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Abstract—This paper demonstrates the first side-channel attack
on homomorphic encryption (HE), which allows computing on
encrypted data. We reveal a power-based side-channel leakage of
Microsoft SEAL prior to v3.6 that implements the Brakerski/Fan-
Vercauteren (BFV) protocol. Our proposed attack targets the
Gaussian sampling in the SEAL’s encryption phase and can
extract the entire message with a single power measurement.

Our attack works by (1) identifying each coefficient index
being sampled, (2) extracting the sign value of the coefficients
from control-flow variations, (3) recovering the coefficients with
a high probability from data-flow variations, and (4) using
a Blockwise Korkine-Zolotarev (BKZ) algorithm to efficiently
explore and estimate the remaining search space. Using real power
measurements, the results on a RISC-V FPGA implementation of
the SEAL (v3.2) show that the proposed attack can reduce the
plaintext encryption security level from 2128 to 24.4. Therefore, as
HE gears toward real-world applications, such attacks and related
defenses should be considered.

I. INTRODUCTION

Homomorphic encryption (HE) is a form of encryption that
allows computations on encrypted data without knowing the
secret key. Thus, data can remain confidential while it is pro-
cessed, enabling useful computations to be accomplished with
data residing in untrusted environments. This is achieved by a
public-key encryption scheme where the data is encrypted first
with a public (encryption) key and then by homomorphically
evaluating the ciphertext. The result of such computations
remains in encrypted form, and can exclusively be revealed
by the owner of the corresponding secret (decryption) key.
HE has been applied to the evaluation of various algorithms
on encrypted financial, medical, and genomic data [1]–[4].
Such applications typically envision a user (i.e., device) that
encrypts/decrypts information and a cloud (i.e., server) that
performs homomorphic evaluations.

To accelerate and spread the employment of HE, the Cryp-
tography and Privacy Research Group at Microsoft Research
has developed the SEAL, which aims to provide a high-
performance and easy-to-use HE software library. SEAL indeed
became a popular library and has been used by many works [5],
[6] including the Intel Neural Network Compiler nGraph [7],
[8]. Although HE is a promising cryptographic primitive to
protect data against mathematical cryptanalysis, its implemen-
tation may be vulnerable to physical attacks, e.g., to software
fault injection attacks [9].

In this paper, we propose the first side-channel attack on HE.
The proposed attack reduces the plaintext encryption security
level to extract the plaintext messages by targeting the device-
side encryption operations. We perform a power-consumption-

based side-channel attack that abuses a vulnerability during
the Gaussian sampling sub-routine. Unfortunately, the existing
Gaussian sampling code in SEAL (v3.2)1 has operations condi-
tioned on the sampled coefficient’s sign. But such an attack has
to succeed with a single power measurement trace because the
sampled coefficients change for each encryption. We, therefore,
first reveal that the chosen condition (i.e., taken vs. not taken)
can be identified from a single-trace by observing the power
consumption because the conditions execute different instruc-
tions. This can expose if a coefficient is either negative, positive,
or zero. We then apply horizontal side-channel analysis within
the single-trace to recover the sampled coefficients. Finally,
we apply the Blockwise Korkine-Zolotarev (BKZ) algorithm
to efficiently explore the remaining search space and estimate
the complexity of revealing the message.

Our work is different from earlier side-channel attacks on
the Gaussian sampling [10]–[12] because it evaluates specific
vulnerabilities of SEAL. By contrast, prior works analyze
Cumulative Distribution Table based [10], [12] and Bernoulli
based [11] sampling techniques, which are not used in SEAL.
These works are thus not directly applicable on SEAL.

