
Now Look Here! ⇓

Mixed Reality Improves Robot Communication

Without Cognitive Overload

Nhan Tran1,2, Trevor Grant3, Thao Phung2, Leanne Hirshfield3, Christopher
Wickens4, and Tom Williams2

1 Cornell University, Ithaca NY 14853, USA nt322@cornell.edu Colorado School of
Mines, Golden CO 80401, USA twilliams@mines.edu

2 University of Colorado Boulder, Boulder CO 80309
leanne.hirshfield@colorado.edu

3 Colorado State University, Fort Collins CO 80523

Abstract. Recently, researchers have initiated a new wave of convergent
research in which Mixed Reality visualizations enable new modalities of
human-robot communication, including Mixed Reality Deictic Gestures

(MRDGs) – the use of visualizations like virtual arms or arrows to serve
the same purpose as traditional physical deictic gestures. But while re-
searchers have demonstrated a variety of benefits to these gestures, it is
unclear whether the success of these gestures depends on a user’s level
and type of cognitive load. We explore this question through an exper-
iment grounded in rich theories of cognitive resources, attention, and
multi-tasking, with significant inspiration drawn from Multiple Resource

Theory. Our results suggest that MRDGs provide task-oriented benefits
regardless of cognitive load, but only when paired with complex language.
These results suggest that designers can pair rich referring expressions
with MRDGs without fear of cognitively overloading their users.
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1 Introduction

Successful human-robot interaction in many domains relies on successful com-
munication. Accordingly, there has been a wealth of research on enabling human-
robot communication through natural language [31, 49]. However, just like human-
human dialogue, human-robot dialogue is inherently multi-modal, and requires
communication channels beyond speech. Human interlocutors regularly use gaze
and gesture cues to augment, modify, or replace their natural language utter-
ances, and will often use deictic gestures such as pointing, for example, to (1)
direct interlocutors’ attention to objects in the environment, (2) reduce the num-
ber of words that the speaker must use to refer to their target referents, and (3)
lower the cognitive burden imposed on listeners to interpret those utterances.

Due to the prevalence and utility of deictic gestures in situated communica-
tion, human-robot interaction researchers have sought to enable robots to un-
derstand [30] and generate [42, 40, 39] deictic gestures as humans do. However,
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the ability to understand and generate deictic gestures comes with hardware
requirements that can be onerous or unsatisfiable in certain use cases. While
perceiving deictic gestures only requires a camera or depth sensor, generating
deictic gestures requires a specific morphology (e.g., expressive robotic arms).
This fundamentally limits gestural capabilities, and thus overall communicative
capabilities, for most robotic platforms in use today. As examples, robots such
as mobile bases used in warehouses, assistive wheelchairs, and unmanned aerial
vehicles (UAVs) lack the morphologies needed to effectively communicate in this
manner. Even for robots that do have arms, traditional deictic gestures have
fundamental limitations. In contexts such as urban or alpine search and rescue,
for example, robots may need to communicate about hard-to-describe and/or
highly ambiguous referents in novel, uncertain, and unknown environments.

Consider, for example, an aerial robot in a search and rescue context. If the
robot needs to generate an utterance such as “I found a victim behind that tree”
(cf. [68]), the ability to precisely pick out the target tree using a gestural cue
would be of great value, as the referring expressions the robot would need to
generate without using gesture would likely be convoluted (e.g., “the fourth tree
from the left in the clump of trees to the right of the large boulder”) or not
readily human-understandable (e.g., “the tree 48.2 meters to the northwest”).

Unfortunately, such a UAV would be unlikely to have an arm mounted on it
solely for gesturing, meaning that physical gesture is not a realistic possibility, no
matter its utility. Moreover, even in the unlikely case that the robot had an arm
mounted on it, it is unlikely that a traditional pointing gesture generated by such
an arm would be able to pinpoint a specific far-off tree. In this work, we present
a solution to this problem that builds on recent collaborative work between the
HCI subfields of Mixed Reality and Human-Robot Interaction, which have come
together to initiate a new wave of convergent research in which Mixed Reality
visualizations are used to enable fundamentally new modalities of human-robot
communication. Specifically, we present a Mixed Reality solution that enables
robots to generate effective deictic gestures without imposing any morphological
requirements. Specifically, we present the first use of the Mixed Reality Deictic
GesturesMRDGs proposed by Williams et al. [67] to be deployed in a rich, multi-
modal, task-based environment using real robotic and mixed reality hardware.

