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Abstract

Adversarial Examples Detection (AED) is a
crucial defense technique against adversarial
attacks and has drawn increasing attention from
the Natural Language Processing (NLP) com-
munity. Despite the surge of new AED meth-
ods, our studies show that existing methods
heavily rely on a shortcut to achieve good per-
formance. In other words, current search-based
adversarial attacks in NLP stop once model
predictions change, and thus most adversar-
ial examples generated by those attacks are
located near model decision boundaries. To
surpass this shortcut and fairly evaluate AED
methods, we propose to test AED methods with
Far Boundary (FB) adversarial examples. Ex-
isting methods show worse than random guess
performance under this scenario. To overcome
this limitation, we propose a new technique,
ADDMU, adversary detection with data and
model uncertainty, which combines two types
of uncertainty estimation for both regular and
FB adversarial example detection. Our new
method outperforms previous methods by 3.6
and 6.0 AUC points under each scenario. Fi-
nally, our analysis shows that the two types
of uncertainty provided by ADDMU can be
leveraged to characterize adversarial examples
and identify the ones that contribute most to
model’s robustness in adversarial training.

1 Introduction

Deep neural networks (DNN) have achieved re-
markable performance in a wide variety of NLP
tasks. However, it has been shown that DNNs
can be vulnerable to adversarial examples (Jia and
Liang, 2017; Alzantot et al., 2018; Jin et al., 2020),
i.e., perturbed examples that flip model predictions
but remain imperceptible to humans, and thus im-
pose serious security concerns about NLP models.

To improve the robustness of NLP models, differ-
ent kinds of techniques to defend against adversar-
ial examples have been proposed (Li et al., 2021b).
In this paper, we study AED, which aims to add a
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detection module to identify and reject malicious
inputs based on certain characteristics. Different
from adversarial training methods (Madry et al.,
2018a; Jia et al., 2019) which require re-training
of the model with additional data or regularization,
AED operates in the test time and can be directly
integrated with any existing model.

Despite being well explored in the vision domain
(Feinman et al., 2017; Raghuram et al., 2021), AED
started to get attention in the field of NLP only re-
cently. Many works have been proposed to conduct
detection based on certain statistics (Zhou et al.,
2019; Mozes et al., 2021; Yoo et al., 2022; Xie
et al., 2022). Specifically, Yoo et al. (2022) propose
a benchmark for AED methods and a competitive
baseline by robust density estimation. However, by
studying examples in the benchmark, we find that
the success of some AED methods relies heavily
on the shortcut left by adversarial attacks: most
adversarial examples are located near model deci-
sion boundaries, i.e., they have small probability
discrepancy between the predicted class and the
second largest class. This is because when creat-
ing adversarial data, the searching process stops
once model predictions changed. We illustrate this
finding in Section 2.2.

To evaluate detection methods accurately, we
propose to test AED methods on both regular ad-
versarial examples and Far-Boundary (FB)! adver-
sarial examples, which are created by continuing to
search for better adversarial examples till a thresh-
old of probability discrepancy is met. Results show
that existing AED methods perform worse than
random guess on FB adversarial examples. Yoo
et al. (2022) recognize this limitation, but we find
that this phenomenon is more severe than what is
reported in their work. Thus, an AED method that
works for FB attacks is in need.

!Other works may call this ‘High-Confidence’. We use the
term ‘Far-Boundary’ to avoid conflicts between ‘confidence’
and the term ‘uncertainty’ introduced later.
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We propose ADDMU, an uncertainty estimation
based AED method. The key intuition is based
on the fact that adversarial examples lie off the
manifold of training data and models are typically
uncertain about their predictions of them. Thus,
although the prediction probability is no longer a
good uncertainty measurement when adversarial
examples are far from the model decision bound-
ary, there exist other statistical clues that give out
the ‘uncertainty’ in predictions to identify adver-
sarial data. In this paper, we introduce two of them:
data uncertainty and model uncertainty. Data un-
certainty is defined as the uncertainty of model
predictions over neighbors of the input. Model
uncertainty is defined as the prediction variance
on the original input when applying Monte Carlo
Dropout (MCD) (Gal and Ghahramani, 2016) to
the target model during inference time. Previous
work has shown that models trained with dropout
regularization (Srivastava et al., 2014) approximate
the inference in Bayesian neural networks with
MCD, where model uncertainty is easy to obtain
(Gal and Ghahramani, 2016; Smith and Gal, 2018).
Given the statistics of the two uncertainties, we ap-
ply p-value normalization (Raghuram et al., 2021)
and combine them with Fisher’s method (Fisher,
1992) to produce a stronger test statistic for AED.
To the best of our knowledge, we are the first work
to estimate the uncertainty of Transformer-based
models (Shelmanov et al., 2021) for AED.

The advantages of our proposed AED method
include: 1) it only operates on the output level of
the model; 2) it requires little to no modifications
to adapt to different architectures; 3) it provides
an unified way to combine different types of un-
certainties. Experimental results on four datasets,
four attacks, and two models demonstrate that our
method outperforms existing methods by 3.6 and
6.0 in terms of AUC scores on regular and FB cases,
respectively. We also show that the two uncertainty
statistics can be used to characterize adversarial
data and select useful data for another defense tech-
nique, adversarial data augmentation (ADA).

The code for this paper could be
found at https://github.com/uclanlp/
AdvExDetection-ADDMU

2 A Diagnostic Study on AED Methods

In this section, we first describe the formulation of
adversarial examples and AED. Then, we show that
current AED methods mainly act well on detecting

adversarial examples near the decision boundary,
but are confused by FB adversarial examples.

2.1 Formulation

Adversarial Examples. Given an NLP model f :
X — Y, atextual input z € X, a predicted class
from the candidate classes y € )/, and a set of
boolean indicator functions of constraints, C; : X’ x
X — {0,1},i = 1,2,--- ,n. An (untargeted)
adversarial example z* € X satisfies:

f(IL‘*) #f(a:),CZ (:va*) = 1ai: 1727"' y T

Constraints are typically grammatical or seman-
tic similarities between original and adversarial
data. For example, Jin et al. (2020) conduct part-of-
speech checks and use Universal Sentence Encoder
(Cer et al., 2018) to ensure semantic similarities
between two sentences.

Adversarial Examples Detection (AED) The task
of AED is to distinguish adversarial examples
from natural ones, based on certain characteris-
tics of adversarial data. We assume access to 1)
the victim model f, trained and tested on clean
datasets Dyyqin and Diesr; 2) an evaluation set
Deval ; 3) an auxiliary dataset D,,,,, contains only
clean data. D.,,; contains equal number of adver-
sarial examples D,,q1—qdy and natural examples
Deval—nat- Deval—nat are randomly sampled from
Diest- Deval—adv 1 generated by attacking a dis-
joint set of samples from Deyqi—nat ON Dyegy. See
Scenario 1 in Yoo et al. (2022) for details. We use
a subset of Dyyqin as Dgyyuz. We adopt an unsuper-
vised setting, i.e., the AED method is not trained
on any dataset that contains adversarial examples.

2.2 Diagnose AED Methods

We define examples near model decision bound-
aries to be those whose output probabilities for
the predicted class and the second largest class are
close. Regular iterative adversarial attacks stop
once the predictions are changed. Therefore, we
suspect that regular attacks are mostly generating
adversarial examples near the boundaries, and ex-
isting AED methods could rely on this property to
detect adversarial examples.