Likewise, our work is orthogonal to multi-trace attacks as
they do not work by default on the encryption but can instead
be useful when targeting decryption. We do not cover attacks on
decryption as they are relatively straightforward extensions of
earlier multi-trace analysis of lattice-based cryptography [13],
[14]. At the same time, our work is orthogonal to prior single-
trace side-channel attacks on other building blocks of lattice-
based cryptography that have targeted the Number Theoretic
Transform (NTT) [15], [16], rejection [17], polynomial multi-
plication [18]–[20], and message encoding/decoding [14], [21].
Although such attacks have not been exclusively shown on HE
(or on SEAL), defenses built exclusively for their extension
on HE will fail against our attack targeting Gaussian Sampling
operations.

A summary of our contributions is as follows.
• We propose the first side-channel attack on HE. The pro-

posed attack can be used to extract the plaintext messages
that are being encrypted in the Brakerski/Fan-Vercauteren
(BFV) scheme of HE. The attack is orthogonal to the
possible extensions of earlier attacks on HE.

• We identify the vulnerabilities in the Gaussian sampling
sub-routine of SEAL—a major HE library. We demon-

1SEAL v3.6 and later use different sampling algorithm: if the version
number is not mentioned it means Microsoft SEAL prior to version 3.6.
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Fig. 1. Homomorphic encryption functions at the client and the cloud. The
public key (pk) encrypts the message (m) to generate the ciphertext (c) and the
secret key (sk) decrypts the received homomorphically evaluated ciphertext (c’)
– both operations execute on the client’s device while homomorphic evaluations
execute in the cloud.

strate that the sign and the value of the sampled coeffi-
cients can be extracted from a single-trace.

• We apply the proposed attack on a RISC-V softcore
processor on an FPGA running the SEAL (v3.2) software.
The results showed that our attack reduces the security of
the plaintext encryption from 2128 to 24.4.

II. PRELIMINARIES

This section provides the basics of HE along with a mathe-
matical background and the threat model.
A. Homomorphic Encryption (HE)

Fig. 1 outlines HE, which comprises a set of four functions
KeyGen, Encrypt, Decrypt, and Evaluate.

• KeyGen: Client generates public key pk, secret key sk, and
evaluation key evk. The public key pk is the key used for
encryption. The pk can be shared and used by anyone to
encrypt messages. The secret key sk is used for decryption.
The evaluation key evk is used for evaluation. KeyGen is
omitted in figure for simplicity.

• Encrypt: This function takes as input the public key
and any message m, performs encryption, and outputs a
ciphertext c.

• Evaluate: Cloud takes as input the evaluation key evk, the
ciphertext c, performs computations on the ciphertext, and
produces an evaluation output c’.

• Decrypt: Client takes input secret key sk, evaluation out-
put c’, and produces result m’. If the scheme operates
correctly, result m’ is the correct result of the operation
on m.

There are many HE libraries such as SEAL [22], HElib [23],
PALISADE [24], and HEAAN [25]. Specifically, we focus on
SEAL and the HE protocol implementation of BFV [26] in
SEAL, which is a popular implementation.

The BFV scheme is based on the Ring-LWE problem of
ideal lattices. The plaintext and ciphertext spaces are the
rings Rt and Rq . The elements are thus polynomials and the
arithmetic operations are polynomial addition and polynomial
multiplication with polynomials of degree n. The q parameter
denotes modulus in the ciphertext space (coefficient modulus)
of the form q1 × ... × qk, given k is the size of the ciphertext,
and where qi (1 ≤ i ≤ k) is prime. The t parameter denotes
modulus in the plaintext space (plaintext modulus). We use �·�,
�·�, and [·]q to denote rounding down, round to nearest integer,
and reduction by modulo q, respectively. By a $←− S, we denote
that a is uniformly sampled from the finite set S. χ denotes
a Gaussian sampling, and Δ = �q/t�. The key values sk and
encryption samples u are sampled with a random distribution

R2. The key generation, encryption and decryption operations
in BFV is as follows.

• SecretKeyGen: Sample s $←− R2 and output sk=s.
• PublicKeyGen: Sample a $←− Rq , and a←− χ.

Output pk=([−(as+ e)]q, a).
• Encrypt: Form m ∈ Rt, let pk= (p0, p1).