MRDGs are visualizations that can serve the same purpose as traditional
deictic gestures, and which fall within the broad category of view-augmenting
mixed reality interaction design elements in the Reality-Virtuality Interaction
Cube framework [65]. Williams et al. [67] divide these new forms of visual ges-
tures into perspective-free gestures that can be projected onto the environment,
and allocentric gestures (visualized in the perspective of the listener) that can
be displayed in teammates’ augmented reality (AR) head-mounted displays.
Recent work on perspective-free gestures has focused on the legibility of pro-
jected gestures [54], while recent work on allocentric gestures has focused on
gesture effectiveness when paired with different kinds of language (in virtual
online testbeds) [63, 64] and on effectiveness of ego-sensitive allocentric gestures
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such as virtual arms [18, 7, 20, 16, 14]. In this work we focus on this first, (non-
egosensitive) allocentric category of MRDG.

In previous work, Williams et al. [64] (see also [63]), suggested that (non-
ego-sensitive) allocentric MRDGs might increase communication accuracy and
efficiency, and, when paired with complex referring expressions, might be viewed
as more effective and likable. However, MRDGs have been primarily tested in
video-based simulations [64, 63], or in rigid experiments with low ecological va-
lidity [18, 7, 20]. In this paper, we present the first demonstration of MRDGs
generated on actual AR Head-Mounted Displays (the Hololens) by commercial-
grade robots, in rich, multi-modal, task-based environments.

Deploying MRDGs in these realistic task-based robotic environments allows
us to how the dimensions of realistic task contexts and realistic robotic com-
munication may or may not actually afford the effective use of such gestures.
As previously pointed out by Hirshfield et al. [23], the tradeoffs between lan-
guage and visual gesture may be highly sensitive to teammates’ level and type
of cognitive load. For example, Hirshfield et al. [23] suggest that it may not be
advantageous to rely heavily on visual communication in contexts with high vi-
sual load, or to rely heavily on linguistic communication in contexts with high
auditory or working memory load. These intuitions are motivated by prior theo-
retical work on human information processing, including the Multiple Resource
Theory (MRT) by Wickens [57, 58]. On the other hand, recent work conducted
in rigid, non-task-based laboratory studies involving robots with purely gestural
capabilities has demonstrated the extremely successful effectiveness of MRDGs
at manipulating interactant attention in order to maximize object task-based
metrics of interaction success [18, 7].

It is thus unclear whether the success of MRDGs depends on the level and
type of cognitive load that a user is under, or the type of multimodal commu-
nications strategies they are used in service of, or whether they might simply
be broadly effective regardless of these factors. In this work, we thus analyze
the use of MRDGs in the context of different multimodal robot communication
strategies through a human-subjects experiment whose experimental design is
grounded in rich theories of cognitive resources, attention, and multi-tasking,
with significant inspiration drawn from Multiple Resource Theory.

Our results provide partial support for a Universal Benefit Hypothesis, which
suggests that MRDGs provide task-oriented benefits regardless of what type of
load users are under; our results show that MRDGs may only provide these
benefits when paired with rich referring expressions. These results provide criti-
cal insights for designers, suggesting that designers operating in Mixed Reality
Robotic domains can and should pair rich referring expressions with MRDGs
without fear of cognitively overloading their users in certain cognitive contexts.