Figure 1 verifies this for the state-of-the-art un-
supervised AED method (Yoo et al., 2022) in NLP,
denoted as RDE. Similar trends are observed for an-
other baseline. The X-axis shows two attack meth-
ods: TextFooler (Jin et al., 2020) and Pruthi (Pruthi
et al., 2019). The Y-axis represents the probability
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Figure 1: The probability difference between the pre-
dicted class and the second largest class on natural ex-
amples, adversarial examples that the detector failed,
succeed, and in total. The X-axis is the attack. The
Y-axis is the difference. Correctly detected adversarial
examples have relatively small probability difference.

RDE DIST
Data-attack  Regular FB Regular FB
SST2-TF 72.8/86.5 45.0/81.5 73.4/87.9 26.3/81.6
SST2-Pruthi  55.1/80.6 30.8/72.6 61.4/85.3 26.5/74.6
Yelp-TF 79.2/89.6 44.6/82.7 80.3/90.6 64.3/86.2

Yelp-Pruthi  64.8/88.0 47.9/85.2 72.2/89.2 55.2/84.9

Table 1: F1/AUC scores of two SOTA detection methods
on Regular and FB adversarial examples. RDE and
DIST perform worse than random guess (F1=50.0) on
FB adversarial examples.

difference between the predicted class and the sec-
ond largest class. Average probability differences
of natural examples (Natural), and three types of
adversarial examples are shown: RDE fails to iden-
tify (Failed), successfully detected (Detected), and
overall (Overall). There is a clear trend that success-
fully detected adversarial examples are those with
small probability differences while the ones with
high probability differences are often mis-classified
as natural examples. This finding shows that these
AED methods identify examples near the decision
boundaries, instead of adversarial examples.

To better evaluate AED methods, we propose
to avoid the above shortcut by testing detection
methods with FB adversarial examples, which are
generated by continuously searching for adversarial
examples until a prediction probability threshold is
reached. We simply add another goal function to
the adversarial example definition to achieve this
while keep other conditions unchanged:

n.

f@)# f(x),ply=f(a")|a") =€
Ci(x,z")=1,i=1,2,---,

p(y = f (z*) | *) denotes the predicted probabil-
ity for the adversarial example. ¢ is a manually
defined threshold. We illustrate the choice of € in

Grammar Semantics
Data Regular FB Regular FB
SST-2 1.117 1.129 3.960 3.900
Yelp 1.209 1.233 4.113 4.082

Table 2: Quality checks for FB adversarial examples.
The results on each dataset are averaged over examples
from three attacks: TextFooler, BAE, Pruthi, and their
FB versions. The numbers for Grammar columns are the
relative increases of errors of perturbed examples w.r.t.
original examples. The numbers for Semantics columns
are the averaged rates that the adversarial examples
preserve the original meaning evaluated by humans. The
quality of adversarial examples do not degrade much
with the FB version of attacks.

Section 4.1. In Table 1, it shows that the existing
competitive methods (RDE and DIST) get lower
than random guess F1 scores when evaluated with
FB adversarial examples.

2.3 Quality Check for FB Attacks

We show that empirically, the quality of adversarial
examples do not significantly degrade even search-
ing for more steps and stronger FB adversarial ex-
amples. We follow Morris et al. (2020a) to evaluate
the quality of FB adversarial examples in terms of
grammatical and semantic changes, and compare
them with regular adversarial examples. We use
a triple (z, Tady, TFB—adv) to denote the original
example, its corresponding regular adversarial and
FB adversarial examples. For grammatical changes,
we conduct an automatic evaluation with Language-
Tool (Naber et al., 2003) to count grammatical er-
rors and report the relative increase of errors of
perturbed examples w.r.t. original examples. For
semantic changes, we do a human evaluation using
Amazon MTurk 2. We ask the workers to rate to
what extent the changes to x preserve the meaning
of the sentence, with scale 1 (‘Strongly disagree’)
to 5 (‘Strongly agree’). Results are summarized in
Table 2. The values are averaged over three adver-
sarial attacks, 50 examples for each. We find that
the FB attacks have minimal impact on the quality
of the adversarial examples. We show some exam-
ples on Table 7, which qualitatively demonstrate
that it is hard for humans to identify FB adversarial
examples.

“We pay workers 0.05 dollars per HIT. Each HIT takes
approximately 15 seconds to finish. So, we pay each worker
12 dollars per hour. Each HIT is assigned three workers.
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3 Adversary Detection with Data and
Model Uncertainty (ADDMU)

Given the poor performance of previous methods
on FB attacks, we aim to build a detector that can
handle not only regular but also FB adversarial
examples. We propose ADDMU, an uncertainty
estimation based AED method by combing two
types of uncertainty: model uncertainty and data
uncertainty. We expect the adversarial examples to
have large values for both. The motivation of using
uncertainty is that models can still be uncertain
about their predictions even when they assign a
high probability of predicted class to an example.
We describe the definitions and estimations of the
two uncertainties, and how to combine them.

3.1 Model Uncertainty Estimation

Model uncertainty represents the uncertainty when
predicting a single data point with randomized mod-
els. Gal and Ghahramani (2016) show that model
uncertainty can be extracted from DNNs trained
with dropout and inference with MCD without
any modifications of the network. This is because
the training objective with dropout minimizes the
Kullback-Leibler divergence between the posterior
distribution of a Bayesian network and an approxi-
mation distribution. We follow this approach and
define the model uncertainty as the softmax vari-
ance when applying MCD during test time.
Specifically, given a trained model f, we do N,,
stochastic forward passes for each data point x.
The dropout masks of hidden representations for
each forward pass are i.i.d sampled from a Bernolli
distribution, i.e., zjx ~ Bernolli (p,,) where p,, is
a fixed dropout rate for all layers, 2 is the mask for
neuron & on layer [. Then, we can do a Monte Carlo
estimation on the softmax variance among the NV,
stochastic softmax outputs. Denote the probability
of predicting the input as the i-th class in the j-th
forward pass as p;; and the mean probability for the
t-th class over N,,, passes as p; = N E;V’”l Dij
the model uncertainty (MU) can be computed by

D?\ 1 9

3.2 Data Uncertainty Estimation

Data uncertainty quantifies the predictive probabil-
ity distribution of a fixed model over the neighbor-
hood of an input point.

Specifically, similar to the model uncertainty
estimation, we do Ny stochastic forward passes.