Sample u $←− R2, and e1,e2 ←− χ.
(c0, c1)=([Δ·m+ p0·u+e1]q , [p1·u+e2]q]).

• Decrypt: Output [� t
q [c0 + c1s]q�]t.

SEAL has several parameter settings. In this paper, we have
targeted 128-bit security and set n=1024. SEAL also supports
n= 2048, 4096, 8192, 16384, and 32768. We used the default
value of the sampling parameter, which is 3.19 ≈ 8/

√
2π.

Therefore, each sampled coefficient is between -41 and 41.
Although we show our attack with this particular configuration,
our attack is applicable to all security levels and values of n.

B. Threat Model and Comparison to Earlier Work
This paper describes an attack on the encryption procedure

of SEAL in which the adversary tries to learn the plaintext
message being encrypted. We assume the adversary knows
SEAL software and its encryption parameters. This is a fair
assumption given the publicly available source code [27].
Moreover, the adversary has physical access to the target
device and can obtain power measurements while the device
processes the encryption operations. The adversary can profile
the target device before running the actual attack but does not
know the message values when running the attack. These are
common assumptions in template attacks. Since secret and error
values are freshly computed for each new encryption operation,
the adversary has to perform the attack with a single power
measurement trace.

We show the side-channel vulnerability of Gaussian sampling
but we do not claim that it is the only vulnerable operation.
Other parts of the encryption such as the NTT [15], [16],
rejection [17], message encoding/decoding [14], [21], and poly-
nomial multiplication [18]–[20] can be broken by extending
these earlier attacks. Likewise, decryption operations can be
targeted by simply extending earlier multi-trace attacks [13],
[14] to HE. We chose to attack Gaussian sampling because
a single-trace on it can evade the defenses that are built for
multi-trace attacks (e.g., masking) and for single-trace attacks
that target other operations.

III. THE PROPOSED ATTACK

This section presents the proposed attack strategy for re-
covering the plaintext messages which are encrypted with
SEAL. We first identify the target operation and illustrate how
attacking it enables full message recovery. We then identify
the vulnerable points within the implementation of this target
operation.

A. The Target Operation and Rationale
The proposed attack targets SEAL’s Gaussian sampling oper-

ation because extracting sampled coefficient exposes the private
message.

(c0, c1) = ([Δ ·m+ p0 · u + e1]q, [p1 · u + e2]q) (1)
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1 void Encryptor::set_poly_coeffs_normal
2 (uint64_t *poly, random, &context_data) const
3 {
4 ...
5 RandomToStandardAdapter engine(random);
6 ClippedNormalDistribution
7 dist(0,
8 parms.noise_standard_deviation(),
9 parms.noise_max_deviation());

10 for (size_t i = 0; i < coeff_count; i++)
11 {
12 int64_t noise = dist(engine);
13 if (noise > 0)
14 {
15 for (j = 0; j < coeff_mod_count; j++)
16 poly[i + (j * coeff_count)] = noise;
17 }
18 else if (noise < 0)
19 {
20 noise = - noise;
21 for (j = 0; j < coeff_mod_count; j++)
22 poly[i + (j * coeff_count)] =
23 coeff_modulus[j].value() - noise;
24 }
25 else
26 {
27 for (j = 0; j < coeff_mod_count; j++)
28 poly[i + (j * coeff_count)] = 0;
29 }
30 }
31 }

int64_t noise = dist(engine);
if (noise > 0)

_

}
else if (noise < 0)

noise = - noise;

}
else

Fig. 2. SEAL’s reference noise sampling implementation. The highlighted code
lines shows the lines we target.

