reproduces the essential results of the paper.

1 Introduction

Modern machine learning has entered an era in which scaling is arguably the most critical ingredient
to improve performance. Recent breakthroughs such as GPT-3 [24] and PaLM [11] have demonstrated
that performance of various learning algorithms improves in a predictable manner as the amount of
data and computational resources used in training increases. The functional relationships between
performance and resources are loosely referred to as learning curves. While extrapolation of empirical
learning curves is widely used to make predictions about how a model might perform when extra
resources become available, a rigorous theoretical understanding is lacking. A fundamental obstacle
in developing a detailed theoretical model of such learning curves is that they depend on many moving
parts, e.g. the data distribution, the network architecture, the training algorithm, among others. In
addition, even in the simplest possible settings, the learning curves can exhibit non-trivial structure
that naive scaling laws fail to model, e.g. the well-known double-descent phenomenon [7, 3].

In the past couple years, a large amount of effort from the community has improved our theoretical
understanding of such phenomena and in some cases precise characterizations of learning curves
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Figure 1: Precise Sample-wise Learning Curves for One-hidden Layer CNN kernels. The
theoretical predictions (Eq. (18), solid lines) agree with finite-size simulations (markers) across several
orders of magnitude and captures cases in which the curves are relatively simple (monotonically
decreasing, small spectral gap) and complex (multiple-descent, large spectral gap). Simulations are
obtained from kernel regression with one-layer CNN kernels averaged over 50 runs. The input is of
shape d = d0 ⇥ p with size d0 = 14 and number of patches p = 6. We vary the kernels by varying
the ratio (aka spectral gap) between consecutive eigenspaces, where the ratio Gap 2 [2,8,32,128].

have been obtained (see e.g., [21, 1, 31, 34, 28]). These results have helped clarify several puzzling
empirical observations, such as the origin of the double-descent peak [2, 27, 13] and linear trends
between in- and out-of-distribution generalization performance [38, 39, 30], among many others.
However, the precise predictions from many of these analyses have been possible only in the linear
high-dimensional scaling regime in which the number of training samples m scales linearly with the
dimension d, i.e. m / d. In these asymptotics, the model’s effective capacity is limited to linear
functions of the features. In contrast, many state-of-the-art models operate in a regime where the
amount of data is much larger than the data dimensionality; for example, large text corpora can
contain trillions of tokens, whereas the effective input dimensionality of language models is at most
millions . Therefore, going beyond the linear scaling regime (m / d) to higher-order scaling regimes
(m / dr) is essential in improving our understanding of modern machine learning systems, and is
the focus of the current paper.

Several works have investigated the behavior of the learning curves for nonlinear scalings in the
dot-product kernel or random features setting, but they have done so only in the noncritical regime
where m 6/ dr [17, 32, 26]. [8, 10] also derive the closed-form predictions of the learning curves for
both the critical and the noncritical scalings, but they have done so via nonrigorous statistical physics
methods and a “Gaussian equivalence conjecture” [12, 22, 16, 18, 19, 20]. Rigorously extending these
results to include the critical regime m / dr is nontrivial, both from the technical perspective, namely,
proving a “Gaussian equivalence conjecture", and also from the phenomenological perspective, as we
shall see the critical behavior induces nonmonotonicity and multiple sample-wise descents.

In this work, we obtain precise formulas for the sample-wise learning curves in the kernel ridge
regression setting for a family of dot-product kernels for spherical input data in the polynomial scaling
regimes m / dr for all r 2 N

⇤. This family of kernels includes the neural network Gaussian Process
(NNGP) kernels and Neural Tangent Kernels (NTK) associated with multi-layer fully-connected
networks or convolutional networks. Both kernels serve as important starting points towards a deeper
understanding of neural networks as they often capture the first order learning dynamics of neural
networks in certain scaling limits [23, 25, 4].