But instead of randomly zeroing out neurons in the
model, we fix the trained model and construct a
stochastic input for each forward pass by masking
out input tokens, i.e., replacing each token in the
original input by a special token with probability
pq. The data uncertainty is estimated by the mean
of (1 — maximum softmax probability) over the Ny
forward passes. Denote the N; stochastic inputs as
x1,%2,- - , TN, the original prediction as y, and
the predictive probability of the original predicted
class as py (-), the Monte Carlo estimation on data
uncertainty (DU) is:

1 N,
N2 (1

3.3 Aggregate Uncertainties with Fisher’s
Method

We intend to aggregate the two uncertainties de-
scribed above to better reveal the low confidence
of model’s prediction on adversarial examples. We
first normalize the uncertainty statistics so that they
follow the same distribution. Motivated by Raghu-
ram et al. (2021) where the authors normalize test
statistics across layers by converting them to p-
values, we also adopt the same method to normal-
ize the two uncertainties. By definition, a p-value
computes the probability of a test statistic being at
least as extreme as the target value. The transforma-
tion will convert any test statistics into a uniformly
distributed probability. We construct empirical dis-
tributions for MU and DU by calculating the cor-
responding uncertainties for each example on the
auxiliary dataset Dg,,, denoted as T}, and Ty,,.
Following the null hypothesis Hy: the data being
evaluated comes from the clean distribution, we
can calculate the p-values based on model uncer-
tainty (¢,,) and data uncertainty (gq) by:

DU (z) = —py () -

=P (Tyu > MU (z) | Ho),
=P (Tau > DU (z) | Ho) .

gm ()
qd (x)

The smaller the values ¢,, and g4, the higher the
probability of the example being adversarial.
Given ¢y, and g4, we combine them into a sin-
gle p-value using the Fisher’s method to do com-
bined probability test (Fisher, 1992). Fisher’s
method indicates that under the null hypothesis,
the sum of the log of the two p-values follows a
x? distribution with 4 degrees of freedom. We
use gq44 to denote the aggregated p-value. Adver-
sarial examples should have smaller q,44, Where

IOgQagg = IOgQTn + 10de‘
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4 Experiments

We first describe the experimental setup (Section
4.1), then present our results on both regular and FB
AED (Section 4.2). Results show that our ADDMU
outperforms existing methods by a large margin
under both scenarios.

4.1 Experimental Setup

Datasets and victim models. We conduct experi-
ments on classification tasks in different domains,
including sentiment analysis SST-2 (Socher et al.,
2013), Yelp (Zhang et al., 2015), topic classifica-
tion AGNews (Zhang et al., 2015), and natural lan-
guage inference SNLI (Bowman et al., 2015). We
generate both regular and FB adversarial examples
on the test data of each dataset with two word-
level attacks: TextFooler (TF) (Jin et al., 2020),
BAE (Garg and Ramakrishnan, 2020), and two
character-level attacks: Pruthi (Pruthi et al., 2019),
and TextBugger (TB) (Li et al., 2019). We only
consider the examples that are predicted correctly
before attacks. The numbers of evaluated examples
vary among 400 to 4000 across datasets. See Ap-
pendix B. For FB adversarial examples, we choose
the e so that adversarial examples have approxi-
mately equal averaged prediction probability with
natural data. Specifically, e = 0.9 for SST-2, Yelp,
AGNews, and € = 0.7 for SNLI. We mainly exper-
iment with two Transformer-based victim models,
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) as they are widely adopted in the cur-
rent NLP pipelines and show superior performance
than other architectures. More details are presented
in Appendix B. In Appendix H, we also present
some simple experiments with BiILSTM.

Baselines. We compare ADDMU with several un-
supervised AED methods. 1) MSP: Hendrycks and
Gimpel (2017) use the Maximum Softmax Proba-
bility (MSP) for detection; 2) PPL: GPT-2 large
(Radford et al., 2019) as a language model to mea-
sure the perplexity of the input; 3) FGWS: Mozes
et al. (2021) measure the difference in prediction
probability after replacing infrequent words of the
inputs with frequent words and find that adver-
sarial examples have higher performance change;
4) RDE: Yoo et al. (2022) fit class conditional
density estimation with Kernel PCA (Scholkopf
et al., 1998) and Minimum Covariance Determi-
nant (Rousseeuw, 1984) in the feature space and
use the density scores; 5) DIST: we propose a
distance-based baseline that uses the difference be-

tween class conditional, averaged K nearest dis-
tances. See Appendix C for details.

Unsupervised AED methods assign a score to

each evaluated data. Then, a threshold is selected
based on the maximum False Positive Rate (FPR)
allowed, i.e., the rate of mis-classified natural data.
Implementation Details. For FGWS and RDE,
we follow the hyper-parameters in their papers to
reproduce the numbers. For DIST and ADDMU,
we attack the validation set and use those examples
to tune the hyper-parameters. See Appendix D
for details. Specifically, for DIST, we use 600
neighbors. For ADDMU, we find N,,, = 10, p,,, =
0.2 for MU works well for all datasets. For DU, we
find that it is beneficial to ensemble different mask
rates for text classification tasks, we set Ny = 100
in total, and 25 for each p; € {0.1,0.2,0.3,0.4}
for all the text classification tasks, Ny = 25, pg =
0.1 for SNLI.
Metrics. In the main experiments, we select the
threshold at maximum FPR=0.1. A lower FPR rep-
resents a more practical case where only a small
proportion of natural samples are mis-classified as
adversarial samples. Following the setup in Xu
et al. (2018) and Yoo et al. (2022), we report True
Positive Rate (TPR), i.e., the fraction of the real
adversarial examples out of predicted adversarial
examples, and F1 score at FPR=0.1, and Area Un-
der the ROC curve (AUC), which measures the area
under the TPR and FPR curve. For all the metrics,
the higher the better.

