A Spectral View of Randomized Smoothing under Common Corruptions: Benchmarking and Improving Certified Robustness

Jiachen Sun¹, Akshay Mehra², Bhavya Kailkhura³, Pin-Yu Chen⁴, Dan Hendrycks⁵, Jihun Hamm², and Z. Morley Mao¹

University of Michigan, Ann Arbor
 Tulane University
 Lawrence Livermore National Laboratory
 IBM Research
 University of California, Berkeley

Abstract. Certified robustness guarantee gauges a model's resistance to test-time attacks and can assess the model's readiness for deployment in the real world. In this work, we explore a new problem setting to critically examine how the adversarial robustness guarantees change when stateof-the-art randomized smoothing-based certifications encounter common corruptions of the test data. Our analysis demonstrates a previously unknown vulnerability of these certifiably robust models to low-frequency corruptions such as weather changes, rendering these models unfit for deployment in the wild. To alleviate this issue, we propose a novel data augmentation scheme, FourierMix, that produces augmentations to improve the spectral coverage of the training data. Furthermore, we propose a new regularizer that encourages consistent predictions on noise perturbations of the augmented data to improve the quality of the smoothed models. We show that FourierMix helps eliminate the spectral bias of certifiably robust models, enabling them to achieve significantly better certified robustness on a range of corruption benchmarks. Our evaluation also uncovers the inability of current corruption benchmarks to highlight the spectral biases of the models. To this end, we propose a comprehensive benchmarking suite that contains corruptions from different regions in the spectral domain. Evaluation of models trained with popular augmentation methods on the proposed suite unveils their spectral biases. It also establishes the superiority of FourierMix trained models in achieving stronger certified robustness guarantees under corruptions over the entire frequency spectrum.

Keywords: Certified Robustness; Common Corruption; Benchmark

1 Introduction

Developing machine learning (ML) systems that are robust to adversarial variations in the test data is critical for applied domains that require ML safety [21],

such as autonomous driving and cyber-security. Unfortunately, a large body of work in this direction has fallen into the cycle where new empirical defenses are proposed, followed by new adaptive attacks breaking these defenses [3,55]. Therefore, significant efforts have been dedicated to developing methods that provide provable robustness guarantees [17,42,57]. Most promising among these certified defenses are based on randomized smoothing (RS) based certification [9, 32, 33] which are scalable to deep neural networks (DNNs) and high-resolution datasets. Specifically, the RS-based certification procedure relies on a smoothed version of the original classifier, which outputs the class most likely returned by the original classifier under random noise perturbations of the input. Prediction from the RS procedure at the test time is accompanied by a radius in which the predictions of the smoothed classifier are guaranteed to remain constant, thereby making them resilient to adversarial attacks within the neighborhood. Training methods such as [9,47,66] have been proposed to maximize the average certified radius (ACR), and models trained using these procedures achieve state-of-theart (SOTA) adversarial robustness guarantees, all while assuming that the test data is identically distributed to the training data. In this work, we take a critical look at the current status of certifiably robust ML and consider whether these certifiably robust models are ready for deployment in the real world.

Our work takes the first steps towards answering this question by evaluating RS-based provably robust ML models under common corruptions, as mismatches between the training and deployment distributions are ubiquitous in the wild. Our analysis shows that common corruptions pose a serious threat to certifiably robust models. We, therefore, highlight a previously unrecognized threat to certifiably ro-

Certified Robustness Is Fragile under Common Corruptions | Corruption | Corruption

Fig. 1. Robustness guarantees of certified models [9] degrade significantly on corrupted data.

bust models and thereby show that these models are not ready for deployment in the real world. Specifically, we found SOTA certifiably robust models to be surprisingly brittle to low-frequency perturbations, such as weather-related corruptions (e.g., fog and frost). Vulnerability to such corruptions could lead to a detrimental performance of ML models on safety-critical applications. For example, 35%–75% performance drop is observed on low-frequency corruptions rendering RS-based robustness guarantees useless (Fig. 1).

Motivated by our analysis, which shows RS-based smoothed classifiers suffer from low-frequency corruptions, we propose a novel data augmentation method that uses **spectrally diverse yet semantically consistent augmentations** of the training data. Specifically, our proposed *FourierMix* generates augmented data samples by using Fourier-based transformations on the input data to in-

crease the spectral coverage of the training set. FourierMix proportionally perturbs the amplitude and phase of the images in the training data and then combines them with the affine transformations of the data, producing spectrally diverse augmentations. To encourage the model to produce consistent predictions on different data augmentations, we propose a hierarchical consistency regularizer (HCR). The use of HCR as the regularizer leads to semantic consistency of representations across random noise perturbations (for RS certification) as well as FourierMix generated augmentations (for corruption robustness) of the same input image. FourierMix consistently achieves significantly better-certified robustness than existing SOTA data augmentation methods extended to build a smoothed classifier across a range of corruption benchmarks. We further analyze these smoothed models using Fourier sensitivity analysis in the spectral domain. Compared to other methods, models trained on FourierMix augmentations coupled with hierarchical consistency regularization are significantly more resilient to perturbations across the entire frequency spectrum.

Our evaluation of certifiably robust models on various corruption benchmark datasets uncovers another peculiar phenomenon-even popular benchmark datasets may be biased towards certain frequency regions. Due to the complexity of real-world data, it is extremely challenging and tedious to unveil the spectral biases of the models and identify their failure modes. Because of this, improvements in the performance of the models on these benchmarks may not generalize to other corruption types. Thus, we should be cautious and avoid over-reliance on a specific leaderboard, especially to judge the robustness of models under corruption. To enable the designers to understand the spectral biases of their models and obtain a more comprehensive view of the model robustness to data corruptions, we propose a new benchmark that includes a collection of corruption test sets, each focusing on specific frequency ranges while collectively covering the entire frequency spectrum. Evaluation of the certified robustness of different models on the proposed dataset shows that the smoothed models obtained after training with existing data augmentation schemes are indeed biased towards certain frequency regions. This justifies the observed performance (and ranking) variations across different benchmarks. On the other hand, models trained with our FourierMix based data augmentations perform significantly better than the competitors across the entire frequency spectrum, further demonstrating that FourierMix helps alleviate the spectral biases.⁶

A detailed discussion on related work is provided in Appendix A, while all the references are included in the main paper.

2 Are Certifiably Robust Models Ready for Deployment in the Wild?

Predictions of certifiably robust ML models are guaranteed to stay constant in a neighborhood of a test point, making them provably resilient to adversaries at the

⁶ The codebase and dataset of this work are available at https://github.com/jiachens/FourierMix.

test time. This feature of certified defenses makes them an attractive candidate for real-world safety-critical applications. However, progress in this area has been assessed by evaluating these models in idealistic scenarios (*i.e.*, the indistribution setup), which is not representative of real-world data distributions. To better understand the performance of certified defenses in the real world, in this section, we evaluate SOTA certified defenses under common corruptions.

2.1 Preliminaries on SOTA Certified Defenses

Previous works have proposed different certification methods to obtain provable adversarial robustness guarantees (e.g., convex polytope [57], recursive propagation [17], and linear relaxation [42,67]). However, their use is limited due to their trivial bounds derived from large-scale datasets and deep models. Recently, randomized smoothing (RS) based certification method was proposed, which is efficient and scalable to large-scale datasets and deep models. Therefore, we use RS-based certification in this study. Let us consider a base classifier \mathcal{M} trained on samples $\boldsymbol{x} \in \mathcal{X} \subset \mathbb{R}^{d \times d \times 3}$ and their corresponding labels $\boldsymbol{y} \in \mathcal{Y} \subset \mathbb{R}^+$, obtained from an underlying data distribution \mathcal{D} .

Certification. The RS-based certification uses a base classifier \mathcal{M} and provides certified robustness guarantees for its smoothed version defined as $\hat{\mathcal{M}}(x) = \arg\max_{c \in \mathcal{Y}} \mathbb{P}(\mathcal{M}(x+\delta) = c)$ where $\delta \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$. Intuitively, $\hat{\mathcal{M}}$ returns the most probable class evaluated by \mathcal{M} over a number of Gaussian perturbations of the input x. The certification guarantees that the prediction of the smoothed classifier $\hat{\mathcal{M}}$ are consistent in the ℓ_2 radius [9] of $\mathrm{CR}(\hat{\mathcal{M}}, \sigma, x; y) = \frac{\sigma}{2}(\Phi^{-1}(p_A) - \Phi^{-1}(p_B))$, where Φ^{-1} is the inverse CDF of the standard Gaussian distribution, $p_A = \mathbb{P}(\mathcal{M}(x+\delta) = c_A)$ is probability of the top class c_A and $p_B = \max_{c \neq c_A} \mathbb{P}(\mathcal{M}(x+\delta) = c)$ is the probability of the runner-up class. Monte Carlo-based sampling [18] is utilized to approximate $\underline{p_A} \leq p_A$ and $\overline{p_B} = 1 - \underline{p_A} \geq p_B$. The certified radius can still be computed using the same formula by replacing p_A and p_B with p_A and $\overline{p_B}$.

Improved Training. It has been observed empirically [9] that models trained using the standard procedure do not provide reasonable certified robustness. Therefore, there is an increasing interest in developing improved training techniques to maximize certified robustness. Several works [34] have made significant advances in the training techniques and reported impressive gains in certified radius on in-distribution test data. Specifically, new training methods such as Gaussian augmentation [9], SmoothAdv [47] and MACER [66] have been proposed. Intuitively, Cohen et al. [9] propose to leverage Gaussian augmentation with variance σ^2 to train the base classifier. SmoothAdv [47] and MACER [66] both use Gaussian augmentation and further improve Cohen et al.'s baseline method by adversarial training and introducing an auxiliary objective to maximize the certified radius, respectively. However, the effect of common corruptions on the robustness guarantees of these models remains unexplored.