Equation (1) describes SEAL’s BFV encryption scheme
where m is the private message, while c0 and c1 are the en-
crypted ciphertexts. This scheme encrypts the private message
m using the public keys p0, p1, encryption sample u, and
error polynomials e1, e2. The error polynomials e1, e2 have
non-uniform coefficients sampled from a Gaussian distribution,
while polynomial u has uniform coefficients. Since the public
keys and ciphertexts are known, an adversary can extract the
private message m if it can first recover the error polynomials.

u = [(c1 − e2)/p1]q (2)

Equation (2) re-formulates the term u in the calculation c1.
Inserting this formulation of u in the calculation of c0 and
representing m yields to:

m = [(c0 − (p0 · ((c1 − e2)/p1)− e1)/Δ]q (3)

Equation (3) denotes that, using the encryption equations,
the private message m can be reformulated with known vari-
ables (c0, c1, p0, p1, q, Δ) and unknown variables (e1, e2).
Therefore, SEAL’s BFV encryption hardness is based on the
error polynomials e1 and e2. This is why we chose to attack
the aforementioned Gaussian sampling operation and extracted
the sampled coefficients of error polynomials e1 and e2.
B. Identifying the vulnerabilities in the SEAL’s Gaussian Sam-
pling Implementation

To sample the error polynomials e1 and e2, SEAL’s BFV
scheme executes the set_poly_coeffs_normal function.
Fig. 2 shows this function’s implementation in C++, which we
obtain from the SEAL’s official GitHub repository [27]. Note
that the implementation has more code lines than shown in

Fig. 2 but we omit those that are unnecessary to describe our
attack for brevity.

The set_poly_coeffs_normal function mainly con-
sists of two sub-operations: sampling from a normal distri-
bution and sign bit assignment, respectively. This implemen-
tation first samples double floating point values from the
UniformRandomNumberGenerator provided by the C++ stan-
dard library implementation, repeat if values are greater than
noise max deviation, and round them to the nearest integers
in ClippedNormalDistribution function. The function
returns a non-uniform value from the Gaussian distribution with
the given standard deviation σ and mean μ parameters that are
3.19 and 0 for SEAL.

The next step is the sign bit assignment. SEAL’s Gaussian
sampling implementation controls the sign bit assignment with
conditional statements—if-elseif-else branches. First, in line 13
of Fig. 2, if the sampled value is positive, the implementation
assigns the sampled value to the corresponding coefficient (in
line 16). If the sampled value is negative (in line 18), its sign is
negated (in line 20). Then, the sampled value is subtracted from
the modulus value and assigned to the corresponding coefficient
(in line 23). If the sampled coefficient is neither positive nor
negative, the else branch executes (in line 25) to assign 0.

We identify three vulnerabilities in the reference implemen-
tation that reveal the sampled coefficient of error polynomials.
The first vulnerability is the branch operations: if the adversary
can identify which branch is taken in Fig. 2, it can recover the
coefficient’s sign bit (positive or negative) or if the coefficient
is equal to zero.

The second vulnerability is the non-uniform value assign-
ment right after the sampling as shown in line 12 of Fig. 2.
If the adversary exposes this assignment, it can extract the
sampled coefficients of error polynomials. The major challenge
in exploiting this vulnerability is the leakage model. If the ad-
versary uses the Hamming weight (HW) model, many possible
coefficients have the same HW representation. Therefore, the
attack struggles with the false-positives.

The third vulnerability is the negation operation for the
negative sampled value, line 20 in Figure 2. The adversary
can eliminate some false-positives observed in the second
vulnerability by targeting this negation. If any two distinct
numbers have the same HW representation, their 2’s comple-
ment will have different HW values. Hence, the attacker can
eliminate false-positive guesses for negative sampled values by
combining the second vulnerability with the third one.
ClippedNormalDistribution function of SEAL it-

self can be considered a possible attack point. This function,
however, operates with 64-bit numbers internally, which com-
plicates the attack because 264 templates are needed.
C. Pinpointing Regions of Interest and Estimating the Sign

To exploit the described three vulnerabilities, we need to
first isolate sampling operations of each coefficient from a
full encryption execution. Since SEAL’s BFV scheme runs the
sampling operation 1024 times2 to generate one error polyno-