4.2 Results

Performances of AED methods on BERT are pre-
sented in Table 3. We average the results among
three runs with different random seeds. See Ap-
pendix F for the results on RoBERTa.
Detector performance. Our proposed ADDMU
achieves the best performance on both regular and
FB adversarial examples under the three metrics
(TPR, F1, AUC) on the four datasets, which demon-
strates the effectiveness of ADDMU. Further, AD-
DMU preserves more than 90% of the performance
or even achieves better results, e.g SST-2-Pruthi
and Yelp-BAE, under FB adversarial attacks, which
shows that ADDMU is not affected by FB attacks.
The performances of MSP, DIST, and RDE are
severely degraded under FB attacks. This demon-
strates that those methods can be fooled and circum-
vented by carefully designed attacks. Under regular
attacks, the performances of RDE and DIST are
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| | SST-2 AGNews Yelp SNLI
Attacks | Methods | TPR F1 AUC | TPR F1 AUC | TPR F1 AUC | TPR F1 AUC
PPL 312 442 724 | 76.1 81.8 91.1 | 457 58.8 793 | 402 536 78.0
FGWS 629 728 765 | 830 863 855 | 671 727 80.6 | 485 554 722
MSP 640 736 880 | 952 928 975 | 739 804 90.6 | 56.7 68.0 83.6
TF RDE 629 728 865 | 96.0 932 970 | 720 792 89.6 | 463 593 81.0
DIST 640 734 879 | 945 924 959 | 738 803 90.6 | 372 504 745
ADDMU 67.1 758 888 | 992 949 986 | 787 835 916 | 689 77.0 89.7
PPL 419 552 80.6 | 833 863 939 | 499 624 81.6 | 441 572 792
FGWS 61.8 720 779 | 848 871 881 | 722 780 894 | 521 59.6 784
MSP 312 442 819 | 8.0 854 915 | 66.0 750 87.1 | 268 392 751
TF-FB RDE 319 450 815 | 719 791 925 | 315 446 827 | 43.1 564 79.6
DIST 207 263 816 | 666 754 918 | 548 643 862 | 272 396 699
ADDMU 620 722 88.0 | 975 940 978 | 728 79.7 89.7 | 53.6 658 875
PPL 19.7 304 662 | 309 440 718 | 236 353 70.1 | 248 368 68.1
FGWS 376 510 642 | 647 742 725 | 549 667 680 | 31.2 440 679
MSP 45.1 583 79.0 | 96.0 934 960 | 683 767 89.5 | 414 547 714
BAE RDE 442 573 793 | 964 937 963 | 652 745 89.1 | 41.7 550 76.8
DIST 449 573 789 | 942 919 962 | 68.0 762 894 | 368 49.7 679
ADDMU 459 589 823 | 964 935 973 | 725 795 90.1 | 482 61.0 81.0
PPL 260 382 705 | 455 587 79.6 | 285 413 730 | 249 370 679
FGWS 204 314 57.1 | 726 796 782 | 519 643 659 | 329 475 634
MSP 128 21.1 704 | 79.2 838 912 | 69.1 772 883 | 183 28.6 62.6
BAE-FB RDE 195 302 725 | 688 770 912 | 664 754 88.1 | 346 479 740
DIST 17.7 261 70.1 | 649 68.1 914 | 69.7 773 884 | 295 423 629
ADDMU 514 641 84.6 | 837 859 941 | 763 819 90.6 | 349 484 76.0
PPL 29.7 429 719 | 31.0 440 70.7 | 353 487 729 | 549 66.6 855
MSP 532 652 826 | 757 819 915 | 654 747 887 | 225 339 692
RDE 414 551 80.6 | 774 828 924 | 526 648 88.0 | 346 478 765
Pruthi DIST 550 614 829 | 778 820 92.1 | 667 722 882 | 23.6 352 65.1
ADDMU 559 674 854 | 967 939 974 | 788 837 918 | 557 67.1 86.0
PPL 286 416 723 | 278 404 71.6 | 373 50.8 733 | 372 506 763
MSP 31.1 444 738 | 494 622 845 | 515 639 854 | 102 17.0 645
RDE 20.0 30.8 726 | 595 704 87.6 | 343 479 852 | 312 442 749
Pruthi-FB DIST 233 265 746 | 551 61.6 872 | 545 552 849 | 21.6 328 633
ADDMU 56.2 68.7 858 | 804 849 950 | 687 77.0 90.7 | 449 58.0 825
PPL 30.8 437 761 | 740 805 903 | 569 682 844 | 56.0 675 843
MSP 723 79.0 905 | 956 930 973 | 704 781 89.8 | 66.4 75.1 89.0
RDE 724 79.6 89.6 | 96.1 933 969 | 662 752 89.2 | 51.8 64.1 83.0
TB DIST 724 786 906 | 956 928 962 | 702 779 902 | 50.7 627 82.6
ADDMU 733 80.0 909 | 99.0 948 984 | 70.8 783 91.0 | 69.0 77.1 90.6
PPL 360 494 802 | 829 8.0 942 | 606 71.1 858 | 489 61.6 763
MSP 348 482 830 | 81.1 849 912 | 700 77.8 884 | 347 480 815
RDE 295 425 821 | 689 771 917 | 639 735 884 | 478 60.6 822
TB-FB DIST 343 440 826 | 634 729 915 | 698 77.6 893 | 40.8 539 79.0
ADDMU 50.5 629 86.1 | 942 926 969 | 748 810 908 | 51.1 63.6 87.0

Table 3: Detection performance of regular and FB adversarial examples (*-FB) against BERT on SST-2, AGNews,
Yelp, and SNLI. Our proposed ADDMU outperforms other methods by a large margin, especially on FB adversarial
examples. We occlude FGWS under character-level attacks, Pruthi and TextBugger, as it is designed for word-level
detection. The best performance is bolded. Results are averaged over three runs with different random seeds.

worse than the baseline MSP in most cases, which
simply uses the maximum softmax probability for
detection. One explanation is that those class con-
ditional methods are just approximating softmax
probabilities so might not be as effective as MSP
in detecting near the decision boundary examples.

Finally, PPL and FGWS are also not severely
affected by FB attacks. However, FGWS is only

applicable to word-level attacks. Also, PPL and
FGWS are not effective enough in general.

Ablation study. Data uncertainty (DU) and model
uncertainty (MU) can also be used as features in

detection separately. Also, both RDE and DIST
can be enhanced by calculating the average score
over the neighborhood of the input using the same
random masking technique as used in data uncer-
tainty estimation. We denote them as RDE-aug
and DIST-aug. In this part, we study the effec-
tiveness of uncertainty aggregation and neighbor
augmentation by comparing ADDMU with DU
and MU, and by comparing RDE and DIST with
RDE-aug and DIST-aug. Full results are shown in
Appendix G. We show a representative proportion
of the results in Table 4. The summary of findings
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| | AGNews SNLI
| Method | TPR F1 AUC TPR Fl1 AUC
RDE 96.0 932 970 463 593 810
RDE-aug | 97.4 940 974 410 543 799
DIST 945 924 959 372 504 745
£ | DIST-aug | 940 920 969 383 515 752
MU 820 854 945 651 744 89.1
DU 98.9 946 983 59.6 703 856
ADDMU | 99.2 949 98.6 689 77.0 89.7

Table 4: Ablation study on effect of uncertainty aggre-
gation and neighbors augmentation against TextFooler.

are discussed in the following.

We find that ADDMU, the aggregation of two
uncertainties, achieves the best results in 70 out of
the 96 metric scores. DU and MU are the best in
12 scores each. This shows that the combination
of the two uncertainties provides more information
to identify adversarial examples. We also observe
that on SNLI, DU values are typically less useful,
and thus the combination of DU and MU performs
slightly worse than MU. One explanation is that the
SNLI task requires more sophisticated neighbor-
hood construction method to generate meaningful
neighbors in data uncertainty estimation. Finally,
we also notice that RDE-aug and DIST-aug are in
general better than RDE and DIST, especially under
FB attacks, which demonstrates the effectiveness
of neighbor augmentation.

Why do detection results vary among datasets
and attacks? Among different attacks, we find
that Pruthi is the hardest to detect, followed by
BAE. However, there is no obvious difference be-
tween detection performances against word-level
and character-level attacks. Also, attacks on the
sentence pair task (SNLI) are in general harder to
detect. Thus, future work could focus more on im-
proving the performance of detecting adversarial
examples in sentence pair tasks, like SNLI.

We investigate why the detection performances
vary among attacks. Our hypothesis is that attacks
on some datasets fail to be imperceptible and have
changed the groundtruth label for an input. Thus,
these ‘adversarial’ (can not be called adversarial
any more as they do not meet the definition of be-
ing imperceptible) examples actually lie close to
the training manifold of the target class. Therefore,
AED methods find it hard to detect those exam-
ples. To verify this assumption, we choose two
tasks (SST-2 and Yelp) and two attacks (TF and
BAE) to do sentiment analysis. We ask Amazon

| F1 | Correct Wrong

SST-2 TF 75.8 0.129 0.360
SST-2BAE | 589 0.136 0.597
Yelp TF 83.5 0.211 0.411
Yelp BAE 79.5 0.229 0.425

BAE attack on SST-2, ADDMU fails to detect
Groundtruth Label changed : Positive — Negative

Original
Attacked

Most new movies have a bright sheen.
Most new movies have a bad sheen.

Table 5: Why detector performance varies among
attacks? This might because attacks already flip
groundtruth labels of the examples. We show the detec-
tor performance (F1) and the proportion of adversarial
examples that have their sentiments changed according
to humans on correctly and wrongly detected sets.

MTurk workers 3 to re-label positive or negative
for attacked examples. Then, we summarize the
proportion of examples that workers assign oppo-
site groundtruth labels in correctly and wrongly
detected groups. As shown in Table 5, there is
an obvious correlation between bad performance
and the number of ‘adversarial’ examples whose
groundtruth labels changed. For example, AD-
DMU performs weak on detecting BAE attacks
on SST-2 (58.9 F1), but it turns out that this is be-
cause more than half of the examples already have
their groundtruth labels flipped. We give one exam-
ple in Table 5. This shows that adversarial attacks
need to be improved to retain the semantic meaning
of the original input.