Evaluation Metrics. Similar to [37,47,66], we use the average certified radius (ACR) as our metric to evaluate the robustness:

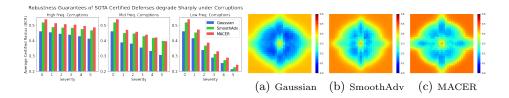


Fig. 2. Randomized smoothing based Fig. 3. Fourier sensitivity analysis on models [9, 47, 66] suffer up to 54.0% de-CIFAR-10 shows the ACR of SOTA certified creases in their certified robustness on defenses degrade significantly under corrupmid-to-low frequency corruptions from tions from mid-to-low frequency region CIFAR-10-C. Severity 0 is in-distribution. (interpreted in § 2.2).

$$\text{ACR} := \frac{1}{|\mathcal{D}_{test}|} \sum_{(\boldsymbol{x}, y) \in \mathcal{D}_{test}} \text{CR}(\hat{\mathcal{M}}, \sigma, \boldsymbol{x}; y) \times \mathbf{1}_{\hat{\mathcal{M}}(\boldsymbol{x}, \sigma) = y}$$

which is also equivalent to the area under the certified radius-accuracy curve (AUC). For performance on corruption datasets, we measure the mean ACR (mACR) as an overall metric, mACR := $\frac{1}{c}\sum_{i=1}^{c} ACR_i$, where c is the number of corruptions leveraged in a specific test set. For example, c = 15 and 10 in CIFAR-C and $-\bar{C}$ datasets, respectively. Unlike previous studies on empirical defenses, we do not use the *empirical* clean and robust accuracy [9, 47, 66] as a metric in this work since we focus on the *certified* robustness.

2.2 Analyzing Certified Defenses under Common Corruptions.

Real-world test data often do not follow the training data distribution \mathcal{D} , although tangible improvements have been made in certifying the robustness of in-distribution data. Therefore, evaluating the performance of \mathcal{M} under distribution shifts (i.e., corrupted data) $\{(\hat{x}, y)_1, ..., (\hat{x}, y)_n\} \sim \hat{\mathcal{D}}$ becomes a major concern. We consider the impact of corrupted data on models trained using SOTA robust training methods [9,47,66] and RS-based certified defenses.

Degradation of Certified Robustness Guarantees on Common Corruptions. To measure the performance of certified defenses under data corruptions, we use the prevalent corruptions dataset CIFAR-10-C [22], which contains 15 different corruptions from four categories (with 5 severity levels): noise, blur, weather, and digital corruptions. We re-arrange the corruption dataset into three groups and evaluate the ACR by increasing the severity level of the corruption. Grouping is performed based on the visual similarity of the amplitude spectrum of corrupted images (see Appendix C). Group-H corruptions (roughly categorized as high-frequency corruption type) consist of {Gaussian noise, impulse noise, shot noise, pixelate, JPEG}; Group-M corruptions (roughly categorized as mid-frequency corruption type) consist of {defocus blur, frosted glass blur, motion blur, zoom blur, elastic}; and Group-L corruptions (roughly categorized as low-frequency corruption type) consist of {brightness, fog, frost, snow, contrast}.

The performance of SOTA certified defenses on these groups of corruptions is presented in Fig. 2. SmoothAdv and MACER achieve tangible enhancements in ACR on in-distribution CIFAR-10 data compared to the Gaussian augmentation baseline. However, all methods show a sharp performance drop in ACR as we move from Group-H (high-frequency) to Group-L (low-frequency). We see that these methods are surprisingly brittle in low-frequency corruption regimes, e.g., we see up to 54.0% drop in ACR when moving from severity 0 (i.e., indistribution) to severity 5. We emphasize that this performance drop points to a methodological shortcoming. The degradation is not due to the corruptions in Group-L being too difficult since the empirical robust accuracy (Fig. 9 in Appendix B) remains consistently high on all the groups and severity levels for empirically robust models [23, 30, 44]. Even though the performance of any ML model is expected to suffer on test data that lies far away from the data used during training, the drastic performance degradation of RS-based certifiably robust models on low-frequency corruptions is particularly concerning. Our findings also generalize to IBP-based certification [59] (Appendix D.1), further demonstrating the vulnerability of certified defenses to low-frequency corruptions.

Validating the Brittleness of Smoothed Models Through a Spectral Lens. To highlight that the vulnerability to low-frequency corruptions is a limitation of provably robust ML models, in this section, we perform a more systematic analysis that corroborates that our finding is not limited to a specific benchmark and holds more broadly. To achieve this, we perform a spectral domain analysis of smoothed models by utilizing the Fourier sensitivity analysis [65].

A Fourier basis image in the pixel space is a real-valued matrix $U_{i,j} \in \mathbb{R}^{d \times d}$ where its $||U_{i,j}||_2 = 1$, and FFT $(U_{i,j})$ only has two non-zero elements at (i,j)and (-i, -j) in the coordinate that views the image center as the origin. Given a test set and a smoothed model, we evaluate the $CR(\cdot)$ of $\tilde{x}_{i,j} = x + r \epsilon U_{i,j}$ for each x in the test set and compute their ACR, where r is randomly sampled in $\{-1,1\}$, ϵ is the perturbation in ℓ_2 norm, and we treat the RGB channels independently. Each of the evaluated ACR corresponds to a data point in the heat map located at (i, j). Fig. 3 shows the heatmaps of models trained with Gaussian augmentation [9], SmoothAdv [47], and MACER [66] using $\epsilon = 4$ [65]. The center and edges of the heatmap contain the evaluation of the lowest and highest frequency perturbations, respectively. The results in Fig. 3 show that the certifiably robust classifiers achieve small ACR on corrupted data belonging to the low-frequency region (around the center of the image), whereas they achieve a high ACR in the high-frequency region (near the edges). In particular, the ACRs are always less than 0.3 for all three methods in the mid-to-low frequency range, while they perform well in a high-frequency regime. We emphasize that the Fourier sensitivity analysis in Fig. 3 is general and is not specific to corruptions appearing in CIFAR-10-C. Based on our analysis, we find that certifiably robust models are biased towards high-frequency noises and perform surprisingly poor on low-frequency corrupted data. Following this insight, we develop a data augmentation method capable of producing spectrally diverse augmentations to make certifiably robust models perform well on corrupted data across the en-

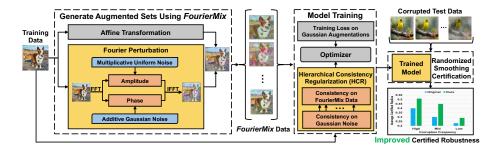


Fig. 4. Overview of Our *FourierMix* Pipeline for Generating Spectrally Diverse Data Augmentations and Training of Certifiably Robust Models with the Proposed Hierarchical Consistency Regularization (HCR).

tire frequency spectrum in § 3. It is also worth noting that although test-time adaptation [56] is another class of methods that improves the *empirical* corruption robustness, we demonstrate that they are ineffective when combined with certified defenses in Appendix G.

3 FourierMix: Data Augmentation Strategy with a Broad Spectral Coverage

To improve the certified robustness of RS-based methods under common corruptions, it is intuitively desirable to make the base classifier \mathcal{M} robust against different types of corruptions and their Gaussian perturbations. Motivated by our Fourier sensitivity analysis (§ 2), we propose a novel data augmentation method, FourierMix. As opposed to existing data augmentation schemes, FourierMix explicitly uses spectral coverage as its design objective to boost the certified robustness of corrupted data. To improve the spectral coverage, we introduce Fourier-based operations that manipulate the image in the frequency domain. We also leverage randomly sampled affine transformations to enrich the augmentations in FourierMix. We adopt the high-level framework of AugMix [23] for chaining and mixing different augmented images. Figure 4 shows the overall pipeline and Algorithm 1 presents the pseudocode of FourierMix.

Fourier Operations. Two-dimensional images can be converted into the frequency domain by applying the Fourier transform and vice versa. Fourier transform has the duality property, which provides a unique but equivalent perspective for image analysis. We use fast Fourier transform (FFT) and inverse FFT (IFFT) for the transformation between the pixel and frequency domains. FFT(\boldsymbol{x}) is complex in general, i.e., FFT(\boldsymbol{x}) = FFT_{real}(\boldsymbol{x}) + iFFT_{imag}(\boldsymbol{x}), with $\boldsymbol{A} = |\text{FFT}(\boldsymbol{x})|$ as its amplitude and $\boldsymbol{P} = \arctan(\text{FFT}_{imag}(\boldsymbol{x})/\text{FFT}_{real}(\boldsymbol{x}))$ as its phase. The amplitude spectrum of natural images generally follows a power-law distribution, i.e., $\frac{1}{f^{\alpha}}$, where f is the azimuthal frequency and $\alpha \approx 2$ [5, 54], resulting in extremely small power in the high-frequency areas. However, the amplitude

spectrum of the I.I.D. Gaussian noise is a uniform distribution, so Gaussian augmentation biases the models toward the high-frequency regime relative to the original images. In order to have broad and unbiased spectral coverage, the core of *FourierMix* is to allocate similar proportions of augmentations across all frequencies. We use two spectral operators in *FourierMix* to achieve this goal:

$$\mathbf{A}(u,v) = \mathbf{A}_{u,v}^{\text{orig}} \cdot \mathrm{U}(1 - s_{\mathbf{A}}, 1 + s_{\mathbf{A}}) \tag{1}$$

$$\mathbf{P}(u,v) = \mathbf{P}_{u,v}^{\text{orig}} + \mathcal{N}_{\text{truncated}}^{s_{\mathbf{P}}}(0,\sigma^{2}\mathbf{I})$$
 (2)

where (u,v) is the coordinate of the 2D frequency in the spectrum, and $s_{\mathbf{A}}$ and $s_{\mathbf{P}}$ control the severity levels of two operators. Formally, the PDF of $\mathcal{N}^{\mathrm{sp}}_{\mathrm{truncated}} = \frac{\phi(x/\sigma)}{\sigma \cdot (2\Phi(s_{\mathbf{P}}/\sigma)-1)}$, where $\phi(\cdot)$ and $\Phi(\cdot)$ denote the PDF and CDF functions of a standard normal distribution, respectively. On one hand, we apply multiplicative factors sampled from a uniform distribution $\mathrm{U}(\cdot)$ to all frequencies in the amplitude spectrum. Therefore, $\mathrm{A}(u,v)$ ensures that the proportions of augmentation are similar across all frequencies relative to the original spectrum. On the other hand, since the magnitude of the phase spectrum follows a random distribution that is not correlated with the 2D frequency [36], additive phase noises can thus assign similar proportions of augmentations across 2D frequencies. As it is widely acknowledged that the phase component retains most of the highlevel semantics [29,61,64], we leverage additive truncated Gaussian to constrain $\mathrm{P}(u,v)$ so that it will not destroy the semantics of the training images. Some sample images generated using FourierMix are provided in Appendix E.