1.1 Contributions

Our primary contributions are to establish the following, for data drawn uniformly from the sphere:
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1. The empirical spectral density of the Gram matrix induced by degree-r spherical harmonics
converges to a Marchenko-Pastur distribution when (dr/r!)/m converges to a positive
constant as d ! 1 (Theorem 1);

2. A precise closed-form formula for the sample-wise learning curves for dot-product kernel
regression when m / dr for all r 2 N

⇤ as d ! 1 (Theorem 2);

3. Empirically, the theoretical predictions agree with finite-size simulations surprisingly well
even in the strong finite-size correction regime (Fig. 1);

4. An extension of the above results to convolutional kernels (Section 5).

Finally, we note that our results also assume the high-degree coefficients of the label function to be
random and isotropic; see Eq. (11). It remains an open question to prove similar results3 when the
label function is deterministic.

2 Notation and Setup

Let X = Sd�1 denote the input space, where Sd�1 is the unit sphere in R
d and X is equipped with

the normalized uniform measure �. We use ∆d to represent any quantity (a scalar, vector or a matrix)
with |||∆d||| ! 0 as d ! 1 (in probability if ∆d is stochastic), where ||| · ||| can be the absolute
value of a scalar, the norm of a vector or the operator norm of a matrix.

Let X 2 R
m⇥d be the training inputs where the i-th row of X is x>

i . We assume {xi}i2[m] is
sampled uniformly, iid from X . The label function f : Sd�1 ! R will be defined in Section 4. Let

K = K(d) be a dot-product kernel defined on Sd�1 ⇥ Sd�1, i.e., K(x,x0) = h(x>x0) for some
function h 2 [�1, 1] ! R. We assume h has the following decomposition

h(t) =
1
X

k=1

ĥ2
kPk(t), with

1
X

k=1

ĥ2
k < 1 , (1)

where Pk is the k-th order Legendre polynomials in d dimensions. For simplicity, we assume

ĥ = (ĥk)k�1 is a sequence that is independent of d and ĥk 6= 0 for all k  k0 where k0 is sufficiently
large. As such, we can decompose the kernel function using sperical harmonics,

K(x,x0) =

1
X

k=1

�2
k

X

l2[N(d,k)]

Yk,l(x)Yk,l(x
0) =

1
X

k=1

�2
kYk(x)

>Yk(x
0) , (2)

where Yk,l is the l-th spherical harmonic of degree k, N(d, k) = dk/k!+O(dk�1) is the total number

of degree k spherical harmonics in d dimensions, �2
k = ĥ2

k/N(d, k) is the eigenvalue of Ykl, and

Yk(x) is the column vector [Yk,l(x)]
>
l2[N(d,k)]. We also denote by Yk(X) the m⇥N(d, k) matrix

whose i-th row is Yk(xi)
>.

3 Structure of the Empirical Kernel and Marchenko-Pastur Distribution

The structure of the empirical kernel matrix K(X,X) plays a critical role in characterizing the
sample-wise test error for the kernel ridge regressor associated to K. We assume the training set size
scales polynomially, i.e. m ⇠ dr for some positive integer r 2 N

⇤. Decompose this kernel into low-,
critical- and high-frequency modes as follows,

K(X,X) =
X

k<r

�2
kYk(X)Yk(X)> + �2

rYr(X)Yr(X)> +
X

k>r

�2
kYk(X)Yk(X)> . (3)

The low- and high-frequency parts have simple structures since N(d, k)/m either diverges to in-
finity or converges to zero with rate as least d±1, yielding concentration that results in significant
simplification. To be precise, for high-frequency modes k > r, Yk(X) is a “fat" matrix and

3See Sec. 6 for empirical evidences in favor of these results.
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Figure 2: Marchenko-Pastur Distribution of Spherical Harmonics. Top: the empirical distribution
of product kernels Yr(X)Yr(X)>/N(d, r) vs theory prediction from µ↵ for various degrees r, input
dimensions d and number of samples m as indicated in the titles. Bottom: the empirical distribution
of the CNN kernel Yr(X)Yr(X)>/pN(d, r) vs theoretical prediction. We fix r, d and m but varying
the number of patches p 2 {6, 10, 20}.

Yk(X)Yk(X)>/N(d, k) = Im +∆d where ∆d vanishes as d ! 1 [32]. Thus, the high-frequency
parts behave like a regularizer in the following sense,

X

k>r

�2
kYk(X)Yk(X)> =

X

k>r

�2
kN(d, k)Im +∆d =

 

X

k>r

ĥ2
k

!