5 Characterize Adversarial Examples

In this section, we explore how to characterize ad-
versarial examples by the two uncertainties.
MU-DU Data Map Plotting a heatmap with MU
on X-axis and DU on Y-axis, we visualize data in
terms of the two uncertainties. We show in Figure 2
the heatmaps with natural data, FB and regular
adversarial examples generated from three attacks
on three datasets (AGNews TF, Yelp BAE, SNLI
Pruthi). The performance of ADDMU varies on
the three attacks, as shown on the left of Figure 2.
We find that natural examples center on the bot-
tom left corner of the map, representing low MU
and DU values. This phenomenon does not vary
across datasets. Whereas for FB and regular ad-
versarial examples, they have larger values on at
least one of the two uncertainties. When ADDMU
performs best (AGNews TF, the first row), the cen-

3 Also 0.05 dollar per HIT, but each HIT takes around 10
seconds to finish. Each HIT is assigned three workers.
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Figure 2: MU-DU heatmaps based on natural and reg-
ular/FB adversarial examples generated from three at-
tacks. X-axis: MU value; Y-axis: DU value. Attack
types and ADDMU performance are labeled on the left.
TPR: Regular Adv./FB Adv.

ter of adversarial examples in the MU-DU map
is relatively rightward and upward compared to
other cases. For maps on the third row, the shadow
stretches along the MU axis, indicating that Pruthi
examples on SNLI have relatively large MU values.

Identifying Informative ADA Data ADA is an-
other adversarial defense technique, which aug-
ments the training set with adversarial data and
re-train the victim model to improve its robustness.
In this part, we show that our ADDMU provides
information to select adversarial data that is more
beneficial to model robustness. We test it with TF
on SST-2. The procedure is as follows: since SST-
2 only has public training and validation sets, we
split the original training set into training (80%)
and validation set (20%), and use the original val-
idation set as test set. We first train a model on
the new training set. Then, we attack the model on
validation data and compute DU and MU values for
each adversarial sample. We sort the adversarial ex-
amples according to their DU and MU values and
split them by half into four disjoint sets: HDHM
(high DU, high MU), HDLM (high DU, low MU),
LDHM (low DU, high MU), and LDLM (low DU,
low MU). We augment the clean training set with
each of these sets and retrain the model. As a base-
line, we also test the performance of augmenting
with all the adversarial examples generated from
the validation set (All). We report clean accuracy
(Clean %), the number of augmented data (#Aug),
attack success rate (ASR), and the average query
number (#Query) for each model.

SST-2TF Clean % #Aug ASR #Query
BERT 92.8 0 94.31% 98.51
+All 924 11199 87.36% 66.31
+LDLM 91.7 2800  90.62% 108.06
+HDLM 924 2800  88.59% 111.26
+LDHM 929 2799  85.05% 115.30
+HDHM 919 2799  87.07% 119.92

Table 6: ADA performances of different types of aug-
mented data. We find that adversarial examples with
low DU and high MU are most useful for ADA.

The results are in Table 6. We find that the most
helpful adversarial examples are with low DU and
high MU. Using those samples, we achieve better
ASR and clean accuracy than augmenting with the
whole validation set of adversarial examples, with
only one quarter of the amount of data. It is ex-
pected that examples with low DU and low MU are
less helpful as they are more similar to the clean
data. Similar observations are found in the FB
version of TF attacks. We also compare augmen-
tations with regular and FB adversarial examples.
See details in Appendix E.

6 Related Work

Adversarial Detection. Adversarial examples de-
tection has been well-studied in the image domain
(Feinman et al., 2017; Lee et al., 2018; Ma et al.,
2018; Xu et al., 2018; Roth et al., 2019; Li et al.,
2021a; Raghuram et al., 2021). Our work aligns
with Feinman et al. (2017); Li et al. (2021a); Roth
et al. (2019) that introduce uncertainty estimation
or perturbations as features to detect adversarial
examples. We postpone the details to Appendix I,
but focus more on the AED in NLP domain.

In the NLP domain, there are less work exploring
AED. Zhou et al. (2019) propose DISP that learns
a BERT-based discriminator to defend against ad-
versarial examples. Mozes et al. (2021) propose
a word-level detector FGWS that leverages the
model confidence drop when replacing infrequent
words in the input with frequent ones and surpass
DISP. Pruthi et al. (2019) combat character-level
attacks with word-recognition models. More re-
cently, Yoo et al. (2022) propose a robust density
estimation baseline and a benchmark for evaluat-
ing AED methods. There are other works like Xie
et al. (2022); Biju et al. (2022); Wang et al. (2022);
Mosca et al. (2022), that leverage other features
or train a detector. We show limitations of these
works on FB adversarial examples and propose our
ADDMU that overcomes this limitation.
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Other Defenses against Attacks. AED is a cate-
gory of approaches to defending against adversarial
attacks. Other methods are also considered. Jin
et al. (2020); Yin et al. (2020); Si et al. (2021) do
ADA that augments original training datasets with
adversarial data for better robustness. Madry et al.
(2018b); Miyato et al. (2017); Zhu et al. (2019);
Zhou et al. (2020) conduct adversarial training
which is formulated as a min-max problem. Re-
cently, several works perform certified robustness
defense with either interval bound propagation
(Huang et al., 2019; Jia et al., 2019; Shi et al., 2020),
or randomized smoothness (Ye et al., 2020). In this
work, we connect our AED method with ADA by
selecting more informative data to augment.

7 Conclusion

We proposed ADDMU, an uncertainty-based ap-
proach for both regular and FB AED. We began by
showing that existing methods are significantly af-
fected by FB attacks. Then, we show that ADDMU
is minimally impacted by FB attacks and outper-
forms existing methods by a large margin. We
further showed ADDMU characterizes adversar-
ial data and provides information on how to select
useful augmented data for improving robustness.
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Limitations

We summarize the limitations of this paper in this
section.

1. We only test the AED methods under classifi-
cation tasks. This is because we find that the
attacks on other tasks like language genera-
tion are not well-defined, for example what
would be the goal function of attacks on a
language generation task? Is minimizing the
BLEU score sufficient? It is hard to conduct
detection when there is no standard for a valid
adversarial example. Future work might come
up with attacks for diverse tasks first and pro-
pose corresponding AED methods.

2. More experiments should be conducted to an-
alyze the FB adversarial examples, including

its characteristics and the security concerns it
imposes to DNNs. However, given the time
and space limitations, we are not able to do
that.

3. Our method has slightly more hyperparame-
ters to tune (four in total), and requires a bit
more time to finish one detection. But, we
confirm that it is in an acceptable range.
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A Regular vs. FB Adversarial Examples

In this section, we qualitatively shows some cases
of far-boundary adversarial examples in Table 7.
We show that it is hard for human beings to identify
such far-boundary examples, which calls for an
automatic way to do the detection.

B Experimental Setup Details
B.1 Datasets and Target Models

We conduct experiments on four datasets, SST-
2, Yelp-Polarity, AGNews, and SNLI. Statistics
about those datasets are summarized on Table 8.
All those datasets are available at Huggingface
Datasets (Lhoest et al., 2021). Our target mod-
els are BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019). We use the public accessible
BERT-base-uncased and RoBERTa-base models
fine-tuned on the above datasets provided by Tex-
tAttack (Morris et al., 2020b) to benefit repro-
ducibility. The performance of those models are
summarized on Table 9.