Hierarchical Consistency Regularization (HCR). Motivated from [25] that enforces consistency on in-distribution data, we propose *hierarchical consistency regularization* (HCR) to further boost the performance of *FourierMix* in terms of the ACR on corrupted test sets:

$$\mathcal{L}_{G} = \frac{1}{s} \sum_{i=0}^{s} \text{KL}(\mathcal{M}(\boldsymbol{x}_{j} + \boldsymbol{\delta}_{i}) || \overline{\mathcal{M}}(\boldsymbol{x}_{j}, \boldsymbol{\delta}))$$
(3)

$$\mathcal{L}_{HCR} = \frac{1}{k+1} \sum_{j=0}^{k} \left[\lambda \cdot \text{KL}(\overline{\mathcal{M}}(\boldsymbol{x}_{j}, \boldsymbol{\delta}) || \overline{\mathcal{M}}(\boldsymbol{x}, \boldsymbol{\delta})) + \eta \cdot \mathcal{L}_{G} \right]$$
(4)

where $\overline{\mathcal{M}}(\boldsymbol{x},\boldsymbol{\delta}) = \mathbb{E}_{j\in\{0,1,\dots,k\}}[\overline{\mathcal{M}}(\boldsymbol{x}_j,\boldsymbol{\delta})], \overline{\mathcal{M}}(\boldsymbol{x}_j,\boldsymbol{\delta}) = \mathbb{E}_{i\in\{1,2,\dots,s\}}[\mathcal{M}(\boldsymbol{x}_j+\boldsymbol{\delta}_i)],$ \boldsymbol{x}_0 is the original training image, and $\mathrm{KL}(\cdot\|\cdot)$ denotes the Kullback–Leibler divergence (KLD) [28]. We use k=2 and s=2 for the FourierMix and Gaussian augmentation with $\delta_i = \mathcal{N}(0,\sigma^2\mathbf{I})$, respectively. Since Jensen–Shannon divergence (JSD) [15] uses the KLD to calculate a normalized score that is symmetrical, HCR essentially stacks two levels of JSD while training the base classifier to enforce the consistent representations over both augmentations. The first level of consistency \mathcal{L}_G is applied to the Gaussian augmentation, rendering the Gaussian perturbed neighbors of $\boldsymbol{x}_{0,1,2}$ have similar outputs, and the second level of consistency is on the whole (k+1)s set to enforce FourierMix augmented images with consistent outputs. We utilize λ and η as hyper-parameters

to tune the weights of two levels of consistency. The overall training loss is: $\mathcal{L} = \frac{1}{s} \sum_{i=1}^{s} \mathcal{L}(\boldsymbol{x}_0 + \boldsymbol{\delta}_i, y) + \mathcal{L}_{HCR}$.

Algorithm 1: FourierMix Pseudocode **Data:** Model \mathcal{M} , Image x_{orig} , Affine Transformation T, Fourier Amplitude **A** and Phase **P** Operations **Result:** $x_{\text{aug}} = FourierMix(x_{\text{orig}}, k, \alpha)$ 1 $x_{\text{aug}} = 0$ 2 Sample mixing weights $(w_1,...,w_k) \sim$ $Dirichlet(\alpha, ..., \alpha)$ **3** for i = 1, 2, ..., k do Sample random affine transformation T_i 4 $\boldsymbol{x}_{\mathrm{fourier}} = \mathrm{FFT}(\boldsymbol{x}_{\mathrm{orig}})$ 5 Sample severity level of operations $s_{\mathbf{A}}, s_{\mathbf{P}}$ 6 $\boldsymbol{x}_{\mathrm{fourier}} = (\mathbf{A}_{s_{\mathbf{A}}} \circ \mathbf{P}_{s_{\mathbf{P}}})(\boldsymbol{x}_{\mathrm{fourier}})$ $\boldsymbol{x}_f = \text{IFFT}(\boldsymbol{x}_{\text{fourier}})$ 8 Sample weight $t \sim \text{Beta}(\alpha, \alpha)$ $\boldsymbol{x}_{\mathrm{aug}} += w_i \cdot (t\boldsymbol{x}_f + (1-t)\mathbf{T}_i^{\top} \cdot \boldsymbol{x}_{\mathrm{orig}})$ **10** 11 end 12 Sample weight $m \sim \text{Beta}(\alpha, \alpha)$ 13 $\boldsymbol{x}_{\text{aug}} = m\boldsymbol{x}_{\text{orig}} + (1-m)\boldsymbol{x}_{\text{aug}}$

Comparison with Prior Arts. There are some notable differences between FourierMix and prior SOTA in terms of: a) base augmentation operations, and b) data augmentation objective. These differences are later quantitatively highlighted using experimental results.

AugMix leverages the base augmentation operations from AutoAugment [11] that do not overlap with ImageNet-C. In contrast, the augmentations in *Fourier-Mix* utilize a simpler set of generic augmentations. We compare the performance (*i.e.*, ACR) of

FourierMix with AugMix on multiple corruption datasets in our evaluation (§ 4 and § 5). Another key difference between FourierMix and prior arts is that FourierMix explicitly uses spectral coverage as the data augmentation objective. For example, the recently proposed FACT [62] randomly mixes the amplitude spectra of two training samples, which has no control over the spectral coverage (results are presented in Appendix D.1). However, FourierMix realizes proportional assignment of augmentation across all frequencies.

4 Experiments on Popular Corruption Benchmarks

Experimental Setup. We use ACR and mACR (see § 2.1) as the main evaluation metrics. We utilize the official implementation from [9] to compute the certified radius $CR(\cdot)$. We use the same base architectures leveraged in prior arts [9, 25, 47, 66], *i.e.*, ResNet-110 and ResNet-50, for experiments on CIFAR-10/100 and ImageNet [19], respectively. We use Gaussian augmentation with $\sigma = 0.25$ and 0.5 for both training and certifying the CIFAR-10/100 and ImageNet models, respectively. Further training details are in Appendix D.

Baselines. We evaluate the certified robustness of models trained with following augmentations schemes on corrupted data: Gaussian [9], AutoAugment [11], and AugMix [23]. We also compare HCR with the baseline JSD regulariza-

Table 1. Models trained with *FourierMix* and HCR achieve significant improvements in the certified robustness (ACR and mACR) guarantees on all popular corruption datasets. **Bold** and <u>underline</u> denote the best and runner-up results, respectively.

	CI	FAR-10			CIFAR-	10-C		CIFAR-10-C
Augmentation		ACR	mA	ACR	-Low	-Mid	-High	mACR
Gaussian	(0.461	0.	363	0.301	0.353	0.435	0.314
+JSD	C	0.535	0.	439	0.346	0.451	0.520	0.393
+AutoAugment	(0.411	0.	372	0.312	0.364	0.431	0.304
+JSD	(0.432	0.	400	0.343	0.395	0.464	0.346
+AugMix	(0.452	0.	385	0.324	0.383	0.449	0.341
+JSD	(0.518	0.	430	0.357	0.436	0.496	0.382
+HCR	(0.520	0.	437	0.369	0.444	0.497	0.393
+FourierMix	(0.455	0.	388	0.326	0.386	0.453	0.348
+JSD	9	0.522	<u>0.</u>	444	0.375	0.454	0.504	0.397
+HCR	().535	0.	460	0.384	0.473	0.521	0.419
		CIFAR-	100		CIFA	R-100-C		CIFAR-100-Ū
Augmentation		ACR		mACR	-Low	-Mid	-High	mACR
Gaussian		0.238		0.169	0.131	0.182	0.208	0.130
+JSD		0.291		0.232	0.167	0.248	0.280	0.196
+AutoAugment+J	SD	0.265		0.225	0.175	0.234	0.265	0.176
+AugMix+JSD		0.286		0.231	0.184	0.240	0.269	0.193
+AugMix+HCR		0.296		0.249	0.191	0.263	0.292	0.211
+FourierMix+JS	D	0.295		0.247	0.190	0.258	0.292	0.207
+FourierMix+He	$\mathbb{C}\mathbf{R}$	0.309)	0.261	0.199	0.278	0.307	0.227
		ImageN	let		Imag	geNet-C		ImageNet-C
Augmentation		ACR	.	mACR		-Mid	-High	mACR
Gaussian		0.600		0.256	0.155	0.228	0.385	0.266
+JSD		0.736		0.395	0.220	0.382	0.581	0.395
+AugMix+JSD		0.717		0.391	0.238	0.387	0.550	0.379
+AugMix+HCR		0.727	٠	0.390	0.234	0.383	0.552	0.378
+FourierMix+JS	SD	0.751		0.399	0.242	0.389	0.564	0.413
$+FourierMix+{ m H}$	\mathbf{CR}	0.750	.	0.397	0.239	0.387	0.567	0.411

tion [25]. We follow Cohen *et al.* [9] and Jeong *et al.* [25] to train the Gaussian and Gaussian+JSD baseline models, respectively. For other augmentation methods, we apply Gaussian noise $\mathcal{N}(0, \sigma^2 \mathbf{I})$ to half of the training samples in the mini-batch to ensure good certification performance using RS, and we follow Hendrycks *et al.* to apply JSD to these augmentation methods [23].

Datasets. For the in-distribution evaluation, we use CIFAR-10/100 [31] and ImageNet [12] datasets. CIFAR-10/100 consists of small 32×32 images belonging to 10/100 classes and ImageNet consists of 1.2 million images with 1,000 classes. We crop images in ImageNet into the same size of $224 \times 224 \times 3$ pixels. For the test data, we use the common corruptions datasets [22] (CIFAR-10/100-C and ImageNet-C) and a recently proposed dataset [38] (CIFAR-10/100- \bar{C} and ImageNet- \bar{C}) which contains human interpretable and perceptually different corruptions as compared to those contained in CIFAR-C/ImageNet-C.

4.1 Results on CIFAR-Based Corruption Benchmarks

The results in Table 1 show the overall mACR of the models trained on CIFAR-10 using different augmentation and regularization methods when evaluated on

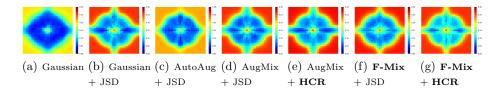


Fig. 5. Fourier sensitivity analysis of models trained using different augmentations and regularizers on CIFAR-100 demonstrate their vulnerability to distribution shifts from mid-to-low frequency region (around the center of the plots). (F-Mix: FourierMix).