2Polynomial degree in SEAL’s BFV scheme range is between 1024 and
32768 so the sampling operation can run up to 32768 times.
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Fig. 3. (a) A sample portion of the full power trace, (b) the sub-traces
correspond to the branch execution. Power measurements expose which branch
is taken.

mial, isolating the sampling operations of each coefficient is
challenging. Another challenge is that the distribution function
in line 12 of Fig. 2 shows time-variant execution behavior. The
adversary thus cannot simply locate just one iteration and then
shift the sampling window for a fixed amount of time to locate
other iterations. Therefore, it is essential to find a clear start and
an endpoint indicator in a power trace to locate each distribution
function call and the sign bit assignment.

The set_poly_coeffs_normal function samples the
coefficient within a nested loop. Fig. 3 (a) presents a power
trace for three coefficient samplings, corresponding to the
three iterations of the outermost loop in Fig. 2. The adver-
sary can locate the distribution function calls since there are
distinguishable and visible peaks corresponding to the three
iterations. The double-headed horizontal arrows show the parts
that correspond to each independent coefficient’s sampling.
Indeed, these peaks are our start and an endpoint indications
in the power trace to locate each distribution function call and
the sign bit assignment.

Fig. 3 (b) reflects the power consumption sub-traces of three
different branch’s executions taken for the three different cases
(noise = 0, noise > 0, and noise < 0). The adversary is
able to distinguish each branch taken case since they have
distinct power patterns caused by control flow variations (i.e.,
different instructions executing). Although we present only
three iterations that cover the three branch taken scenarios in
Fig. 3 for the ease of visualization, we tested the system with
multiple traces to make sure whether there are indications in
a power trace to locate each distribution function call and the
sign bit assignment. Fig. 3 thus supports our initial claim about
the first vulnerability.

D. Recovering the Sampled Coefficient Value and Exploring
the Remaining Search Space

To exploit the second and third vulnerability, we used a
template attack [28]. This attack configures the device with

TABLE I
ATTACK SUCCESS PERCENTAGES (%) FOR EACH COEFFICIENT. THE ROWS
SHOW THE SAMPLED COEFFICIENT LABELS FOR THE TEMPLATES AND THE

COLUMNS REPRESENT THE SAMPLED COEFFICIENTS.
. . . -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 . . .

-14 . . . 4 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
-13 . . . 21.9 0.9 0 0.1 0 0 0 0 0 0 0 0 0 0 0 . . .
-12 . . . 0.5 0.6 0.2 0 0.1 0 0 0 0 0 0 0 0 0 0 . . .
-11 . . . 22.4 0.3 0 0.1 0.1 0 0 0 0 0 0 0 0 0 0 . . .
-10 . . . 1 39.6 0.8 0.3 0.1 0 0 0 0 0 0 0 0 0 0 . . .