B.2 Attacks and Statistics

We consider four attacks. TextFooler (Jin et al.,
2020), BAE (Garg and Ramakrishnan, 2020),
Pruthi (Pruthi et al., 2019), and TextBugger (Li
et al., 2019). TextFooler and BAE are word-level
attacks. Pruthi and TextBugger are character-level
attacks. For BAE, we use BAE-R, i.e., replace a
word with a substitution. For attacks on SNLI, we
only perturb the hypothesis sentence. For FB at-
tacks, as stated in the main paper, we add another
goal function to make sure the softmax probabil-
ity of the attacked class is larger than a threshold
€. We select ¢ = 0.9 for SST-2, Yelp, AGNews,
and € = 0.7 for SNLI. We implement those attacks
with TextAttack, with the default hyperparameter
settings. Please refer to the document of TextAttack
for details. Here we report the after-attack accu-
racy (Adv. Acc), the attack success rate (ASR),
the number of queries (#Query), and the number
of adversarial examples we select (#Adv) for each
attack on each dataset, as well as for FB attacks.
Notice, the total evaluted examples will be twice
the number of adversarial examples. See Table 10
and Table 11.

C DIST

We propose the DIST baseline, which is a distance-
based detector motivated by Ma et al. (2018). We

also find that the Local Intrinsic Dimension value
proposed in Ma et al. (2018) does not work well
when detecting NLP attacks. The DIST method
leverages the whole training set as Dg,,. Then,
it selects the K-nearest neighbors of the evaluated
point from each class of Dy, and calculates the av-
erage distance between the neighbors and the eval-
uated point, denote as di,do, - - - ,d, where k is
the number of classes. Suppose the evaluated point
has predicted class 2. Then, it uses the difference
between the distance of class ¢ and the minimum of
the other classes to do detection. i.e., d; —min (dy),
where k # i. The intuition is that since adversar-
ial examples are generated from the original class,
they might still be closer to training data in the
original class, which is min (dy) , k # i.

D Implementation Details

For DIST and ADDMU, we tune the hyperparam-
eters with an attacked validation set. For datasets
with an original train/validation/test split (SNLI),
we simply attacked the examples in the validation
set and select 100 of them to help the tuning. For
datasets without an original split, like SST-2, Yelp,
and AGNews, we randomly held out 100 examples
from the training set and attack them to construct a
set for hyperparameter tuning. For DIST, we select
the number of the neighbors from {100, 200, - - -,
1000}. For ADDMU, we select N,,, and N, from
{10, 20, 80, 100}, and choose p,,, and pg from {0.1,
0.2, 0.3, 0.4}. In our preliminary experiment, we
find that ensemble different p, values also help.
So, we also consider ensemble different p; values
in combinations {(0.1, 0.2), (0.1, 0.2, 0.3, 0.4)}.
We also find that augment the model uncertainty
estimation with some neighborhood data is help-
ful, so for the model uncertainty value, we actually
average over 10 neighborhood data with 0.1 mask
rate.

E Selecting Useful data with Uncertainty
values

In this section, we present the results of selecting
useful data for ADA using DU and MU values for
FB version of TF, shown in Table 13. Similar to the
regular version, we find that the most useful data
are still those with low data uncertainty and high
model uncertainty. We achieve better ASR and the
number of queries using only one quarter of data
compared to the full augmentation. In Table 14,
we show the attack success rate of four settings. 1)

6579



Attacks | Examples

| Prob.

Original

Seattle may have just won the 2014 Super Bowl, but the Steelers still [[rock]] with six rings,
Baby!!! Just stating what all Steeler fans know: a Steel Dynasty is still unmatched no matter
what team claims the title of current Super Bowl Champs.. Go Steelers!!!

100%

Regular

Seattle may have just won the 2014 Super Bowl, but the Steelers still [[trembles]] with six rings,
Baby!!! Just stating what all Steeler fans know: a Steel Dynasty is still unmatched no matter
what team claims the title of current Super Bowl Champs.. Go Steelers!!!

57%

FB

Seattle may have just won the 2014 Super Bowl, but the Steelers [[again]] [[trembles]] with six
rings, Baby!!! Just stating what all Steeler fans know: a Steel Dynasty is still unmatched no
matter what team claims the title of current Super Bowl Champs.. Go Steelers!!!

95%

Original

Cisco invests $12 million in Japan R amp;D center On Thursday, the [[company]] announced
it will invest $12 million over the next five years in a new research and development center in
Tokyo.

71%

Regular

Cisco invests $12 million in Japan R amp;D center On Thursday, the [[firm]] announced it will
invest $12 million over the next five years in a new research and development center in Tokyo.

63%

FB

Cisco invests $12 million in Japan R amp;D center On Thursday, the company [[mentioned]] it
will invest $12 million over the next five [[decades]] in a new research and development [[centre]]
in Tokyo.

95%

Original

King Pong Draws Fans Spike TV’s Video [[Game]] Awards Show attracts big-name celebrities
and bands but gives the fans the votes.

93%

Regular

King Pong Draws Fans Spike TV’s [[tv]] Game Awards Show attracts big-name celebrities and
bands but gives the fans the votes.

57%

King Pong Draws Fans Spike TV’s Video [[play]] Awards Show attracts big-name celebrities

FB

and bands but gives the fans the votes.

90%

Table 7: Examples of the changes made by regular and far-boundary adversarial examples. The last column shows
the prediction probability on the predicted class. We can see that it would still be hard for humans to identify
the changes made by far boundary examples. It is necessary to propose an automatic way to detect far boundary

adversarial examples.

Dataset  Train/Dev/Test Avg #Labels
Len

SST-2 67.3k/0.8k/- 19.2 2

Yelp 560k/-/38k 152.8 2

AGNews  120k/-/7.6k 35.5 4

SNLI 550k/10k/20k 8.3 3

Table 8: Data Statistics of the four datasets.

Augment with FB examples to defend against regu-
lar attack; 2) Augment with FB examples to defend
against FB attack; 3) Augment with regular exam-
ples to defend against regular attack; 4) Augment
with regular examples to defend against FB attack.
The finding is that augment with FB and regular
adversarial examples most benefits its own attacks.
This implies that FB attacks might already change
the characteristics of regular attacks. We need to
defend against them with different strategies.

Dataset  SST-2 Yelp  AGNews SNLI
BERT 9243  96.30 9420  89.40
RoBERTa 94.04 - 94.70 -

Table 9: BERT-base-uncased and RoBERTa-base accu-
racy on the four datasets. TextAttack does not have pub-
lic model for RoOBERTa fine-tuned on Yelp and SNLI.

F RoBERTa Results

We conduct adversarial examples detection with
RoBERTa-base. The setting is the same as BERT.
Through hyperparameters search as described be-
fore, for ADDMU, we select N,, = 20 and
Ng4 = 100, and choose p,, = 0.1 and pg; = 0.1,
without augmentation for MU estimation and no
ensemble of various p,. Table 16 presents the re-
sults for RoOBERTa-base. ADDMU also outper-
form other methods with RoBERTa. We combine
the ablation table together with the main table for
RoBERTa.