CIFAR-10-C and CIFAR-10-C, respectively. The results show that FourierMix consistently achieves the highest mACR across different corruption types. FourierMix+HCR significantly improves upon the baseline of Gaussian augmented training by 26.7% and 33.4% in terms of the overall mACR on CIFAR-10-C and CIFAR-10-C and also improves upon the stronger baseline, AugMix+HCR, by 5.3% and 6.6% on the two datasets, respectively. We find consistency regularization to be helpful for certified robustness on corruption benchmarks. Especially, adding JSD to Gaussian augmentations significantly improves the robustness on mid- and high-frequency corrupted data. We see that combining HCR with FourierMix achieves SOTA ACRs on all corruption types providing significant gains even on low-frequency corruptions. This success is attributed to the spectrally diverse corruptions produced by FourierMix. Interestingly, we find Auto Augment overfits to corruptions in CIFAR-10-C since it suffers a major performance degradation on corruptions in CIFAR-10-C. We believe the large overlap between the leveraged augmentations and corruptions in CIFAR-10-C and limited spectral diversity are the primary reasons for this performance degradation of AutoAugment. Detailed results for each corruption type in CIFAR-10-C/C are shown in Tables 2 and 3 in Appendix D.1.

Next, we present the mACR (Table 1) of the models trained with CIFAR-100 when evaluated on corrupted data (CIFAR-100-C and CIFAR-100- $\bar{\rm C}$). Similar to the performance of models trained with CIFAR-10, FourierMix achieves the highest overall mACR among all augmentation methods on both corruption datasets. Specifically, FourierMix+HCR outperforms the Gaussian baseline by 54.4% and 74.6% on two datasets, respectively. Compared to AugMix+HCR, FourierMix+HCR improves the performance by 4.8% and 7.6% on the two datasets, respectively. Detailed results for each corruption type in CIFAR-100-C/ $\bar{\rm C}$ are shown in Tables 4 and 5 in Appendix D.2.

To further corroborate our findings, we carry out the Fourier sensitivity analysis of models trained on CIFAR-100 in Fig. 5. Adding a consistency loss (Gaussian+JSD) improves the ACR of the model in the high-frequency region but is still worse than the ACR achieved by the addition of consistency loss (JSD and HCR) with *FourierMix* augmentations in low-to-mid frequency regions. Similar to our quantitative results, AutoAugment does not improve much over the baseline of Gaussian augmentation which suggests that models trained with AutoAugment may be biased towards high-frequency regions. Heatmaps for CIFAR-10 models report similar findings and are presented in Fig. 7 in Appendix D.1.

4.2 Results on ImageNet-Based Corruption Benchmarks

Table 1 presents the mACR of the models trained on ImageNet when evaluated on ImageNet-C and ImageNet- $\bar{\rm C}$. We observe that distribution shifts lead to a drastic decline in the certified robustness on ImageNet. The drop between the ACR of clean data and the mACR of corrupted data is $\sim 57\%$, whereas it was $\sim 30\%$ on CIFAR-10/100. Encouragingly, FourierMix continues to achieve the highest mACR compared to other baselines. FourierMix outperforms the baseline of Gaussian augmented training and AugMix+JSD by 55.9% and 2.1% in terms of the overall mACR, respectively. Detailed results and discussion for ImageNet-C/ $\bar{\rm C}$ can be found in Tables 6 and 7 in Appendix D.3.

Summary. Our results in this section not only highlight the vulnerability of SOTA certified defenses to corrupted data but also uncovers spectral biases in the benchmark datasets that are used to measure corruption robustness. In particular, methods that perform well on one corrupted dataset may not work well on other datasets due to differences in the spectral signatures of the corruptions. This makes it incredibly important to obtain a comprehensive view of the model robustness to avoid issues such as leaderboard bias [39] and model overfitting to a specific benchmark [38]. To help achieve this objective, we propose a new benchmark that has a collection of spectrally diverse corruption datasets.

5 A Spectral Corruption Benchmarking Suite

Although corruptions proposed by [22] can be roughly grouped into different frequency ranges, their spectral diversity is restricted (see Figs. 10 and 11 in Appendix C). This could lead to corruption overfitting for methods that make models robust only on a limited subset of corruption types but fail on others (e.g., Gaussian on ImageNet-C in Table 1). As the nature of test-time corruptions is unknown at train-time, and their form is application-dependent, models must be evaluated under diverse corruption settings. To achieve this, next we discuss the creation and evaluation of models on the proposed corruption benchmarking suite. The goal of this new suite is to complement the existing benchmark datasets and enable researchers to uncover the spectral biases of their models. Protocol for Dataset Generation. The proposed benchmark is a collection of datasets each focusing on a specific frequency range while collectively covering the entire frequency spectrum. Different from the Fourier sensitivity analysis that only perturbs a single frequency using the Fourier basis, CIFAR-10/100-F leverages power law-based noise [1] to generate complex perturbations in the spectral domain [26]. Note that the power spectrum of several natural data distributions (e.g., natural images) follow power-law distribution [1]. Inspired by this, we model the amplitude perturbation as $\boldsymbol{\delta}_{\text{Fourier}}(f)_{\mathbf{A}} = \frac{P(f)}{(|f-f_c|+1)^{\alpha}} \cdot \text{U}(1-f)$ (b, 1+b), where P(f) approximates the tolerance of corruptions at azimuthal frequency $f = \sqrt{u^2 + v^2}$, f_c is the central frequency that the perturbation focuses on, and α denotes the power of the power law distribution. We also use a uniform distribution U(1-b,1+b) with b as a hyper-parameter (b=0.2 in our study)to diversify the perturbations.

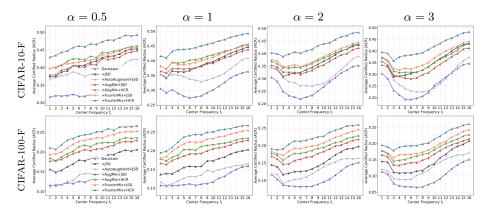


Fig. 6. ACRs on the proposed CIFAR-F dataset averaged over 3 severity levels show that FourierMix based models perform consistently better than other baselines across entire spectrum. Increasing α (from left to right), decreases the spread of the frequencies. Dips of ACRs in mid-frequency regions $(e.g., \alpha = 2, 3)$ demonstrate the vulnerability of models to low-to-mid frequency corruptions.

We define $P(f) = \text{clip}(\mathbf{A}_{\mathbf{x}}^{\text{clean}}(f), a_{\text{lower}}, a_{\text{upper}})$ which adds the amount of perturbation based on the power associated with the different frequencies in the clean image [27], *i.e.*, frequencies with higher power have larger perturbations. We leverage the $\text{clip}(\cdot)$ function to bound the amount of corruption in each spatial frequency. The maximum and minimum values are chosen to ensure that perturbations do not affect the semantic content of the images. The phase perturbation is formulated as $\boldsymbol{\delta}_{\text{Fourier}}(f)_{\mathbf{P}} = \text{U}(0, 2\pi)$. Given each pair (\mathbf{x}^i, y^i) in the original validation set, we synthesize CIFAR-10/100-F images as

$$\boldsymbol{x}_F^i = \boldsymbol{x}^i + \gamma \cdot \text{IFFT}(\boldsymbol{\delta}_{\text{Fourier}})$$
 (5)

where $\gamma = \frac{\epsilon}{||\text{IFFT}(\delta_{\text{Fourier}})||_2}$ normalizes the spreading effect of the power-law distribution and, thus, controls the severity level of CIFAR-10/100-F. We create both CIFAR-10/100-F with 3 severity levels with $\epsilon \in \{8, 10, 12\}$. As the images in CIFAR-10/100 are of size 32×32 , their FFT spectrum has discrete azimuthal frequencies from 0 to 16. Since zero-frequency noise is a constant in the pixel space, we set the center frequency $f_c \in \{1, 2, ..., 16\}$. We leverage $\alpha \in \{0.5, 1, 2, 3\}$ because power-law noises with $0 < \alpha \le 3$ arise in both natural signals and in man-made processes [1]. In total, our CIFAR-10/100-F datasets are consisted of $3 \times 4 \times 16 = 192$ test sets from different regions of the frequency spectrum thereby increasing the spectral coverage of the original dataset.

Visual Effect of Varying α and f_c . As shown in Fig. 12 in Appendix F, α controls the frequency dispersion of the corruption at f_c . With a smaller α , e.g., $\alpha = 0.5$, the spreading effect of the power law distribution is more significant. The corrupted images thus contain noises across all azimuthal frequencies. In contrast, for larger α , the corruptions will be focused more on a single frequency e.g., $\alpha = 3$, and higher f_c leads to a higher corruption frequency.

Results on CIFAR-10/100-F. Fig. 6 reports the performance of models used in § 4.1 on CIFAR-10/100-F benchmark. Our results show that both AutoAugment [11] and AugMix [23] based smoothed models are relatively biased toward low-frequency corruptions. The effect of high-frequency corruptions is more pronounced on models trained with AutoAugment which behave similarly to the simple baseline of Gaussian augmentation (Fig. 6). The intersection of the curves of AugMix+JSD and Gaussian+JSD in the mid-frequency region in CIFAR-10-F (Fig. 6), illustrates the different spectral biases introduced by different augmentation methods. Unlike CIFAR-10-F, we find that Gaussian and Gaussian+JSD perform relatively worse on CIFAR-100-F compared to other augmentation methods. In comparison to other methods, we find that models trained with FourierMix and HCR do not show significant spectral biases and serve as a strong baseline. Specifically, models trained with FourierMix+HCR, on average, outperform AugMix+HCR, by 11.8% and 16.0% on CIFAR-10/100-F, respectively. We emphasize that models trained with FourierMix do not overfit to CIFAR-10/100-F datasets since they have different formulations and even visual patterns (see Appendix E and F).

6 Discussion and Conclusion

Our work has shown that certified defenses are surprisingly brittle to distribution shifts such as low-frequency corruptions. To alleviate this issue, we proposed FourierMix augmentation to increase the spectral coverage of the training data. We also presented a benchmarking suite to understand the model's corruption robustness comprehensively. Some of our findings are consistent with past results that model evaluation under corruption is a challenging problem, and one should not rely on a single benchmark [20, 38, 43]. However, as opposed to the existing works that focus on empirical robustness, we show that these issues persist and may even be more prominent in the problem of certified adversarial defense. Even though evaluation against all possible types of corruptions is infeasible, our results highlighted that eliminating spectral biases of the models improves the certified robustness under common corruptions.