Im +∆d . (4)

On the other hand, when k < r, Yk(X) is a m ⇥ N(d, k) “tall" matrix with N(d, k)/m =
O(dk/m) = O(d�(r�k)) ! 0. Similarly, Mei et al. [32] show that Yk(X)>Yk(X)/m =
IN(d,k) +∆d, implying that when restricted to the subspace spanned by low-frequency functions

{Ykl}k<r, the regressor associated to the empirical kernel K(X,X) acts like a pure multiplicative
scaling.

It remains to understand the critical-frequency mode Yr(X)>Yr(X). It turns out that if
N(d, k)/m ! ↵ 2 (0,1), then the empirical spectral measure of the random matrix

Yr(X)>Yr(X)/m converges to the Marchenko-Pastur distribution µ↵, whose density is given
by

µ↵(t) =

✓

1� 1

↵

◆+

�0(t) +

p

(↵+ � t)(t� ↵�)

2⇡↵t
1[↵�,↵+](t), where ↵± = (1±

p
↵)2. (5)

where �0(t) = 0 if t 6= 0 else 1. See Fig. 2 for visualizations of µ↵. The r = 1 case is obvious

as Y1(X) = cdX for some normalizing constant cd and it is clear 1
mY1(X)>Y1(X) =

c2d
mX>X

converges to the Marchenko-Pastur distribution µ↵ if d/m ! ↵ 2 (0,1) as d ! 1 [37]. Our first
result show that this result continues to hold for all degrees.

Theorem 1. For fixed r 2 N and ↵ 2 (0,1), if N(d, r)/m ! ↵ 2 (0,1) as d ! 1, then the

empirical spectral distribution of 1
mYr(X)>Yr(X) converges in distribution to the Marchenko-

Pastur distribution µMP (↵) .

In the top panel of Fig. 2, we generate the empirical spectra4 of 1
mYr(X)>Yr(X) for various values

of r, d, and ↵. The Marchenko-Pastur distribution µ↵ perfectly captures the empirical measures of
the random matrices 1

mYr(X)>Yr(X) for all r considered. We sketch the main steps of the proof of
the theorem below; see Appendix B for the whole proof.

4In the plot, we generate the spectra of the kernel matrix Yr(X)Yr(X)> instead of the covariate matrix

Yr(X)>Yr(X). Although both of them have the same set of non-zero eigenvalues, the former can be easily

implemented via Legendre polynomials Pr(x
>
x

0).
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Sketch of Proof. From Bai and Zhou [5, Theorem 1.1], it suffices to prove concentration of the
following quadratic forms: for every sequence of N(d, k)⇥N(d, k) matrices {Ad} with operator
norm kAdkop  1, the variance

N(d, r)�2
V(Yr(x)

>AdYr(x)� Tr(Ad)) ! 0 as d ! 1 . (6)

For the purpose of illustration, we assume A ⌘ Ad is a diagonal matrix. Then we only need to show

N(d, k)�2
X

l,l02[N(d,k)]

AllAl0l0(ExY
2
k,l(x)Y

2
k,l0(x)� 1) ! 0. (7)

By hypercontractivity of spherical harmonics [6],

ExY
2
k,l(x)Y

2
k,l0(x) 

�

ExYk,l(x)
4
ExY

4
k,l0(x)

�1/2  CkExYk,l(x)
2
ExYk,l0(x)

2 = Ck, (8)

where Ck is some absolute constant. Since |All|  kAkop  1, we can drop any o(N(d, l)2) pairs
of (l, l0) in Eq. (7). We show that for the remaining pairs (l, l0), the eigenfunctions are asymptotically
uncorrelated in the sense

ExY
2
k,l(x)Y

2
k,l0(x) = ExY

2
k,l(x)ExY

2
k,l0(x) +O(d�1) = 1 +O(d�1) (9)

which implies Eq. (7).