6580



TextFooler | Adv. Acc  ASR%  #Query #Adv TF-FB | Adv. Acc ASR%  #Query #Adv
SST-2 4.5 95.1 95.3 1290 SST-2 6.54 94.8 108.4 295
Yelp 6.0 93.8 475.7 738 Yelp 6.2 93.7 496.0 1027

AGNews 17.7 81.4 333.5 1625 AGNews 22.0 77.4 365.7 1604
SNLI 3.0 96.7 58.5 2222 SNLI 8.3 91.4 69.6 2068
BAE | Adv. Acc  ASR%  #Query #Adv BAE-FB | Adv. Acc ASR%  #Query #Adv
SST-2 38.3 58.9 60.8 412 SST-2 45.3 522 64.3 164
Yelp 44.9 53.7 319.9 1039 Yelp 50.2 48.8 3234 333

AGNews 81.5 14.3 122.5 278 AGNews 87.6 9.7 119.5 202
SNLI 32.5 64.0 43.4 1605 SNLI 46.8 51.3 44.5 1347
Pruthi | Adv. Acc ASR%  #Query #Adv Pruthi- Adv. Acc  ASR%  #Query #Ady
SST-2 59.2 36.0 3269 111 FB
Yelp 86.4 11.5 1678.1 1036 SST-2 68.9 273 326.4 90

AGNews 84.5 11.1 792.0 239 Yelp 89.4 9.1 1681.0 134
SNLI 23.2 74.4 103.4 1846 AGNews 89.8 7.4 791.4 158

SNLI 47.2 50.9 103.8 1323

TextBuggerl Adv. Acc  ASR%  #Query #Adv
SST-2 28.9 68.7 493 2721 TB-FB [ Adv. Acc ASR%  #Query #Adv
Yelp 16.3 83.3 350.1 738 SST-2 35.3 62.6 53.0 207

AGNews 20.2 79.2 123.4 1088 Yelp 18.4 81.3 369.4 1025
SNLI 4.5 95.0 41.9 2225 AGNews 53.1 45.3 191.1 948

SNLI 18.1 81.2 50.1 2093

Table 10: Statistics about attacks. We report the adver-
sarial accuracy (Adv. Acc), attack success rate (ASR%),
the number of queries (#Query), and the number of
adversarial examples examined.

G Ablation Study

We present the full results for the ablation study of
uncertainty aggregation in Table 15. We also show
that our neighborhood construction process in data
uncertainty can be used to enhance two baselines
RDE and DIST.

H Preliminary Results on BiLSTM

We experiment with a one-layer BILSTM model
with hidden dimension 150 and dropout 0.3. The
model achieves 89.3 clean accuracy on SST-2. In
our preliminary experiments, we test on detecting
TextFooler and BAE attacks and their correspond-
ing FB attacked examples. We compare our AD-
DMU detector with three baselines PPL, FGWS,
and RDE. Results are shown on Table 12. We show
that ADDMU still achieves the best performance,
while the previous SOTA on detecting BERT and
RoBERTa adversarial examples, RDE, is corrupted
when detecting BiILSTM adversarial examples.

I Related work in CV

Feinman et al. (2017) train a binary classifier using
density estimation and Bayesian uncertainty esti-
mation as features for detection. Li et al. (2021a)
replace DNNs with Bayesian Neural Networks,
which enhance the distribution dispersion between
natural and adversarial examples and benefit AED.

Table 11: Statistics about FB attacks. We report the
adversarial accuracy (Adv. Acc), attack success rate
(ASR%), the number of queries (#Query), and the num-
ber of adversarial examples examined.

TF | TF-FB | BAE | BAE-FB
PPL 75.8 | 77.1 41.9 40.9
FGWS | 86.2 | 87.1 83.7 81.4
RDE 15.6 | 24.0 | 21.2 333
ADDMU | 937 | 89.3 | 92.2 87.6

Table 12: Detection results on a BiLSTM victim model.
The values are F1 score on FPR=0.1. We see that AD-
DMU still achieves the best performance on these two
attacks. Note also that RDE, the previous SOTA results
on BERT and RoBERTa actually breaks when trying to
detect BILSTM adversarial examples.

Roth et al. (2019) use logodds on perturbed ex-
amples as statistics to conduct detection. Further,
Athalye et al. (2018) have similar observations with
us concerning image attacks. They find that the
distance-based feature, local intrinsic dimension
proposed in Ma et al. (2018) for AED fails when
encounters FB adversarial examples.
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SST-2TF Clean % #Aug ASR #Query

BERT 95.8 0 88.66% 118.99
+All  95.6 11199  77.58% 140.74
+LDLM 95.6 2800  82.52% 137.50
+HDLM 958 2800  78.25% 142.26
+LDHM 95.8 2799  75.30% 145.79
+HDHM 953 2799 77.67% 142.42

Table 13: ADA performances for FB version of differ-
ent types of augmented data. We find that adversarial
examples with low DU and high MU are most useful
for ADA.

Regular FB
Regular 87.2 90.2
FB 82.3 77.1

Table 14: Attack success rate for four settings of aug-
mentation. The columns are the augmented data. The
rows are the attack types.
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| | SST-2 AGNews Yelp SNLI

Attacks | Methods | TPR _F1__AUC | TPR _F1__AUC | TPR _F1__AUC | TPR _F1__ AUC
RDE 629 728 865 | 960 932 970 | 720 792 896 | 463 593 810

RDE-aug | 63.6 733 866 | 974 940 974 | 70.1 779 89.8 | 41.0 543 799

DIST 640 734 879 | 945 924 959 | 738 80.3 90.6 | 372 504 745

TF DIST-aug | 602 70.5 865 | 940 920 969 | 757 814 908 | 383 515 752
MU 519 642 859 | 820 854 945 | 717 790 90.1 | 651 744 89.1

DU 60.6 711 87.8 | 989 946 983 | 763 820 90.6 | 596 703 856

ADDMU | 67.1 758 888 | 992 949 986 | 787 835 916 | 689 770 897

RDE 319 450 815 | 719 791 925 | 315 446 827 | 431 564 796

RDE-aug | 366 502 804 | 908 905 959 | 61.5 718 878 | 376 510 789

DIST 207 263 816 | 66.6 754 918 | 548 643 862 | 272 396 699

TF-FB DIST-aug | 50.5 624 840 | 819 853 945 | 640 735 885 [29.6 423 710
MU 544 663 854 | 907 904 965 | 70.7 783 89.1 | 602 708 87.0

DU 554 671 845 | 972 939 975 | 70.1 779 884 | 316 446 782

ADDMU | 594 706 87.3 | 975 940 97.8 | 728 797 897 | 536 658 87.5

RDE 442 573 793 | 964 937 963 | 652 745 89.1 | 417 550 768

RDE-aug | 493 619 824 | 856 878 943 | 617 719 885 | 449 579 803

DIST 449 573 789 | 942 919 962 | 680 762 894 |368 497 679

BAE DIST-aug | 38.1 507 77.8 | 863 879 947 | 66.1 748 89.7 | 383 516 69.8
MU 417 550 788 | 867 883 941 | 646 741 886 | 444 575 769

DU 459 589 833 | 975 943 98.1 | 715 785 897 | 447 578 805

ADDMU | 459 589 823 | 964 935 973 | 725 795 90.1 | 482 610 810

RDE 195 302 725 | 688 770 912 | 664 754 88.1 | 346 479 740

RDE-aug | 482 61.0 826 | 634 734 O9L.1 | 661 751 889 | 408 542 794

DIST 177 261 70.1 | 649 68.1 914 | 697 773 884 | 295 423 629

BAE-FB DIST-aug | 287 400 724 | 703 763 916 | 71.5 780 89.8 | 315 440 654
MU 497 623 823 | 837 864 940 | 745 808 899 | 365 499 73.1