Although we have taken some first steps to address this challenging problem, many questions remain to be answered. First, bridging the gap between robustness guarantees in high-frequency and low-frequency corruption regimes is still an open problem. A deeper theoretical understanding of this phenomenon will likely motivate systematic approaches to overcome this issue. Finally, the analysis done in this work can be explored in the context of certifying other ℓ_p norms [63], spectral deformations [2], and semantic transformations [35].

Acknowledgements. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and LLNL LDRD Program Project No. 20-ER-014. This work was partially supported by NSF under the National AI Institute for Edge Computing Leveraging Next Generation Wireless Networks, Grant # 2112562, in addition to NSF grants CMMI-2038215 and CNS-1930041.

References

- 1. 1/f noise. http://www.scholarpedia.org/article/1/f_noise (2021)
- Alfarra, M., Bibi, A., Khan, N., Torr, P.H., Ghanem, B.: Deformrs: Certifying input deformations with randomized smoothing. Proceedings of the AAAI Conference on Artificial Intelligence 36(6), 6001-6009 (Jun 2022). https://doi.org/10.1609/aaai.v36i6.20546, https://ojs.aaai.org/index. php/AAAI/article/view/20546
- 3. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In: International conference on machine learning. pp. 274–283. PMLR (2018)
- 4. Bulusu, S., Kailkhura, B., Li, B., Varshney, P.K., Song, D.: Anomalous example detection in deep learning: A survey. IEEE Access 8, 132330–132347 (2020)
- 5. Burton, G.J., Moorhead, I.R.: Color and spatial structure in natural scenes. Applied optics **26**(1), 157–170 (1987)
- Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP). pp. 39–57 (2017). https://doi.org/10.1109/SP.2017.49
- Chen, P.Y., Sharma, Y., Zhang, H., Yi, J., Hsieh, C.J.: EAD: elastic-net attacks to deep neural networks via adversarial examples. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 10–17 (2018)
- Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: ACM Workshop on Artificial Intelligence and Security. pp. 15–26 (2017)
- 9. Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via randomized smoothing. In: International Conference on Machine Learning. pp. 1310–1320. PMLR (2019)
- 10. Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N., Chiang, M., Mittal, P., Hein, M.: Robustbench: a standardized adversarial robustness benchmark. arXiv preprint arXiv:2010.09670 (2020)
- 11. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 113–123 (2019)
- 12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. pp. 248–255. Ieee (2009)
- Dodge, S., Karam, L.: Understanding how image quality affects deep neural networks. In: 2016 eighth international conference on quality of multimedia experience (QoMEX), pp. 1–6, IEEE (2016)
- 14. Fischer, M., Baader, M., Vechev, M.: Certified defense to image transformations via randomized smoothing. arXiv preprint arXiv:2002.12463 (2020)
- Fuglede, B., Topsoe, F.: Jensen-shannon divergence and hilbert space embedding. In: International Symposium on Information Theory, 2004. ISIT 2004. Proceedings. p. 31. IEEE (2004)
- 16. Gokhale, T., Anirudh, R., Kailkhura, B., Thiagarajan, J.J., Baral, C., Yang, Y.: Attribute-guided adversarial training for robustness to natural perturbations. arXiv preprint arXiv:2012.01806 (2020)
- 17. Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arandjelovic, R., Mann, T., Kohli, P.: On the effectiveness of interval bound propagation for training verifiably robust models. arXiv preprint arXiv:1810.12715 (2018)

- 18. Hammersley, J.: Monte carlo methods. Springer Science & Business Media (2013)
- 19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)
- Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M., et al.: The many faces of robustness: A critical analysis of out-of-distribution generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8340–8349 (2021)
- Hendrycks, D., Carlini, N., Schulman, J., Steinhardt, J.: Unsolved problems in ml safety. ArXiv abs/2109.13916 (2021)
- 22. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261 (2019)
- 23. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.: Augmix: A simple data processing method to improve robustness and uncertainty. arXiv preprint arXiv:1912.02781 (2019)
- Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with limited queries and information. In: International Conference on Machine Learning. pp. 2137–2146. PMLR (2018)
- Jeong, J., Shin, J.: Consistency regularization for certified robustness of smoothed classifiers. arXiv preprint arXiv:2006.04062 (2020)
- Johnson, J.B.: The schottky effect in low frequency circuits. Physical review 26(1), 71 (1925)
- 27. Joubert, O.R., Rousselet, G.A., Fabre-Thorpe, M., Fize, D.: Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and increasing phase noise. Journal of Vision **9**(1), 2–2 (2009)
- 28. Joyce, J.M.: Kullback-Leibler Divergence, pp. 720–722. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)
- Kermisch, D.: Image reconstruction from phase information only. JOSA 60(1), 15–17 (1970)
- 30. Kireev, K., Andriushchenko, M., Flammarion, N.: On the effectiveness of adversarial training against common corruptions. arXiv preprint arXiv:2103.02325 (2021)
- 31. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
- 32. Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness to adversarial examples with differential privacy. In: 2019 IEEE Symposium on Security and Privacy (SP). pp. 656–672. IEEE (2019)
- 33. Li, B., Chen, C., Wang, W., Carin, L.: Second-order adversarial attack and certifiable robustness (2018)
- 34. Li, L., Qi, X., Xie, T., Li, B.: Sok: Certified robustness for deep neural networks. arXiv abs/2009.04131 (2020)
- 35. Li, L., Weber, M., Xu, X., Rimanic, L., Kailkhura, B., Xie, T., Zhang, C., Li, B.: Tss: Transformation-specific smoothing for robustness certification. In: ACM CCS (2021)
- 36. Lim, J.S.: Two-dimensional signal and image processing. Englewood Cliffs (1990)
- 37. Mehra, A., Kailkhura, B., Chen, P.Y., Hamm, J.: How robust are randomized smoothing based defenses to data poisoning? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13244–13253 (2021)
- 38. Mintun, E., Kirillov, A., Xie, S.: On interaction between augmentations and corruptions in natural corruption robustness. arXiv preprint arXiv:2102.11273 (2021)

- 39. Mishra, S., Arunkumar, A.: How robust are model rankings: A leaderboard customization approach for equitable evaluation. arXiv preprint arXiv:2106.05532 (2021)
- Mohapatra, J., Ko, C.Y., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: Higher-order certification for randomized smoothing. Neural Information Processing Systems (2020)
- 41. Mohapatra, J., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: Towards verifying robustness of neural networks against a family of semantic perturbations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 244–252 (2020)
- 42. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial examples. arXiv preprint arXiv:1801.09344 (2018)
- 43. Raji, I.D., Bender, E.M., Paullada, A., Denton, E., Hanna, A.: Ai and the everything in the whole wide world benchmark. arXiv preprint arXiv:2111.15366 (2021)
- 44. Rebuffi, S.A., Gowal, S., Calian, D.A., Stimberg, F., Wiles, O., Mann, T.: Fixing data augmentation to improve adversarial robustness. arXiv preprint arXiv:2103.01946 (2021)
- 45. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)
- Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: European conference on computer vision. pp. 213–226. Springer (2010)
- 47. Salman, H., Yang, G., Li, J., Zhang, P., Zhang, H., Razenshteyn, I., Bubeck, S.: Provably robust deep learning via adversarially trained smoothed classifiers. arXiv preprint arXiv:1906.04584 (2019)
- 48. Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M.: Improving robustness against common corruptions by covariate shift adaptation. Advances in Neural Information Processing Systems 33 (2020)
- 49. Sun, J., Cao, Y., Chen, Q.A., Mao, Z.M.: Towards robust LiDAR-based perception in autonomous driving: General black-box adversarial sensor attack and countermeasures. In: 29th USENIX Security Symposium (USENIX Security 20). pp. 877-894. USENIX Association (Aug 2020), https://www.usenix.org/conference/usenixsecurity20/presentation/sun
- 50. Sun, J., Cao, Y., Choy, C.B., Yu, Z., Anandkumar, A., Mao, Z.M., Xiao, C.: Adversarially robust 3d point cloud recognition using self-supervisions. Advances in Neural Information Processing Systems 34, 15498–15512 (2021)
- 51. Sun, J., Koenig, K., Cao, Y., Chen, Q.A., Mao, Z.M.: On adversarial robustness of 3d point cloud classification under adaptive attacks. arXiv preprint arXiv:2011.11922 (2020)
- 52. Sun, J., Zhang, Q., Kailkhura, B., Yu, Z., Xiao, C., Mao, Z.M.: Benchmarking robustness of 3d point cloud recognition against common corruptions. arXiv preprint arXiv:2201.12296 (2022)
- Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)
- 54. Tolhurst, D., Tadmor, Y., Chao, T.: Amplitude spectra of natural images. Ophthalmic and Physiological Optics 12(2), 229–232 (1992)
- 55. Tramer, F., Carlini, N., Brendel, W., Madry, A.: On adaptive attacks to adversarial example defenses. arXiv preprint arXiv:2002.08347 (2020)

- 56. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: Fully test-time adaptation by entropy minimization. In: International Conference on Learning Representations (2021), https://openreview.net/forum?id=uXl3bZLkr3c
- 57. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex outer adversarial polytope. In: International Conference on Machine Learning. pp. 5286–5295. PMLR (2018)
- 58. Xiao, C., Li, B., Zhu, J.Y., He, W., Liu, M., Song, D.: Generating adversarial examples with adversarial networks. arXiv preprint arXiv:1801.02610 (2018)
- 59. Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.W., Huang, M., Kailkhura, B., Lin, X., Hsieh, C.J.: Provable, scalable and automatic perturbation analysis on general computational graphs. arXiv e-prints pp. arXiv-2002 (2020)
- 60. Xu, K., Wang, C., Cheng, H., Kailkhura, B., Lin, X., Goldhahn, R.: Mixture of robust experts (more): A robust denoising method towards multiple perturbations. arXiv preprint arXiv:2104.10586 (2021)
- Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A fourier-based framework for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14383–14392 (2021)
- Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A fourier-based framework for domain generalization. In: IEEE/CVF CVPR. pp. 14383–14392 (June 2021)
- Yang, G., Duan, T., Hu, J.E., Salman, H., Razenshteyn, I., Li, J.: Randomized smoothing of all shapes and sizes. In: International Conference on Machine Learning. pp. 10693–10705. PMLR (2020)
- 64. Yang, Y., Lao, D., Sundaramoorthi, G., Soatto, S.: Phase consistent ecological domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9011–9020 (2020)
- Yin, D., Lopes, R.G., Shlens, J., Cubuk, E.D., Gilmer, J.: A fourier perspective on model robustness in computer vision. arXiv preprint arXiv:1906.08988 (2019)
- 66. Zhai, R., Dan, C., He, D., Zhang, H., Gong, B., Ravikumar, P., Hsieh, C.J., Wang, L.: Macer: Attack-free and scalable robust training via maximizing certified radius. In: International Conference on Learning Representations (2020), https://openreview.net/forum?id=rJx1Na4Fwr
- Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural network robustness certification with general activation functions. In: Advances in Neural Information Processing Systems. pp. 4944–4953 (2018)

Appendix

A Related Work

Deep neural networks (DNNs) trained using standard gradient descent optimizers [45] have been shown vulnerable to adversarial examples [53]. A number of white- and black-box attacks have been proposed [6–8,24,49–51,58] to construct adversarial examples with small ℓ_p distances to the original data that mislead these DNN models. Besides adversarial attacks, recent studies have devoted efforts to characterizing model performance under common corruptions [4, 22], where natural corruptions lead to a significant impact on the accuracy of SOTA ML models. Thus, it has become imperative to study how ML models can be made robust to test data coming from different distributions when the models are deployed in the real world.