-9 . . . 1.5 1.1 21.8 0 18.9 0 0 0 0 0 0 0 0 0 0 . . .
-8 . . . 1 0.3 0 3.6 0 0.3 0.2 0 0 0 0 0 0 0 0 . . .
-7 . . . 41.2 0.9 0 0.1 0 0 0 0 0 0 0 0 0 0 0 . . .
-6 . . . 1.5 54.2 0.3 0.2 0.2 0 0 0 0 0 0 0 0 0 0 . . .
-5 . . . 1 0.6 54.9 0 19.4 0 0 0 0 0 0 0 0 0 0 . . .
-4 . . . 1 0.6 0.3 91 0 3.4 0.9 0 0 0 0 0 0 0 0 . . .
-3 . . . 1.5 0.3 21.50.260.7 0.2 0.1 0 0 0 0 0 0 0 0 . . .
-2 . . . 1 0.3 0.2 3.8 0.4 92.5 3.1 0 0 0 0 0 0 0 0 . . .
-1 . . . 0.5 0 0 0.6 0.1 3.6 95.7 0 0 0 0 0 0 0 0 . . .
0 . . . 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 . . .
1 . . . 0 0 0 0 0 0 0 0 31.814.9 0.8 10.7 2.7 2.2 2.6 . . .
2 . . . 0 0 0 0 0 0 0 0 14.127.7 1.3 12.3 3 3.3 1.1 . . .
3 . . . 0 0 0 0 0 0 0 0 6.7 9.9 23.5 7.6 9.3 11.7 5.8 . . .
4 . . . 0 0 0 0 0 0 0 0 13.213.4 7 20.6 5.3 4.8 4.2 . . .
5 . . . 0 0 0 0 0 0 0 0 6.4 8.8 13.9 8 18.110.9 4.2 . . .
6 . . . 0 0 0 0 0 0 0 0 4 5.8 12.3 6.8 10.517.2 5.4 . . .
7 . . . 0 0 0 0 0 0 0 0 2.1 1.2 5.7 1.7 7.3 6.8 16 . . .
8 . . . 0 0 0 0 0 0 0 0 12.4 11 3.6 9.4 6.3 4.1 11.6. . .
9 . . . 0 0 0 0 0 0 0 0 3.1 3 8.1 6.7 11.410.611.1. . .

10 . . . 0 0 0 0 0 0 0 0 2.7 2.5 10.1 7.1 11.1 9.8 6.3 . . .
11 . . . 0 0 0 0 0 0 0 0 0.9 0.4 2.9 1.3 2 4.4 10.1. . .
12 . . . 0 0 0 0 0 0 0 0 1.6 1.1 7.5 5.9 10.810.4 7.9 . . .
13 . . . 0 0 0 0 0 0 0 0 0.4 0.1 1.8 0.9 0.8 2.4 7.4 . . .
14 . . . 0 0 0 0 0 0 0 0 0.6 0 1.5 1 1.3 1.4 6.3 . . .

all possible secrets (sampled coefficients in our case) and uses
template profiling [28] to extract the target device’s power
measurement behavior. The template is effectively a multivari-
ate distribution that describes the key samples in the power
traces. The attack calculates the probability of a given power
measurement belonging to each template and chooses the one
that maximizes the probability.

Since using the entire power trace makes an impractical tem-
plate [29], we selected special point of interests (POI) within
each power trace that has relatively higher leakage. We used
sum-of-squared differences (SOSD) method [30] to identify
POIs. Then, we build the templates with the selected POIs
and conduct the template attack. Our attack combines the two
template results: the template build on the third vulnerability
reduces false positives in the second vulnerability.

We use extracted coefficients from the template attack and
combine it with the sign information to explore the remaining
search space with the BKZ algorithm [31] and estimate the
complexity of revealing the private message of SEAL. The
next section discusses how we quantify the amount of hints
of sampled coefficients and the remaining search space.

IV. ATTACK RESULTS

A. Experimental Setup
We implemented the hardware on SAKURA-G Board which

has a Xilinx Spartan-6 FPGA. We set the operating frequency
at a constant 1.5 MHz since this is in the range of RFIDs/M-
CUs [32], [33]. Note that there are multiple prior works [18]–
[20] on single-trace side-channel attacks demonstrated with
similar frequencies. We used RISC-V based architecture and
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specifically selected the PicoRV32 core [34] for the implemen-
tation with the RV32IM configuration that supports 32-bit based
integer and standard extension for integer multiplication and
division.

The SAKURA-G Board has a designated SMA port that
provides the power drop across a shunt resistor of 1Ω on the
main supply line. To obtain power measurements, we use a
PicoScope 6424E model oscilloscope at 1GS/s.

B. Side-Channel Analysis Accuracy

SEAL’s BFV scheme generates fresh samples for each mes-
sage. Our attack thereby aims to recover the error polynomial’s
coefficients from a single side-channel measurement. We ran
the Gaussian sampling operation 220,000 times to create tem-
plate profiles sampled coefficients. We then captured 25,000
power traces for the attack stage. Note that the actual attack
only uses a single measurement but we ran the attack many
times to get a statistical estimate of our success rate.