The rest of the paper proceeds as follows. In Section 2, we discuss related work
on Mixed Reality HRI and the resource theories of attention and multitasking.
In Section 3, we present a human-subject experiment to study the effective-
ness of different robot communication styles under different types of cognitive
load. In Section 4, we present the results of this experiment. Our results show
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that MRDGs enhance the effectiveness of robot communication, regardless of
how robots’ verbal communication is phrased, and regardless of what level and
type of mental workload interactants are under (at least under the phrasings
and parameterizations used in this experiment). Finally, in Sections 5 and 6 we
conclude with general discussion, and recommendations for future research.

2 Related Work

2.1 AR for HRI

Mixed reality technologies that integrate virtual objects into the physical world
have sparked recent interest in the Human-Robot Interaction (HRI) community
[66] because they enable better exchange of information between people and
robots, thereby improving mental models and situation awareness [47].

Despite significant research on augmented and mixed reality for several decades,
[4, 3, 50, 69, 5] and acknowledgement of the potential for impact of AR on HRI [15,
32], only recently has there been significant and sustained interest in the Virtual,
Augmented, and Mixed Reality for Human-Robot Interaction (VAM-HRI) com-
munity [66, 17, 53]. Recent works in this area include approaches using AR for
robot design [36], calibration [43], and training [46]. Moreover, there are a num-
ber of approaches towards communicating robots’ perspectives [22], intentions
[2, 13, 8, 11, 9], and trajectories [6, 52, 37, 12].

Sharing perspectives is one of the best ways to improve human-robot inter-
action. Amor et al. [1] suggest that projecting human instructions and robot
intentions in a constrained and highly structured task environment improves
human robot teamwork and produces better task results [1, 2, 13]. Similarly,
Sibirtseva et al. [44], enable robots receiving natural language instructions to
reflexively generate mixed reality annotations surrounding candidate referents
as they are disambiguated [44]. Finally, several researchers [63, 64, 19, 7, 20, 14]
investigate AR augmentations as an active rather than passive communication
strategy, generated as gestures accompanying verbal communication.

2.2 Resource Theories of Attention and Multitasking

The previous section outlines the current state of AR for HRI, especially with
respect to active and passive communication. We argue that future robots must
tailor visual cues to the contextual needs of human teammates. As the first
step towards enabling adaptive multimodal interfaces for human-robot commu-
nication, this study aims to unravel the interaction between MRDGs, human
mental workload, and the nature of the multimodal interface in which gestures
are generated, to determine whether mental workload and multimodality should
be accounted for in future adaptive systems. The theoretical foundation for our
investigation is supported by theories of attention and multitasking, especially
as they pertain to mental workload and multiple resources [58–60].

First, resource theory posits limits to multitasking related to the difficulty
or mental workload imposed by a task, and the relation between the resources
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demanded by the task (MWL) and the cognitive resources available to the user
[61]. In a dual task context, when one (primary) task is increased in difficulty,
the resources available for a secondary task decrease, along with performance on
that task, in a reciprocal fashion. This is the foundation of single resource theory
[25, 35]. In our experiment, we assess the MWL demands of a primary robotics
task by a standardized scale, the NASA Task Load Index (TLX).

Second, the theory of resources in multi-task contexts has been expanded to
assume multiple resources [34] defined on the basis of neurophysiological struc-
tures such as the auditory versus visual cortex or the spatial and verbal cerebral
hemispheres [62, 59, 60]. As applied to multitasking, the existence of multiple
resources implies that the perfect reciprocity between the demands of one (pri-
mary) task, and a concurrently performed (secondary) task no longer holds, to
the extent that the two tasks employ different resources (e.g., auditory presen-
tation on one, visual on the other). Performance on one task can still be pre-
served, despite higher demands on the other. This high time-sharing efficiency
when separate resources are used, forms the basis of our empirical work, and
our envisioned future adaptive interfaces: to switch the modality of information
provided in a dialogue, as a function of the higher demands of a primary task.
In the next two subsections, we provide further detail on relevant prior work on
both Multiple Resource Theory and on Theories of Dual-Tasking.

2.3 Multiple Resource Theory

The Multiple Resource Theory (MRT) proposed by Wickens [57, 58] states that
people have different cognitive resources for processing information. These re-
sources can process different information at the same time and can be categorized
along three dimensions: 1) early vs. late processing stage, 2) spatial vs. verbal
processing code, and 3) visual vs. auditory modality [58].