4 Generalization Error of Dot-Product Kernel Regression

In this section, we establish the average generalization error for the kernel regression in the asymptotic
regime N(d, r)/m ! ↵, for some ↵ 2 (0,1) and r � 1 fixed. We assume the label function
f 2 L2(Sd�1) is given by

f(x) =
X

k�1

X

l2[N(d,k)]

f̂klYkl(x) =
X

k�1

f̂>
k Yk(x) , (10)

where f̂kl are the “Fourier" coefficients and f̂k = [fkl]
>
l2N(d,k). We need to make a technical

assumption that for k0, k � r

Ef̂k = 0, Ef̂kf̂
>
k =

F̂ 2
k

N(d, k)
IN(d,k) and Ef̂kf̂

>
k0 = 0N(d,k)⇥N(d,k0) (11)

i.e. f̂k is centered with isotropic covariance and {f̂k}k�r are mutually uncorrelated. Note that we

allow f̂kl to be deterministic for k < r. We let F = (F̂k)�1 be a fixed sequence with
P

k�1 F̂
2
k < 1,

where F̂ 2
k =

P

l2[N(d,k)] f̂
2
kl for k < r. For convenience, set F̂ 2

>j =
P

k>j F̂
2
k (similarly for F̂ 2

�j ,

F̂ 2
j , etc.) and use f to denote the random vector {f̂kl}kl. Given training inputs X and observed

labels Y = f(X) + ✏, where ✏ ⇠ N (0,�2
✏Im) is the noise, the prediction using kernel function K

is given by

y(x) = K(x,X)(K(X,X) + �Im)�1(f(X) + ✏) . (12)

Here � � 0 is the regularization. As such, the mean test error over the random labels is given by

Err(X;�,F , ĥ) = EfErr(X;�,f , ĥ) where Err(X;�,f , ĥ) = Ex,✏|y(x)� f(x)|2 . (13)

To state our results, we need to introduce two functions �B and �V which are related to the bias and
variance in the generalization error,

�B(↵, ⇠) =

Z

(1 + ⇠t)�2µ↵(t)dt and �V (↵, ⇠) = ↵⇠2
Z

t(1 + ⇠t)�2µ↵(t)dt . (14)

Both �B and �V have closed-form representations; see Appendix C.5. Define the effective regular-
ization associated to the r-th order scaling to be

⇠r(ĥ,�,↵) =
ĥ2
r

↵(�+ ĥ2
>r)

(15)

Finally, we define the bias and variance associated to the r-th order scaling to be

Br(↵) = Br(↵;�,F , ĥ) =�B(↵, ⇠r(ĥ,�,↵))F̂
2
r + F̂ 2

>r (16)

Vr(↵) = Vr(↵;�,F , ĥ) =�V

⇣

↵, ⇠r(ĥ,�,↵)
⌘⇣

F̂ 2
>r + �2

✏

⌘

(17)

The following is our main result, which characterizes the test error in the asymptotic regime m / dr.
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Theorem 2. Let ↵ 2 (0,1) and r � 1 be fixed. Assume N(d, r)/m ! ↵ as d ! 1. Then the
average test error is given by

Err(X;�,F , ĥ) = Br(↵;�,F , ĥ) + Vr(↵;�,F , ĥ) +∆d, (18)

where ∆d ! 0 in probability.

4.1 Interpretations

We provide some high-level interpretations of the bias term Br and variance term Vr.

The Bias. From Eq. (16), the regressor learns all low-frequency modes (k < r) but none of the
high-frequency modes (k > r) as the bias Br contains no low-frequency modes (i.e. k < r) but

all high-frequency modes F̂ 2
>r. Importantly, the regressor is progressively learning the critical-

frequency mode Yr as the training size m = 1
↵
N(d, r) increases, i.e. from ↵ = 1 to ↵ = 0+

since �B(↵, ⇠r(ĥ,�,↵)) ! 1 if ↵ ! 1 and �B(↵, ⇠r(ĥ,�,↵)) ! 0 if ↵ ! 0+. See Fig.3 for the
illustration.

Figure 3: Multi-scale Bias-Variance Decom-
position. Theoretical predictions of the bias
and variance from Eq.16 and Eq.17. For each
r, the variance is non-monotonic and has a
peak at N(d, r) =

P

kr N(d, k).

The Variance. From Eq. (17), the variance term

�V treats all high-frequency modes F̂ 2
>r the same

as the noise term ✏. Moreover, �V ! 0 as ↵ ! 0
or 1 and is peaked at ↵ = 1. The height of the
peak depends on the effective regularization ⇠r and

it diverges to infinity with rate ⇠
1
2
r as ⇠r ! 1. In-

deed, when ↵ = 1 and ⇠�1/2  t  ⇠�1, we have

t(1+⇠t)�2µ↵(t) / ⇠�1/2 which implies �V (1, ⇠) �
⇠2
R

t(1 + ⇠t)�2µ↵(t)1⇠�1/2t⇠�1dt / ⇠1/2.