DU 564 67.8 844 | 847 87.0 934 | 745 808 902 | 229 345 743

ADDMU | 514 641 846 | 837 859 941 | 763 819 90.6 | 349 484 76.0

RDE 414 551 80.6 | 774 828 924 | 526 648 880 | 346 478 765

RDE-aug | 40.5 539 789 | 874 887 941 | 647 743 880 | 354 487 773

DIST 550 614 829 | 778 820 921 | 667 722 882 | 236 352 65.1

Pruthi DIST-aug | 50.5 614 841 | 812 846 941 | 692 756 895 |264 387 674
MU 486 614 853 | 895 899 955 | 775 831 907 | 61.8 72.0 86.8

DU 557 668 827 | 958 938 973 | 724 796 888 | 266 390 744

ADDMU | 559 674 854 | 967 939 974 | 788 837 918 | 557 67.1 86.0

RDE 200 308 726 | 595 704 876 | 343 479 852 | 312 442 749

RDE-aug | 267 39.0 745 | 677 764 918 | 60.4 71.1 870 | 31.0 440 76.0

, DIST 233 265 746 | 551 616 872 | 545 552 849 | 216 328 633
Pruthi- DIST-aug | 256 350 760 | 69.6 763 913 | 597 69.6 87.5 | 238 354 657
FB MU 56.2 677 852 | 803 848 945 | 679 768 917 | 60.7 71.1 855
DU 562 685 83.1 | 790 839 935 | 672 759 864 | 139 224 703

ADDMU | 562 687 858 | 80.4 849 950 | 687 77.0 917 | 449 580 825

RDE 724 796 89.6 | 961 933 969 | 662 752 892 | 518 641 83.0

RDE-aug | 543 66.1 850 | 956 930 969 | 61.7 719 87.8 | 459 589 809

DIST 724 786 90.6 | 956 928 962 | 702 779 902 | 507 627 826

TB DIST-aug | 729 79.1 897 | 93.0 916 963 | 705 780 905 | 520 642 83.1
MU 674 760 889 | 798 841 945 | 670 757 889 | 602 708 886

DU 778 829 902 | 984 947 980 | 693 773 892 | 669 754 889

ADDMU | 733 800 909 | 99.0 948 984 | 70.8 783 910 | 69.0 77.1 90.6

RDE 205 425 821 | 689 771 917 | 63.9 73.5 884 | 478 606 822

RDE-aug | 420 554 802 | 866 882 947 | 596 703 875 | 407 540 80.1

DIST 343 440 826 | 634 729 915 | 698 77.6 893 | 408 539 79.0

TB-FB DIST-aug | 49.8 590 84.6 | 80.4 843 936 | 71.8 789 904 | 439 570 79.8
MU 559 674 858 | 918 910 96.1 | 722 794 89.6 | 577 688 87.0

DU 581 692 850 | 941 922 965 | 727 796 892 | 409 542 815

ADDMU | 50.5 629 861 | 942 926 969 | 748 8§10 908 | 5I.I 636 87.0

Table 15: Ablation of detection performance of regular and FB adversarial examples (*-FB) against BERT on SST-2,
AGNews, Yelp, and SNLI. We compare ADDMU with soley DU, solely MU, and two enhanced baselines RDE-aug
and DIST-aug. The best performance is bolded. Results are averaged over three runs with different random seeds.
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\ | SST-2 AGNews

Attacks | Methods | TPR F1 AUC | TPR F1  AUC
PPL 340 472 737 | 782 831 920

MSP 710 785 898 | 935 919 972

RDE 739 804  89.8 | 90.6 904 955

RDE-aug 613 716 871 | 617 719 879

TF DIST 703 779 902 | 946 925 965
DIST-aug 727 788  90.1 | 838 864 946

MU 780 829 9.1 | 987 946 976

DU 701 792 895 | 959 932 976

ADDMU 784 839 913 | 988 949 983

PPL 438 570 796 | 844 869 941

MSP 553 669 850 | 30.5 435 876

RDE 405 538 846 | 570 683 887

RDE-aug 467 597 824 | 481 609 819

TF-FB DIST 487 582 851 | 470 597 898
DIST-aug 487 608 858 | 674 754 909

MU 559 669 892 | 774 826 935

DU 551 642 845 | 884  89.6 957

ADDMU 546 668 885 | 886 892 958

PPL 172 271 640 | 381 515 740

MSP 481 609 786 | 934 919 972

RDE 538 657 803 | 772 825 932

RDE-aug 535 655 844 | 529 649 826

BAE DIST 481 603 797 | 883 889 950
DIST-aug 485 612 809 | 724 790 913

MU 557 669 818 | 937 920 959

DU 524 640 846 | 922 912 962

ADDMU 558 670 849 | 976 941 979

PPL 270 396 687 | 345 478 736

MSP 314 446 698 | 770 824 898

RDE 258 381 725 | 570 683 894

RDE-aug 403 538 779 | 616 719 897

BAE-FB DIST 258 312 712 | 360 472 899
DIST-aug 308 427 738 | 620 702 895

MU 434 562 765 | 920 913 950

DU 377 513 781 | 795 869 933

ADDMU 444 571 783 | 920 919 957

PPL 340 476 744 | 314 444 739

MSP 620 721 831 | 702 780 930

RDE 570 683 833 | 616 719 897

RDE-aug 520 642 844 | 408 542 811

Pruthi DIST 630 706 831 | 655 746 925
DIST-aug 520 646 843 | 722 775 911

MU 730 771 893 | 945 925 975

DU 580 683 849 | 8.1 873 955

ADDMU 770 824 880 | 925 915 976

PPL 234 353 710 | 279 406 715

MSP 406 542 763 | 125 205 835

RDE 516 641 784 | 353 487 821

. RDE-aug 375 511 757 | 265 391 746
Pruthi- DIST 438 228 773 | 255 344 834
FB DIST-aug 406 478 796 | 566 670  86.1
MU 64.1 629 849 | 728 784 928

DU 39.0 511 811 | 618 716 909

ADDMU 641 745 891 | 757 821 934

PPL 455 586 812 | 767 822 912

MSP 747  81.1 918 | 914 908  96.8

RDE 768 824 920 | 8.0 878 845

RDE-aug 606 712 884 | 574 686 856

TB DIST 763 807 915 | 934 917  96.0
DIST-aug 773 80.1 91.8 | 80.1 840 939

MU 783 823 924 | 983 944 973

DU 742 804 907 | 940 921  97.0

ADDMU 788 829 924 | 983 945 979

PPL 427 559 816 | 789 837 926

MSP 575 694 863 | 298 427 876

RDE 520 643 862 | 477 606 873

RDE-aug 456 586 818 | 435 568 783

TB-FB DIST 485 565 861 | 452 580 894
DIST-aug 480 597 855 | 60.0 706 894

MU 585 700 897 | 842 868 950

DU 539 642 846 | 819 845 9238

ADDMU 649 742 877 | 855 883 968

Table 16: Detection performance of regular and FB adversarial examples (*-FB) against RoOBERTa on SST-2,
AGNews. Our proposed ADDMU outperforms other m&R&. The best performance is bolded. Results are averaged
over three runs with different random seeds.