The complexity of the tasks determines how these resources are utilized. For
example, if the various tasks need to tap the same pool of resource, it will process
the information sequentially. If the tasks need to access different resources, infor-
mation will be processed in parallel. Additionally, the task performance indicates
how these resource limits are reached. When two or more tasks that require a
single resource are performed at the same time, a supply and demand occurs.
Task error and performance decrement occur when a task that requires the same
resource causes excess workload. Furthermore, MacDonald et al. [28] suggests
that there is a complex relationship between workload and job performance: An
increase in workload does not always result in a decrease in performance and
performance can be affected by both high and low workload [28]. If the users are
under low workload, also known as underload, they might become bored, lose
situation awareness, and reduce alertness.

Applying MRT in the context of collocated human-robot teaming, it is even
more crucial for robots to communicate using the appropriate modalities and
context-aware methods that do not overload the mental resources of the human
operator. Wickens’ MRT framework can be used to evaluate: (1) when tasks
can be carried out simultaneously, (2) how tasks interfere with each other, and
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(3) how increasing in one task’s difficulty may impact other task’s performance
[58]. Our current work is motivated by a vision of future MRT-inspired robotic
communication systems that could be used in scenarios involving multitasking
by human operators and multimodal presentation of information. Such adaptive
systems can potentially lead to more efficient use of resources, more task-relevant
presentation of information, increased task performance, improved perception of
the robot, and safer environment for collocated human-robot collaboration.

2.4 Dual-Tasking

Many researchers have used dual-tasking to study the limitations of human abil-
ity to process information [45, 41]. In the dual-task method, subjects perform
two tasks concurrently; often one of thee is designated primary and the other
secondary. It is assumed (and instructed) that the participant will allocate neces-
sary resources to the primary task, so that it does not deteriorate in the presence
of the secondary task. The results then provide insights into how tasks can be
carried out together and how they contribute to the workload. A classic example
is driving a car and talking with passengers. This dual-task situation becomes
challenging when the demand for driving task increases in poor road conditions,
or if the secondary task involves a heated argument [45].

Wickens [58] demonstrated how performance decreases under dual-task con-
dition and provides theoretical implications for resource allocation. For example,
two tasks requiring the same modality will produce lower performance compared
to when modalities differ. During an intense car drive that requires the driver to
increase demand in processing the primary task spatially, it would be much eas-
ier to verbally process a secondary task (e.g., additional navigation instructions).
Taking into account the impact of dual-task performance on mental workload,
we designed a dual-task experiment that systematically varies cognitive load by
changing the input modality (visual vs. auditory presentation of task structure)
and the central processing code (spatial annotation over the target object vs.
verbal instruction describing where the target object is located).

3 Experiment

We experimentally assessed whether the level and type of cognitive load and/or
the multimodal communication strategies into which MRDGs are integrated
mediate the effectiveness of those mixed-reality deictic gestures. To do so, our
experiment used a 4×3 within-subjects experimental design (as described be-
low), in which four levels and types of of cognitive load (high visual perceptual
load, high auditory perceptual load, high working memory load, and low overall
load) were crossed with three different multi-modal communication strategies
(MRDGs paired with complex vs simple language, as well as vs complex lan-
guage alone without the use of mixed-reality deictic gestures). This design is
based on the assumptions that there are different perceptual resources, that
MRDGs employ visual-spatial resources in accordance with MRT, and that the
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Fig. 1. During the experiment, participants play a mixed reality game using the Mi-
crosoft HoloLens. The Pepper robot is positioned behind the table, ready to interact.

linguistic dimensions of different communication strategies differentially employ
auditory resources in accordance with MRT. Our experiment was designed to
contrast two overarching competing hypotheses.

The first hypothesis, the Cognitive Contextual Benefit Hypothesis, formalizes
the intuitions of Hirshfield et al. [23]:

H1.1 Users under high visual perceptual load will perform quickest and most
accurately when robots rely on complex language without the use of MRDGs.