Finally, Eq. (18) not only gives precise generaliza-
tion formula (up to a vanishing term ∆d) when m ⇡
N(d, r) ⇠ dr but also when dr�1+� . m . dr��

(i.e. when “↵ = 1") and when dr+� . m .
mr+1�� (i.e. when “↵ = 0+") for any � 2 (0, 1/2).
Indeed, in the non-critical scaling regime dr�1+� .
m . dr�� , ↵ = N(d, k)/m ! 1 as d ! 1 and

Br(↵ = 1) + Vr(↵ = 1) = F̂ 2
�r + 0 = F̂ 2

�r . (19)

As such, the regressor learns all low-frequency modes but none of the critical- and high-frequency
modes (k � r), which is consistent with the result in [17, 32]. A similar argument also shows

Br(↵ = 0+) + Vr(↵ = 0+) = F̂ 2
>r, namely, the regressor also learns the r-frequency mode. This

observation implies that we can glue together Eq. (18) for r � 1 and remove all duplicate terms to
generate a sample-wise learning curve (LC):

LC(m;�,f , ĥ) =
X

r�1

✓

Br

✓

N(d, r)

m
;�,f , ĥ

◆

� (r � 1)F̂ 2
r

◆

+Vr

✓

N(d, r)

m
;�,f , ĥ

◆

(20)

where N(d, r) =
Pr

k=1 N(d, k). The “�(r � 1)F̂ 2
r " term in the above equation is due to the

fact that F̂ 2
r is over-counted (r � 1) many times (one in each Bk for k = 1, ..., (r � 1).) It is worth

mentioning that using ↵ = N(d, r)/m rather than ↵ = N(d, r)/m in the variance Vr captures
the finite-size correction more accurately. See Eq. (206) in Appendix.

Corollary 1. If, for 1  r 2 N, (1) N(d, r)/m ! ↵ for some ↵ 2 (0,1), or (2) dr�1+� . m .

dr�� for some � 2 (0, 1/2), then

Err(X;f , ĥ,�) = LC(m;�,f , ĥ) +∆d (21)

where ∆d ! 0 in probability as d ! 1.

Recall that for each r, the variance term Vr could diverge to infinity as ⇠r ! 1 at ↵ = 1. Thus we
might expect a peak in the learning curve for each r, yielding the multiple-descent phenomenon, as
shown in Fig.1. However, such phenomena can disappear by making the heights of the peaks small
via choosing ⇠r small. We will discuss this point in the experimental section.
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4.2 Proof Sketch

The proof of this theorem is quite involved; see Appendix C. For simplicity, we assume the observed
labels are noiseless, i.e. �2

✏ = 0. An ingredient is to understand the structure of the operator

TKf(x) = K(x,X)(K(X,X) + �Im)�1f(X) . (22)

The high-level strategy is as follows. We decompose the function into low-, critical- and high-
frequency parts f = f<r + fr + f>r. As such, the test error is roughly

Err(X) ⇡ Err<r(X) + Errr(X) + Err>r(X) where Errr(X) = EfEx|TKfr(x)� fr(x)|
2 ,

and similarly for Err<r(X) and Err>r(X). The next step is to estimate each part separately.

Low-frequencies. Using the fact that the low-frequency parts of the kernel function K is almost an
isometric operator on the column space of Y<r(X), one can show that Ex|TK(f<r)(x)�f<r(x)|

2 =
∆d ! 0 in probability, pointwisely.