Table I shows our attack scores for different coefficients. The
columns represent the actual value of the sampled coefficients
during the attack stage, while the rows show the predicted
value. Although the range is between -41 and 41, we observed
values between -14 and 14 with 220,000 tests—Table I shows
attack scores for coefficients between -7 and 7 for brevity.

Our attack has 100% success rate for guessing the sign of
the coefficients. Table I shows that, as expected, the negative
values are more accurately extracted given the third vulnera-
bility (negation operation) we exploit. For example, HWs of
coefficient -2 and -3 are the same but the HWs of 2 and 3
are different. Therefore, when -2 and -3 are negated, they will
manifest different power consumption behaviors.

C. Integrating ‘LWE with Hints’

To estimate the remaining search space based on our attack
results, we applied a recent technique [31], which integrates
side-channel information into the Learning-with-Errors instance
to analyze its effect on the cryptanalytic security of the scheme.
The framework extends the primal attack reductions by in-
serting distorted bounded distance decoding (DBDD) problem
before the unique shortest vector problem (uSVP). It then
reports the hardness of the uSVP instance as the block size
of the BKZ algorithm. To translate the block size to the
bit security, related SVP hardness must be calculated. Their
seminal paper reports that bikz corresponds to 2.98× of the
bit-level security [31]3. We follow the same approach, apply
their code on our results, and report security results in the
same manner.

Embedding LWE instance into DBDD allows analyzing secu-
rity effects of information gained by side-channel leakages. To
this end, the framework [31] is able to integrate the following
information into the DBDD instance:

• Perfect hints: 〈s, v〉 = l
• Modular hints: 〈s, v〉 = l mod k
• Approximate hints: 〈s, v〉 = l + εσ
• Short vector hints: v ∈ Λ

3For example, we choose SEAL parameter set for 128-bit security level
which corresponds to 382.25 bikz.

TABLE II
GUESSING PROBABILITIES DERIVED FROM SELECTED MEASUREMENTS.
WE FOLLOW THE EARLIER METHOD [31], THE ATTACK IS “NOT” DONE
JUST FOR -2 TO +2 BUT FOR THE FULL SET OF COEFFICIENTS; RESULTS

GIVEN HERE IS FOR A SUBSET AS IN [31] FOR SIMPLICITY.
. . . -2 -1 0 1 2 . . . centered variance

0 . . . 0 0 1 0 0 . . . 0 0
1 . . . 0 0 0 ≈ 1 2.7 · 10−10 . . . 1 2.7 · 10−10

-1 . . . 0 1 0 0 0 . . . −1 0
2 . . . 0 0 0 2.8 · 10−53 ≈ 1 . . . 2 0

-2 . . . 1 0 0 0 0 . . . −2 0

TABLE III
COST OF ATTACK WITH/WITHOUT HINTS FOR SEAL-128 PARAMETER

SETS.
SEAL-128

Attack without hints (bikz) 382.25
Attack with hints (bikz) 12.2

TABLE IV
COST OF ATTACK WITH/WITHOUT HINTS USING “ONLY” BRANCH

VULNERABILITY FOR SEAL-128 PARAMETER SETS
SEAL-128

Attack without hints (bikz) 382.25
Attack with hints (bikz) 253.29
Attack with hints & guesses (bikz) 252.83
Number of guesses 1
Success probability 20%

For the single-trace attack, we focus on perfect and approximate
hints since the perfect hints allow integrating information
gained by noisy power leakages with high guessing confidence.
Approximate hints allow integrating the same information when
the guessing confidence is lower.