H1.2 Users under high auditory perceptual load will perform quickest and
most accurately when robots rely on MRDGs without the use of complex
language.

H1.3 Users under high working memory load will perform quickest and most
accurately when robots rely on MRDGs without the use of complex language.

H1.4 Users under low overall load will perform quickest and most accurately
when robots rely on MRDGs paired with complex language.

The second hypothesis, the Universal Benefit Hypothesis, instead would sug-
gest that due to the substantial task-oriented benefits provided by mixed real-
ity decitic gestures (as observed in experimental work on real robotic and MR
hardware published after that Hirshfield et al. [23], e.g. [18]), MRDGs will be
universally beneficial, regardless of cognitive load.

H2 Mixed-reality deictic gestures will be equally effective regardless of level and
type of cognitive load.

3.1 Task Design

We will now describe the design of the experimental task designed to assess
these two competing hypotheses. Participants interacted with a language-capable
robot while wearing the Microsoft HoloLens over a series of trials, with the
robot’s communication style and the user’s cognitive load systematically varying
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Fig. 2. After completing the tutorial and familiarizing themselves with the HoloLens,
participants engage in each of the twelve trials. Their primary task is to pick-and-place
the target block into the target bin. Throughout a 90-second experiment trial, the
robot Pepper interrupts every 22.5 seconds with a secondary task.

between trials. The experimental task ensemble employed a dual-task paradigm
oriented around a tabletop pick-and-place task. Participants view the primary
task through the Microsoft HoloLens, allowing them to see virtual bins overlaid
over the mixed reality fiducial markers on the table, as well as a panel of blocks
above the table that changes every few seconds. As shown in Fig. 1, the Pepper
robot is positioned behind the table, ready to interact with the participant.

Primary Task

The user’s primary task is to look out for a particular block in the block panel (se-
lected from among red cube, red sphere, red cylinder, yellow cube, yellow sphere,
yellow cylinder, green cube, green sphere, green cylinder4). These nine blocks
were formed by combining three colors (red, yellow, green) with three shapes
(cube, sphere, cylinder). Whenever participants see this target block, their task
is to pick-and-place it into any one of a particular set of bins. For example, as
the game starts, the robot might tell a user that whenever they see a red cube
they should place it in bins two or three.

Two additional factors increase the complexity of this primary task. First,
at every point during the task, one random bin is marked as unavailable and
greyed out (with the disabled bin changed each time a block is placed in a bin).
This forces users to remember all target bins. Second, to create a demanding
auditory component to the primary task ensemble, the user hears a series of
syllables playing in the task background, is given a target syllable to look out
for, and is told that whenever they hear this syllable, the target bins and non-
target bins are switched. In other words, the bins they should consider to place
blocks in should be exchanged with those they were previously told to avoid. For
example, if the user’s target bins from among four bins are bins two and three,
and they hear the target syllable, then future blocks will need to be placed
instead into bins one and four. The syllables heard are selected from among

4 These block colors were chosen for consistent visual processing, as blue is processed
differently within the eye due to spatial and frequency differences of cones between
red/green and blue. This did mean that our task was not accessible to red/green
colorblind participants, requiring us to exclude data from colorblind participants.
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(bah, beh, boh, tah, teh, toh, kah, keh, koh). These nine syllables were formed by
combining three consonant sounds (b,t,k) with three vowel sounds (ah,eh,oh).

Secondary Task

As shown in Fig. 2, three times per experiment trial, the participant encounters
a secondary task, in which the robot interrupts with a new request, asking the
participant to move a particular, currently visible block, to a particular, currently
accessible bin. Depending on experiment trial condition, this spoken request was
sometimes accompanied by a MRDG. Unlike the long-term primary task that
requires participants to remember the initial target block and keep track of the
continuously changing target bins during the 90 second round, in the secondary
task the robot asks participants to pick a different target block and place it in a
different target bin, after which participants can continue the primary task.