Critical-frequency. Up to a vanishing term, one can remove all non-critical frequencies in the
kernel function K in TK in the sense of making the following substitutions

K(x,X) ! �2
rYr(x)

>Yr(X)> and Kr(X,X 0) ! �2
rYr(X)Yr(X)> + ĥ2

>rIm . (23)

Thus, with � = (�+ ĥ2
>r), TKfr(x)� fr(x) = Yr(x)

>Mr(X)fr +∆d, where

Mr(X) =
�

IN(d,r) � �2
rYr(X)>(�2

rYr(X)Yr(X)> + �Im)�1Yr(X)
�

. (24)

Taking expectation with respect to x (using orthogonality of Yr(x)) and then with respect to fr,

Efr
Ex|Yr(x)

>Mr(X)fr|
2 = Efr

|Mr(X)fr|
2 = F̂ 2

r Tr(M
2
r )/N(d, r) . (25)

Applying the Sherman–Morrison–Woodbury formula and then Theorem 1,

F̂ 2
r Tr

�

Yr(X)>Yr(X)/m+m�2
r/�IN(d,r)

��2
/N(d, r) ! F̂ 2

r

Z

µ↵(t)

(t+ ⇠r)2
dt .

High-frequencies. The cross term EfExTKf>r(x)f>r(x) = ∆d and thus

Ef ,x|TKf>r(x)� f>r(x)|
2 = Ef ,x|TKf>r(x)|

2 + Ef ,x|f>r(x)|
2 +∆d . (26)

The second term is equal to F̂ 2
>. The calculation of the first term is similar to that of the critical

frequency above (namely, we remove all high-/low-frequency components in K.)

5 Convolutional Kernels

5.1 One hidden layer

Our analysis can be extended to analyzing NNGP kernel and NT kernel for one-layer convolution [35,
36, 43]. In this case, we assume the input space is X = S

p
d0�1, where d0 is the dimension of a

patch, p is the number of patches, and d = pd0 is the total dimensions of the inputs. The measure
associated to X is the product of the uniform measure on Sd0�1. We assume that both the filter size
and stride of the convolution are equal to d0. As such, after the first convolutional layer, the input
is reduced to a vector of dimension p. We then apply a non-linearity and a dense layer to map this
p-dimensional vector to a scalar. The NNGP and NT kernel have the following general form. Let
x = (xi)i2[p] 2 X , where xi 2 Sd0�1 is the i-th patch

K(x,x0) =
1

p

X

i2[p]

h(x>
i x

0
i) =

1

p

X

i2[p]

X

k�1

ĥ2
kPk(x

>
i x

0
i) =

X

k�1

�2
k

p

X

i2[p]

X

l2[N(d0,k)]

Ykl(xi)Ykl(x
0
i) .

Denote Y
(i)
kl (x) = Ykl(xi) and Yk(x) = [Y

(i)
kl (x)>]>l2[N(d0,k)],i2[p]. Then Yk(x) is the degree k

spherical harmonics associated to this kernel, which span a space of dimension pN(d0, k).
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Theorem 3. Let r 2 N
⇤ and ↵ 2 (0,1) be fixed. If pN(d0, r)/m ! ↵ 2 (0,1) as d0 ! 1 and

the rows of X are sampled uniformly, iid from S
p
d0�1, then the empirical spectral distribution of

1
mYr(X)>Yr(X) tends to the Marchenko-Pastur distribution µ↵ as d0 ! 1.

The assumptions on the label function are similar to that of dot-product kernel, e.g.5

f(x) =
X

k�1

f>
k Yk(x), with fk ⇠ N

 

0,
F̂ 2
k

pN(d0, k)
IpN(d0,k)

!

if k � r , (27)

otherwise fk is deterministic with kfkk22 = F̂ 2
k .

Theorem 4. Let ↵ 2 (0,1) and r � 1 be fixed. Assume pN(d0, r)/m ! ↵ as d0 ! 1. Then the
average test error is given by

Err(X;�,F , ĥ) = Br(↵;�,f , ĥ) + Vr(↵;�,f , ĥ) +∆d0
, (28)

where ∆d0
! 0 in probability as d0 ! 1.

Corollary 2. If, for 1  r 2 N, (1) pN(d0, r)/m ! ↵ for some ↵ 2 (0,1), or (2) pdr�1+�
0 .

m . pdr��
0 for some � 2 (0, 1/2), then

Err(X;f , ĥ,�) = LC(m;�,f , ĥ) +∆d0
(29)

where ∆d0
! 0 in probability as d0 ! 1.