The framework takes the scores of each measurement and
creates probabilities for each output. Then, it generates n secret
values and selects measurements for those values uniformly at
random. Finally, the probability tables for those measurements
are integrated into DBDD instance in order to estimate the
hardness of the problem. Our experiments in Table I show
that some coefficients can be guessed correctly with very high
probability, while others have relatively lower probability. Thus
the framework uses them as the perfect hints or approximate
hints in accordance with their probabilities. Table II shows the
probabilities of guesses for several secrets as an example. The
probability of the correct guesses in the Table II is very close
to 1. Therefore, the framework selects those measurements as
prefect hints.

For simplicity, Table II only includes the guessing prob-
abilities of (−2, 2) intervals since they are more frequently
observed. We have noticed that some possibilities rounded up to
1 or down to 0 because of the floating-point precision, therefore
we marked those values with ≈ sign.

Note that Table I shows the success rates when most likely
template is selected as the result while Table II computes the
success rate from the possibilities of each template without
selecting any candidates as in [31]. Thus there might be a slight
difference between them. Table III shows the cost of primal
attack for the smallest parameter set of SEAL-128 where q =
132120577, n = 1024, and σ = 3.2. Since our attack can guess
most of the coefficients of the secret with high confidence, i.e.,
the distribution has a variance that is very close if not equal to
0, the cost when the hints are used is only 12.2 bikz, which can
be interpreted as complete break of the scheme (i.e., security
level of about 24.4 [31]).
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We also analyze the case where the adversary only leverages
the branch-related vulnerability. In this scenario, the adversary
can guess the sign of the coefficient and if the coefficient is
equal to zero correctly4. The cost of the primal attack is given in
Table IV. The hints reduce security bikz from 382.25 to 253.29
(equivalently, from a security level of 2128 to 284.34 [31]).
Therefore, signs alone cannot recover the plaintext message.
The second and third vulnerabilities we identify should be used
for a successful attack.

V. DISCUSSIONS
A. Potential Defenses

Our goal is to inform the single-trace side-channel vulnera-
bilities and to quantify if they have the potential to lead to a
successful attack. We urge the developers to incorporate some
form of countermeasures to prevent the attacks we propose.
Such defenses may involve shuffling or other forms of ran-
domization/obfuscation. We do not recommend masking-based
defenses as they are known to be susceptible against single-
trace side-channel attacks [15]. The combination of various
defense approaches is most likely the best option for both
single-trace and multi-trace side-channel attacks.

Microsoft SEAL has been patched since the beginning of this
research. SEAL v3.6 update uses an iterator function instead
of using if-else conditions we analyzed [35]. Therefore, SEAL
v3.6 and later versions may have a different vulnerability, which
is left for future work.
B. Drawbacks of Our Attack

Template attacks need profiling and the ability to configure
keys. They may require a great number of traces to create a
good template. They also need to take the curse of dimension-
ality into account [36]. We limit our attack to a single device,
cross-device attacks may need a more complicated, machine-
learning-based profiling [20]. Since the noise of the platform
increases with the operating frequency of the device, we set
the operating frequency of the design to a constant 1.5 MHz.
Attacking devices with higher clock frequency may require
utilizing more advanced measurement equipment. Likewise,
attacking more secure versions (196-bit or 256-bit) is likely
to be harder because of the increased precision and number of
coefficients.

VI. CONCLUSIONS

So far, the research on HE has been on making it more
practical given its high computational overhead. However, as
HE is now starting to move into real-world applications, more
focus is needed on their implementation security. This paper
proposes the first side-channel attack on Microsoft SEAL,
which is a major HE software library. We demonstrate the
unique vulnerabilities of the Gaussian sampling sub-routine in
SEAL and validate the practicality of our attack with real mea-
surements. Therefore, some form of countermeasure is needed.
Since we apply a single-trace side-channel analysis, masking
would not be a viable option to mitigate this vulnerability. We
thus encourage countermeasures based on shuffling and better
software coding practices to eliminate conditional executions
on sensitive values.

4Our attack can guess the correct branches with 100% success rate.
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