Certified Robustness and Defenses. The authors in [53] have discovered the adversarial examples in DNN models, after which many defenses have been presented to mitigate such vulnerability [3]. However, many of the proposed countermeasures have been shown to rely on gradient obfuscation, limiting malicious agents from accessing the accurate gradients. Such defenses are vulnerable to adaptive attacks, which give a false sense of security [3] of the models. Certified defenses are thus highly desirable. Along with a prediction on the test point, these defenses output a certified radius r such that for any $||\boldsymbol{\delta}||_2 < r$, the model continues to have the same prediction. Such techniques include convex polytope [57], recursive propagation [17], and linear relaxation [42,67]. These methods provide a lower bound on the perturbation required to change the model's prediction on a target point. However, such methods can merely be applied to shallow models, which limits their practicality. Recently, [9, 32, 33, 40] have proposed randomized smoothing (RS)-based certified defenses that produce better lower bounds and are scalable to large networks. In this paper, we study the corruption robustness of such certified defenses. Unlike a recent work [37], which uses data poisoning attacks to hurt the robustness guarantees of the RS-based models, our work demonstrates the failure of these models on test-time corruptions, which might be encountered by the model deployed in the real world.

Robustness against Common Corruptions – Benchmarks and Defenses. Pioneering studies have identified vulnerabilities of deep learning models to common corruptions. Dodge $et\ al.$ find that standard trained DNNs are vulnerable to blur and Gaussian noise [13]. Hendrycks $et\ al.$ [22] present CIFAR-10/100-C and ImageNet-C, consisting of fifteen different common corruptions with five severity levels to facilitate robustness evaluations of CIFAR [31] and ImageNet [12] models. Sun $et\ al.$ [52] present common corruption benchmarks for 3D point cloud data. Recently, Mintum $et\ al.$ further propose CIFAR-10/100- $\bar{\mathbb{C}}$ and ImageNet- $\bar{\mathbb{C}}$ to provide new corruptions [38]. There are two popular lines of work on improving the robustness against common corruptions: test-time adaptation [48] and $tata\ augmentation\ [11,23]$. The authors in [46] propose a method to update the batch normalization (BN) statistics for improving domain adaptation. Another

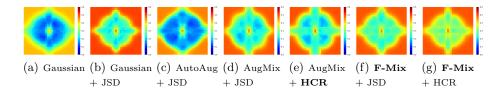


Fig. 7. Average Certified Radius (ACR) of Fourier Basis Analysis on CIFAR-100 with $\epsilon = 4$ (AutoAug: AutoAugment, F-Mix: FourierMix).

Table 2. Average Certified Radius (ACR) of Models Trained with Different Methods on CIFAR-10-C. Models trained with *FourierMix* and HCR achieve significant improvements in the certified robustness (ACR) guarantees on all corruption types from the CIFAR-10-C dataset.

Augmentation	CIFAR-10	mACR	-low	-mid	-high	Gauss.	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG
Gaussian	0.461	0.363	0.301	0.353	0.435	0.448	0.448	0.421	0.380	0.346	0.338	0.357	0.394	0.347	0.187	0.439	0.137	0.342	0.420	0.440
+JSD	0.535	0.439	0.346	0.451	0.520	0.529	0.514	0.528	0.471	0.445	0.443	0.453	0.449	0.378	0.235	0.485	0.185	0.444	0.506	0.521
+AutoAugment	0.411	0.372	0.312	0.364	0.431	0.451	0.452	0.419	0.411	0.356	0.342	0.360	0.403	0.354	0.201	0.446	0.158	0.352	0.429	0.445
+JSD	0.432	0.400	0.343	0.395	0.464	0.473	0.476	0.443	0.423	0.385	0.394	0.390	0.427	0.403	0.212	0.483	0.189	0.382	0.453	0.473
+AugMix	0.452	0.385	0.324	0.383	0.449	0.459	0.460	0.436	0.412	0.369	0.372	0.391	0.413	0.374	0.216	0.457	0.159	0.371	0.439	0.453
+JSD	0.518	0.430	0.357	0.436	0.496	0.504	0.507	0.481	0.461	0.426	0.429	0.441	0.452	0.408	0.240	0.501	0.185	0.425	0.485	0.502
+HCR	0.520	0.437	0.369	0.444	0.497	0.505	0.506	0.484	0.464	0.438	0.435	0.447	0.460	0.426	0.252	0.505	0.200	0.437	0.487	0.501
+FourierMix	0.455	0.388	0.326	0.386	0.453	0.461	0.462	0.446	0.417	0.369	0.378	0.393	0.415	0.376	0.220	0.457	0.160	0.373	0.439	0.456
+JSD	0.522	0.444	0.375	0.454	0.504	0.512	0.513	0.491	0.474	0.448	0.446	0.456	0.464	0.432	0.257	0.519	0.201	0.445	0.495	0.508
+HCR	0.535	0.460	0.384	0.473	0.521	0.528	0.530	0.513	0.492	0.470	0.464	0.477	0.477	0.432	0.275	0.517	0.220	0.462	0.511	0.524

recent method, TENT [56] updates both the affine transformation and statistics of BN by using self-entropy minimization. On the other hand, methods such as AutoAugment [11] leverages reinforcement learning to learn an augmentation policy that produces a diverse set of augmentations to help make the models robust to corrupted data. Another popular method, AugMix [23] achieves impressive performance improvement on corrupted data using augmentations generated by mixing up images obtained from applying randomly sampled operations along with using a Jenson-Shannon-based consistency loss during training. The authors in [16,60] leveraged adversarial training schemes to improve the corruption robustness. Unlike existing data augmentation schemes which intend to improve the empirical robust accuracy of the models, the data augmentation schemes of interest to this paper aim to improve the adversarial robustness guarantees under common corruptions.

Certified Semantic Robustness. Recent work [14,35,41] have also focused on developing techniques to provide performance guarantees to seen (or known) common corruption types (such as rotation or brightness changes). However, in this work, we are interested in more realistic scenarios with unseen (or unknown) test-time corruptions. It is worth noting that the susceptibility analysis and defense techniques developed in this work can be extended to SOTA semantic robustness techniques.



Fig. 8. The ranking of SOTA models [23,30,44] (based on empirical robust accuracy) changes across datasets and corruption types, suggesting there is no single model which performs the best on different corruption benchmarks.

Table 3. Average Certified Radius (ACR) of Models Trained with Different Methods on CIFAR-10- $\bar{\rm C}$. Models trained with *FourierMix* and HCR achieve significant improvements in the certified robustness (ACR) guarantees on corruptions from the CIFAR-10- $\bar{\rm C}$ dataset.

Augmentation	mACR	Blue	Brown	Checkerboard	Circular	Inv. Sparkle	Lines	Pinch	Ripple	Sparkles	Trans. Chromatic
Gaussian	0.314	0.351	0.255	0.310	0.386	0.222	0.336	0.398	0.365	0.251	0.269
+JSD	0.393	0.458	0.303	0.395	0.452	0.252	0.430	0.492	0.463	0.306	0.376
+AutoAugment	0.304	0.351	0.263	0.312	0.395	0.223	0.348	0.406	0.248	0.235	0.256
+JSD	0.346	0.354	0.297	0.335	0.445	0.238	0.374	0.436	0.402	0.269	0.308
+AugMix	0.341	0.389	0.269	0.334	0.439	0.233	0.358	0.416	0.397	0.272	0.307
+JSD	0.382	0.429	0.303	0.372	0.483	0.255	0.404	0.467	0.450	0.306	0.350
+HCR	0.393	0.442	0.309	0.384	0.486	0.268	0.419	0.471	0.464	0.320	0.368
+FourierMix	0.348	0.391	0.269	0.331	0.441	0.237	0.368	0.432	0.401	0.280	0.325
+JSD	0.397	0.445	0.307	0.395	0.482	0.265	0.430	0.490	0.463	0.320	0.377
+HCR	0.419	0.474	0.317	0.418	0.504	0.289	0.459	0.501	0.486	0.339	0.406

B Empirical Robust Accuracy of SOTA Models on Corrupted Data

The results in Fig. 8 show empirical robust accuracy of state-of-the-art models on existing corruption benchmarks. We use the recently proposed RobustBench [10] benchmark and selected the top-performing models on CIFAR-10-C for this experiment [23, 30, 44]. As evident from the figure, the performance of the models varies across datasets and corruption types showing that a single model is not able to achieve the best performance on all types of corruptions. Evaluating the models on a single benchmark is not enough to obtain the true picture of the corruption robustness of a model. Thus to eliminate the biases present in corruption benchmarks, one should gauge the corruption robustness of a model by evaluating it on a variety of datasets. Our proposed CIFAR-10/100-F benchmark can be used by designers to probe the spectral biases of the models.

4 J. Sun et al.

Table 4. Average Certified Radius (ACR) of Models Trained with Different Methods on CIFAR-100-C. Models trained with *FourierMix* and HCR achieve significant improvements in the certified robustness (ACR) guarantees on corruptions from the CIFAR-100-C dataset.