5.2 Deep Convolutional Kernels

The eigenstructure of general CNN kernels are much more complicated as they depend on both the
frequencies (i.e. the order of the polynomials) and the topologies of the networks [42]. To rigorously
describe the eigenstructure, a heavy dose of notation must be introduced, which is beyond the scope
of the paper. Nevertheless, the approach developed here is readily extended to cover general CNN
kernels. We briefly describe the main ideas.

Following [42], we assume the input space is still X = S
p
d0�1, where p is the number of patches. For

simplicity, we assume the network has L convolutional layers and in each layer, the filter size and the
stride are all equal to d0. Thus the spatial dimension of the input is reduced to 1 after L convolutional
layers. We then add a non-linearality and a dense layer to generate the logits. The kernel has the
following form

K(x,x0) =
X

k2Np

X

l2
Q

i2[p][N(d0,ki)]

�2
k,lYk,l(x)Yk,l(x

0), where Yk,l(x) =
Y

i2[p]

Yki,li(xi) . (30)

Unlike dot-product kernels in which k is a scalar and the eigenvalues depend only on |k| (i.e. the
frequencies), �2

k,l depends on both |k| and the spatial structure of the vector k in a rather complicated

manner. Nevertheless, as d0 ! 1, �2
k,l ⇠ d�jk

0 = d�jk/L for some L  jk 2 N. We can then

categorize the eigenvectors according to the decay order of �2
k,l. Unlike the case of dot-product

kernels or the one-hidden layer CNN kernels, in which eigenvectors with same-order eigenvalues
are in the same eigenspace (i.e. the eigenvalues are the same), multiple-layer CNN kernels can have
multiple eigenspaces with the same-order eigenvalues. Although this results in extra challenges (see
below), our overall approach carries over. Consider the critical scaling regime m ⇠ dr, for r = j/L
for some L  j 2 N. Likewise, we can decompose the kernel into low-, critical- and high-frequency
parts according to jk < r, jk = r and jk > r, resp. Following similar assumptions on the labels and
eigenvalues, the bias and the variance can be essentially reduced to computing

�B =
1

Nr
TrR2

r(Rr + Yr(X)>Yr(X)/m)�2 (31)

�V =
Nr

m

1

Nr
Tr(Rr + Yr(X)>Yr(X)/m)�2Yr(X)>Yr(X)/m (32)

5The Gaussian assumption is unessential. We use it here for convenience.

8



(a) Dot Product Kernel (b) One-layer CNN Kernel

Figure 4: Simulation vs Prediction. We generate the learning curves obtain from kernel regression
by densely varying m from 1 to 24000. For each m, we average the MSE over 20 runs. The closed-
form prediction from Eq. (18) captures the simulations surprising well even for small d. Left: dot
product kernel with d = 24. Right: one-hidden layer CNN kernel with d0 = 20 and p = 6. The
spectral gap is Gap = 32 in both plots.

where Rr and Rr are diagonal matrices whose entries are determined by the eigenvalues of the
critical-frequency modes. In the dot-product kernels or one-hidden layer CNN kernels setting,
Rr/Rr is a scaled identity matrix and simple, closed-form expressions for the above traces straight-
forwardly follow from the Marcenko-Pastur distribution. However, for a general diagonal matrix
Rr with bounded limiting spectra, Rr does not commute with Y >

r (X)Yr(X), and a more detailed
random matrix analysis is needed. See the supplementary material for more details.

6 Experiments

We provide experiments to show that our learning curves (Eq. (21)) accurately capture empirical
sample-wise learning curve even when the ambient dimensions remains small. Even though our
theoretical results require averaging the test error over random labels (aka, mean test error), our
experimental results suggest this is unnecessary, i.e. the learning curve Eq. (21) can capture the test
error accurately for any given draw of label function.