Augmentation	CIFAR-100	mACR	-low	-mid	-high	Gauss.	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG
Gaussian	0.238	0.169	0.131	0.182	0.208	0.214	0.218	0.193	0.181	0.170	0.157	0.169	0.177	0.153	0.069	0.207	0.051	0.159	0.206	0.209
+JSD	0.291	0.232	0.167	0.248	0.280	0.283	0.285	0.273	0.261	0.252	0.240	0.250	0.226	0.188	0.104	0.242	0.079	0.235	0.278	0.281
+AutoAugment + JSD	0.265	0.225	0.175	0.234	0.265	0.275	0.273	0.252	0.248	0.230	0.230	0.238	0.232	0.202	0.104	0.257	0.082	0.225	0.261	0.266
+AugMix + JSD	0.286	0.231	0.184	0.240	0.269	0.274	0.278	0.256	0.255	0.236	0.233	0.243	0.239	0.211	0.111	0.267	0.092	0.232	0.267	0.270
+AugMix + HCR	0.296	0.249	0.191	0.263	0.292	0.296	0.301	0.282	0.278	0.264	0.255	0.263	0.249	0.215	0.118	0.274	0.097	0.253	0.291	0.292
+FourierMix + JSD	0.295	0.247	0.190	0.258	0.292	0.295	0.300	0.283	0.273	0.257	0.249	0.260	0.251	0.217	0.115	0.275	0.092	0.250	0.288	0.292
+FourierMix + HCR	0.309	0.261	0.199	0.278	0.307	0.310	0.313	0.302	0.291	0.283	0.270	0.277	0.260	0.221	0.128	0.284	0.102	0.267	0.303	0.307

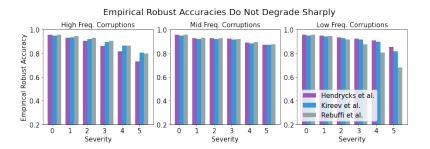


Fig. 9. The performance gaps (*i.e.*, the robust accuracy) are remained small/reasonable in state-of-the-art empirically robust models [23, 30, 44]. Severity 0 denotes the in-distribution data.

C Amplitude Spectrum of CIFAR-10-C/ \overline{C}

As introduced in § 2, we arrange the amplitude specturm of corruptions from CIFAR-10-C into three groups, roughly categorized as high/mid/low-frequency corruptions. Specifically, we compute the the $\mathbb{E}[\mathrm{FFT}(x)]$ and $\mathbb{E}[\mathrm{FFT}(C(x)=x)]$ by averaging over all the validation images [65] for CIFAR-10 and each corruption in CIFAR-10-C, respectively, where $C(\cdot)$ denotes the corruption function. As Fig. 10 shows, CIFAR-10 (clean) images follow a distribution of $\frac{1}{f^{\alpha}}$, where $f=\sqrt{u^2+v^2}$ is the azimuthal frequency and $\alpha\approx 2$. Therefore, clean images have extremely low power in the high-frequency regions (the edges and corner). Due to this, all the noise perturbations corresponding to JPEG and pixelate can be considered as high-frequency corruptions, relative to the clean images' distribution. On the other hand, weather-related and contrast corruptions are all centered in the low-frequency region. We categorize remaining perturbations as mid-frequency corruptions.

We also visualize the amplitude spectrum of corruptions from CIFAR-10- $\bar{\rm C}$ in Fig. 11. We find that most of the corruptions from CIFAR-10- $\bar{\rm C}$ are centered in the low/mid-frequency ranges, explaining why *FourierMix* achieves lager improvements on CIFAR-10- $\bar{\rm C}$ than CIFAR-10-C compared to spectrally-biased baselines.

Table 5. Average Certified Radius (ACR) of Models Trained with Different Methods on CIFAR-100- $\bar{\mathbb{C}}$. Models trained with *FourierMix* and HCR achieve significant improvements in the certified robustness (ACR) guarantees on corruptions from the CIFAR-100- $\bar{\mathbb{C}}$ dataset.

Augmentation	mACR	Blue	Brown	Checkerboard	Circular	Inv. Sparkle	Lines	Pinch	Ripple	Sparkles	Trans. Chromatic
Gaussian	0.130	0.151	0.070	0.114	0.159	0.097	0.137	0.199	0.160	0.097	0.116
+JSD	0.196	0.228	0.106	0.186	0.233	0.124	0.221	0.274	0.242	0.151	0.193
+AutoAugment + JSD	0.176	0.211	0.087	0.152	0.229	0.119	0.184	0.236	0.217	0.140	0.185
+AugMix + JSD	0.193	0.227	0.107	0.176	0.259	0.131	0.206	0.260	0.244	0.153	0.191
+AugMix + HCR	0.211	0.253	0.120	0.199	0.276	0.136	0.224	0.283	0.263	0.156	0.203
+FourierMix + JSD	0.207	0.243	0.106	0.194	0.262	0.136	0.226	0.281	0.258	0.154	0.205
+FourierMix + HCR	0.227	0.260	0.129	0.219	0.281	0.151	0.247	0.300	0.278	0.172	0.228

D Training and Evaluation Details

Training. We train CIFAR-10/100 and ImageNet models for 200 and 90 epochs for all methods with an SGD optimizer, respectively [45]. We exclude the input normalization layer as it will degrade the certification performance on corrupted data. We use different σ to train CIFAR-10/100 and ImageNet models, as specified in § 4.

Evaluation. Recall from the theorem derived in § 2 of Cohen *et al.*, $CR(\cdot)$ approaches ∞ when $\underline{p_A}$ approaches the value 1 [9]. However, this will also require the Gaussian perturbed samples $n \approx \infty$. Consider that the base classifier $\mathcal{M}(x+\delta)$ has observed n samples that all equal to c_A , $p_A \geq \alpha^{(1/n)}$ has a probability $1-\alpha$ [9]. To both constrain the computational complexity and achieve a tight bound, we use $n=100,000, n_0=100,$ and $\alpha=0.001$ as the hyper-parameters to get high confidence of the computed radius, following prior arts [9,25,47,66]. Since we need to evaluate corruption datasets with $125 \times$ larger sizes than the original test sets, we certify 500 and 350 examples from each corruption and each severity level of the CIFAR-10/100 and ImageNet corruption datasets (*i.e.*, $-C/\bar{C}$). For the Fourier sensitivity analysis of CIFAR-10/100, each data point in the heat map is the corresponding ACR of 200 examples.

D.1 Detailed Results on CIFAR-10-Based Corruption Benchmarks

In this section, we present detailed results for our evaluation on CIFAR-10-C/ \bar{C} . We fix $\eta=10$ and use $\lambda=40$ for HCR (Equation 4) in our experiments on CIFAR-10. Tables 2 and 3 present the ACR on individual corruption types from CIFAR-10-C/ \bar{C} , respectively. FourierMix consistently achieves the highest ACR on most of the corruption types in both corruption datasets. Especially, we find FourierMix helps achieve larger improvements on weather-related corruptions, which have real-world implications (e.g., safety of autonomous driving). We also perform Fourier sensitivity analysis to confirm our findings. Fig. 5 shows the heat maps, which also corroborate our insights in § 4.1.

We opted for RS-based certification due to its scalability to large datasets and models. Our findings and claims, however, are general. To show this, we choose the next best baseline using improved CROWN-IBP [59]. Unfortunately, this method cannot scale to ImageNet due to the large image size. Even on CIFAR-10, it provides trivially loose bounds, *i.e.*, $ACR \approx 0$, for ResNet-110

Table 6. Average Certified Radius (ACR) of Models Trained with Different Methods on ImageNet-C. Spectrally diverse augmentations from *FourierMix* brings significant gains to certified robustness of the models trained on ImageNet against corruptions from ImageNet-C.

Augmentation	ImageNet	mACR	-low	-mid	-high	Gauss.	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG
Gaussian	0.600	0.256	0.155	0.228	0.385	0.342	0.324	0.310	0.174	0.227	0.212	0.201	0.148	0.170	0.013	0.419	0.027	0.325	0.440	0.507
+JSD	0.736	0.395	0.220	0.382	0.581	0.537	0.519	0.508	0.289	0.378	0.351	0.374	0.254	0.245	0.013	0.551	0.039	0.518	0.640	0.702
+AugMix + JSD	0.717	0.391	0.238	0.387	0.550	0.496	0.489	0.473	0.329	0.395	0.376	0.352	0.255	0.286	0.041	0.542	0.064	0.481	0.622	0.668
+AugMix + HCR	0.727	0.390	0.234	0.383	0.552	0.500	0.494	0.480	0.320	0.391	0.374	0.349	0.249	0.283	0.040	0.539	0.061	0.481	0.624	0.662
+FourierMix + JSD	0.751	0.399	0.242	0.389	0.564	0.515	0.493	0.483	0.315	0.384	0.380	0.370	0.254	0.300	0.041	0.544	0.073	0.497	0.637	0.694
+FourierMix + HCR	0.750	0.397	0.239	0.387	0.567	0.518	0.499	0.492	0.312	0.382	0.377	0.370	0.249	0.295	0.039	0.544	0.069	0.494	0.637	0.689

Table 7. Average Certified Radius (ACR) of Models Trained with Different Methods on ImageNet- \bar{C} . Spectrally diverse augmentations from *FourierMix* brings significant gains to certified robustness of the models trained on ImageNet against corruptions from ImageNet- \bar{C} .

Augmentation	mACR	Blue	Brown	Caustic	Checkboard	Cocentric	Inv. Sparkle	Perlin	Plasma	Single Freq.	Sparkle
Gaussian	0.266	0.394	0.284	0.325	0.250	0.235	0.152	0.274	0.065	0.284	0.400
+JSD	0.395	0.579	0.395	0.512	0.370	0.374	0.224	0.404	0.113	0.408	0.567
+AugMix + JSD	0.379	0.560	0.381	0.461	0.365	0.342	0.212	0.413	0.121	0.397	0.538
+AugMix + HCR	0.378	0.563	0.377	0.464	0.361	0.342	0.210	0.410	0.115	0.396	0.539
+FourierMix + JSD	0.413	0.562	0.544	0.479	0.370	0.366	0.215	0.413	0.227	0.417	0.547
+FourierMix + HCR	0.411	0.565	0.535	0.481	0.365	0.367	0.210	0.408	0.215	0.415	0.550

(due to its depth) used in our paper. Thus, we use ResNet-18 in Table 9 which shows that our low-freq brittleness finding also extends to these methods.

To distinguish FourierMix, which directly uses spectral diversity objective, from other Fourier augmentation methods, we select a recent method FACT. which mixes the spectra of different clean data samples. As can be seen from Table 10, FourierMix outperforms FACT by a significant margin, which can be attributed to its better spectral diversity.

D.2 Detailed Results on CIFAR-100-Based Corruption Benchmarks

In this section, we present detailed results for our evaluation on CIFAR-100-C/ \bar{C} and CIFAR-100-F. We fix $\eta=10$ and use $\lambda=20$ for HCR in our experiments on CIFAR-100. Tables 4 and 5 present the ACR on individual corruption types from CIFAR-100-C/ \bar{C} , respectively. CIFAR-100 is more difficult for RS-based certification compared to CIFAR-10. We find that FourierMix+HCR helps achieve the highest ACR on all corruption types in both datasets with significant enhancements compared to existing augmentation methods.

D.3 Detailed Results on ImageNet-Based Corruption Benchmarks

ImageNet appears to be the most challenging dataset for certified defenses, to which only RS-based techniques can be applied [9]. We select representative combinations of augmentations and regularization schemes that perform well on CIFAR-10/100 for our experiments on ImageNet. We exclude the input normalization layer, which trades off the ACR on clean data for the ACR on corrupted data. We use $\eta=5$ and $\lambda=5$ for our experiments with HCR. Tables 6 and 7 present the detailed results on our evaluation on ImageNet-C/ $\bar{\rm C}$. Note the the corruption types in ImageNet- $\bar{\rm C}$ are different from the ones in CIFAR-10/100- $\bar{\rm C}$.

Table 8. Average Certified Radius (ACR) of Clean (CIFAR-10) and Corrupted (CIFAR-10-C) Data with $\sigma=0.25$ Using SOTA Certified Defense Methods.

Method	clean	mACR	Gauss.	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG
Gaussian	0.461	0.363	0.448	0.448	0.421	0.380	0.346	0.338	0.357	0.394	0.347	0.187	0.439	0.137	0.342	0.420	0.440
MACER	0.539	0.426	0.509	0.509	0.492	0.460	0.436	0.422	0.433	0.443	0.381	0.232	0.477	0.185	0.428	0.490	0.503
SmoothAdv	0.519	0.411	0.483	0.485	0.471	0.448	0.426	0.423	0.425	0.418	0.361	0.222	0.451	0.175	0.415	0.472	0.483

Table 9. RACC of RS and CROWN-IBP on CIFAR-10-C at $\epsilon = 0.25$.

		ResNet-1	.8				ResNet-1	10		
RACC (%)↑	CIFAR-10	CIFAR-10-C	High	Mid	Low	CIFAR-10	CIFAR-10-C	High	Mid	Low
IBP	39.1	32.0	37.0	34.2	24.9	N/A	N/A	N/A	N/A	N/A
RS-Gaussian	65.0	52.4	61.6	52.9	42.8	65.4	53.4	61.9	53.7	44.6
RS-FourierMix	67.8	55.7	62.5	58.5	46.2	69.2	60.3	66.8	61.9	52.2

We find that the spectral biases of other baselines become much more noticeable on ImageNet-based corruption benchmarks. Gaussian+JSD accomplishes the highest ACR on high-frequency corruptions, while AugMix+JSD performs the best on several low-frequency corruptions in ImageNet-C. As RS-based models generally suffer performance degradation on low-frequency corruptions, Gaussain+JSD beats AugMix+JSD in terms of overall mACR. However, FourierMix performs well across the spectrum, reaching the highest mACR on both datasets.

However, HCR does not play an essential role in ImageNet. We find this might also related to the difficulty of certification on ImageNet. HCR as a strict regularization term will trade off certified radius for accuracy, resulting in similar ACR, *i.e.*, the area under the radius-accuracy curve. This observation is consistent with prior studies on in-distribution data certification [25]. Despite HCR not making a significant difference over JSD regularization, it is worth noting that substantial improvements can still be gained by FourierMix on ImageNet due to its broad spectral coverage. Although tangible improvements have been realized by FourierMix on ImageNet-based corruption benchmarks, we want to highlight that there is still large room for future research to improve over our baselines. We hope this work will motivate more studies on certified defenses for ImageNet under common corruptions, as discussed in § 6.

E FourierMix Details

Hyper-parameter Settings. We detail the chosen hyper-parameters used in the experiments with FourierMix. As illustrated in Algorithm 1 and Equations 1 and 2, we leverage 5 different severity levels and truncated Gaussian distribution. We use a large $\sigma=5$ for the truncated Gaussian distribution to make FourierMix render more diverse augmentation. For CIFAR-10/100, we set $s_{\mathbf{A}} \in [0.2, 0.3, 0.4, 0.5, 0.6]$ and $s_{\mathbf{P}} \in \left[\frac{\pi}{12}, \frac{\pi}{10}, \frac{\pi}{8}, \frac{\pi}{6}, \frac{\pi}{4}\right]$ as the 5 severity levels in Equations 1 and 2, respectively. For ImageNet, we use the same set of $s_{\mathbf{A}}$ and set $s_{\mathbf{P}} \in \left[\frac{\pi}{4}, \frac{3\pi}{10}, \frac{3\pi}{8}, \frac{\pi}{2}, \frac{3\pi}{4}\right]$ since high-resolution images can tolerate more perturbations in the phase spectrum.

Sample Images from *FourierMix*. We visualize randomly sampled images from CIFAR-10/100 and ImageNet in Figs. 13, 14, and 15, respectively.

Table 10. ACR Comparison of FACT and our FourierMix.

ACR ↑	CIFAR-10	CIFAR-10-C	High	Mid	Low
FourierMix+JSD	0.522	0.444	0.504	0.454	0.375
FACT [62]+JSD	0.503	0.410	0.478	0.406	0.345

Table 11. Failure of Existing Methods: Average Certified Radius (ACR) of CIFAR10-C with $\sigma = 0.25$ Using Test-Time Adaptation.

Adaptation	mACR	Gauss.	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG
Gaussian	0.363	0.448	0.448	0.421	0.380	0.346	0.338	0.357	0.394	0.347	0.187	0.439	0.137	0.342	0.420	0.440
+BN	0.356	0.441	0.442	0.417	0.369	0.338	0.326	0.345	0.392	0.347	0.181	0.436	0.133	0.332	0.411	0.432
+TENT	0.357	0.442	0.442	0.419	0.369	0.337	0.328	0.346	0.394	0.345	0.182	0.436	0.132	0.330	0.412	0.434

F Sample Images from CIFAR-10/100-F

We visualize more sample images from our created datasets in Fig. 12 using different classes. It is also worth noting that *FourierMix* augmented images (Figs. 13 and 14) have different patterns with CIFAR-10/100-F.

It is worth noting that the generation protocol of CIFAR-10/100-F is general and we plan to construct ImageNet-F from a representative subset of ImageNet [12] as a future study.

G Discussion on Test-Time Adaptation

As discussed in Appendix A, another widely acknowledged approach to counter distribution shifts is test-time adaptation. We thus perform a preliminary study on how test-time adaptation will affect the certified robustness. Specifically, we use BN [46] and TENT [56] as representative methods. Since the theorem derived by Cohen et al. [9] requires the base classifier \mathcal{M} to be deterministic, we cannot apply BN and TENT in an online manner. To deal with such a problem, while evaluating the ACR of corrupted data from a specific corruption type, we randomly sample 500 (out of 10,000) images from the corruption test set for the adaptation. We follow other settings specified in [46,56] for our experimentation. Table 11 presents the detailed results on CIFAR-10-C. We find that test-time adaptations fail to improve the ACR in under common corruptions. The reason is that one-shot adaptation relies upon a small amount of data which is not sufficient to correct the distribution shift caused by corruptions. In contrast, it may cause the base classifier \mathcal{M} to become biased towards the small subset of test data used for adaptation. We highlight that certification of adaptive models is also a potential direction that can help with certified robustness under common corruptions. More theoretical support is needed in this direction, and we leave it as a promising future work.

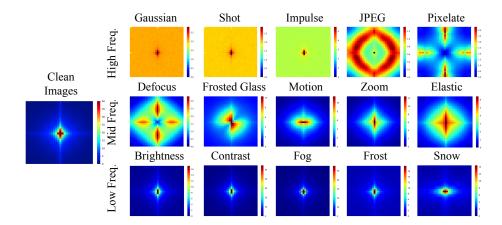


Fig. 10. Amplitude Spectrum \boldsymbol{A} of Different Corruptions in CIFAR-10/100-C with severity 3.

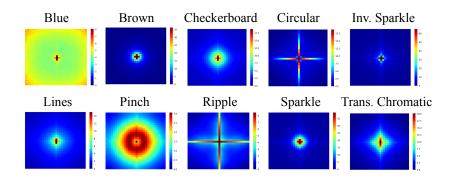


Fig. 11. Amplitude Spectrum \boldsymbol{A} of Different Corruptions in CIFAR-10/100- $\bar{\text{C}}$ with severity 3.

Fig. 12. Sample Images from CIFAR-10/100-F with $\epsilon = 12$. From top down row-wise, the images are from $\alpha \in \{0.5, 1, 2, 3\}$ and from left to right column-wise, the images are from $f_c \in \{1, 2, ..., 16\}$

Fig. 13. Sample Images from *FourierMix* Data Augmentation on CIFAR-10. To better highlight the visual patterns of *FourierMix*, we utilize the highest severity level for $\mathbf{A}(\cdot)$ and $\mathbf{P}(\cdot)$ in this figure.

Fig. 14. Sample Images from *FourierMix* Data Augmentation on CIFAR-100. To better highlight the visual patterns of *FourierMix*, we utilize the highest severity level for $\mathbf{A}(\cdot)$ and $\mathbf{P}(\cdot)$ in this figure.

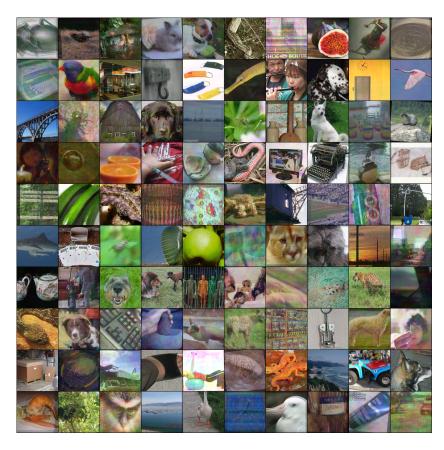


Fig. 15. Sample Images from *FourierMix* Data Augmentation on ImageNet. To better highlight the visual patterns of *FourierMix*, we utilize the highest severity level for $\mathbf{A}(\cdot)$ and $\mathbf{P}(\cdot)$ in this figure.