Experimental setup. We generate a polynomial kernel function h(t) =
P7

k=1 ĥ
2
kPk(t), where Pk

is the degree-k Legendre polynomial in d dimensions. The kernel function can be efficiently computed

via K(x,x0) = h(x>x0). We choose the label function to be f(x) =
P7

k=1 F̂kyk(x), where

yk(x) =
P

j2[d] wk,j

Qj+k�1
i=j xi, and the coefficients wk,j are randomly sampled from a Gaussian

and then normalized so that Ex|yk(x)|
2 = 1 for each k. Therefore Ex|f(x)|

2 =
P7

k=1 F̂
2
k . For

simplicity, we also set �2
✏ = 0 (i.e. noiseless) and � = 0 (i.e. ridgeless). Note that when m . dr, the

regressor still contains “effective noise" F̂ 2
>r from un-learnable high-frequency modes and “effective

regularization" ĥ2
>r. Finally, in our experiments, we choose F̂ 2

k = k�2 and ĥ2
k = Gap�(k�1), where

we will vary the value of the spectral gap: Gap = ĥ2
k/ĥ

2
k+1. Under this setup, the predicted learning

curve LC(m) = LC(m; Gap) depends only on the spectral gap of the kernel.

To simulate higher-order scaling (r � 3), the dimension d has to be very small as we need to invert a
sequence of matrices of size ranging from m = 1 to m / dr/r!. Due to the constraints in compute
and memory, the largest m we can have is typically mmax ⇡ 25, 000 for one single GPU and d in our
experiments is typically around d = 24. As such we are in a regime with strong finite-size corrections.
Finally, all experiments are run in a single A-100 using Google Cloud Colab Notebooks.

Learning Curves Accurately Capture Simulations. In Fig. 4, we generate the empirical sample-
wise learning curve by applying kernel regression Eq. (13) with training set X . We vary the training
set size m densely in [1,mmax] and for each m we sample 20 independent X to get the errorbar
plot for the test error. The closed-form learning curve is obtained from Eq. (21) and the calculation
is done in Sec.C.5. Even in the low-dimensional regime with d = 24 for dot-product kernel (d0 = 20
and p = 6 for one-hidden layer CNN kernel), the predicted learning curve captures the empirical

9



(a) Mean of Simulations. (b) Standard Deviation of Simulations.

Figure 5: Simulations approach predictions as d ! 1. The mean and the standard deviation are
computed over 32 runs. The predictions and simulations are obtained via the second peak r = 2,
namely, m = N(d, 2).

learning curve surprisingly well, which has a highly non-trivial multiple-descent behavior. It is worth
mentioning that, from the simulation, the deviation of the test error from its mean is relatively large
when m is small but vanishes quickly as m becomes larger. This suggests Theorem 2 and Corollary 1
should hold in a pointwise fashion, i.e. without averaging the test error over random labels.

Finite-size correction vanishes as d ! 1. Our theoretical results assume that the input dimension
d is sufficiently large and these results are exact when d = 1. To visualize the finite-size correction,
we plot the dependence of the correction (between simulations and predictions) on the the input
dimension d. Fig. 5 (a) shows that the means of simulations are converging to the theoretical
prediction. Fig. 5 (b) shows that the standard deviations are converging zero.

Small Spectral Gap Eliminates Multiple-descent. In Fig. 1, we plot both the predicted learning
curves and simulations when Gap ranging in [2, 8, 32, 128]. For 1  r  6, we have ⇠r =

Gap�(r�1)/
P7

k=r Gap�(k�1) and ⇠r ⇡ Gap when Gap is large. Recall that the variance term Vr

peaks at ↵ = 1 and the peak scales like ⇠
1/2
r ⇡ Gap1/2. When Gap is large, e.g. Gap = 32, 128,

the variance is also large near ↵ = 1, the multiple-descent phenomena are more prominent. On the
other hand, when Gap is small, e.g. Gap = 8, 2, such phenomena disappear and learning curves
become monotonic.

7 Conclusion

In this work, we establish precise asymptotic formulas for the sample-wise learning curves in the
kernel ridge regression setting for a family of dot-product kernels in the polynomial scaling regimes
m / dr for all r 2 N

⇤. We demonstrate that these formulas can capture empirical learning curves
surprisingly well even in the regime where strong finite-size corrections would be expected. We
rigorously prove that the learning curves can be non-monotonic near m / dr/r! for each r 2 N

⇤.
There are a couple limitations of our approach which could be improved in future work. The first one
is the strong assumption on the distribution of the input data, namely, the uniform distribution on
the spherical type of data. In addition, the learning curves are obtained only in the kernel regression
setting and extending the results to the random feature setting (see, e.g., [29]) and the feature learning
setting [44] would be meaningful future directions.
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