3.2 Experimental Design

We used a Latin square counterbalanced within-subjects design with two within-
subjects factors: Cognitive Load (4 loads) and Communication Style (3 styles).

Cognitive Load

Our first independent variable, cognitive load, was manipulated through our
primary task. Following Beck and Lavie [27], we manipulated cognitive load by
jointly manipulating memory constraints and target/distractor discriminability
(cp. [26]), producing four load profiles: (1) all load considered low, (2) only
working memory load considered high, (3) only visual perceptual load considered
high, and (4) only auditory perceptual load considered high.

Working memory load was manipulated as follows: In the high working
memory load condition, participants were required to remember the identities of
three target bins out of a total of six visible bins, producing a total memory load
of seven items: the three target bins, the target block color and shape, and the
target syllable consonant and vowel. In all other conditions, participants were
only required to remember the identities of two target bins out of a total of four
visible bins, producing a total memory load of six items.

Visual perceptual load was manipulated as follows: In the high visual
perceptual load condition, the target block was always difficult to discriminate
from distractors due to sharing one common property with all distractors. For
example, if the target block was a red cube, all distractors would be either red
or cubes (but not both). In the low visual perceptual load condition, the target
block was always easy to discriminate from distractors due to sharing no common
properties with any distractors. For example, if the target block was a red cube,
no distractors would be red or cubes.

Auditory perceptual load was manipulated as follows: In the high audi-
tory perceptual load condition, the target syllable was always difficult to discrim-
inate from distractors due to sharing one common property with all distractors.
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For example, if the target syllable was kah, all distractors would either start
with k or end with ah (but not both). In the low auditory perceptual load con-
dition, the target syllable was always easy to discriminate from distractors due
to sharing no common properties with any distractors. For example, if the target
syllable was kah, no distractors would either start with k or end with ah.

Communication Style

Our second independent variable, communication style, was manipulated through
our secondary task. Following Williams et al. [63, 64], we manipulated commu-
nication style by having the robot exhibit one of three behaviors:

1. During experiment blocks associated with the complex language commu-
nication style condition, the robot referred to objects using full referring
expressions needed to disambiguate those objects (e.g., “the red sphere”).

2. During experiment blocks associated with the MR + complex language
communication style condition, the robot referred to objects using full re-
ferring expressions (e.g., “the red sphere”), paired with a MRDG (an arrow
drawn over the red sphere).

3. During experiment blocks associated with the MR + simple language
communication style condition, the robot referred to objects using minimal
referring expressions (e.g., “that block”), paired with a MRDG (an arrow
drawn over the object to which the robot was referring).

Following Williams et al. [63, 64], we did not examine the use of simple lan-
guage without MR, which precludes referent disambiguation, resulting in the
user needing to ask for clarification or guess between ambiguous options.

3.3 Measures

We expected performance improvements to manifest in our experiment in four
ways: task accuracy, task response time, perceived mental workload, and per-
ceived communicative effectiveness. These were measured as follows:

Accuracy was measured for both tasks by logging which object participants
clicked on, determining whether this was the object intended by the task or by
robot, and determining whether this object was placed in the correct bin.

Response time (RT) was measured for both primary and secondary tasks
by logging time stamps at the moment participants interacted with virtual ob-
jects (both blocks and bins). In a primary task, whenever participants see a
target block, their task is to pick-and-place it into any one of a particular set of
bins. Thus, response time was measured as the delay between when the target
block is first displayed and when the placement is completed because a new tar-
get block is immediately placed in a different location within the shown panel
after a completed placement by the participant. In the secondary task, response
time was measured as the time between the start of Pepper’s utterance and the
placement of the secondary target block.
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Perceived mental workload was measured using a NASA Task Load In-
dex (TLX) survey[21]. At the end of each experiment block, participants were
asked to fill out a NASA TLX Likert 7-point scale survey across six categories:
mental demand, physical demand, temporal demand, performance, effort, and
frustration.

Perceived communicative effectiveness was measured using the modi-
fied Gesture Perception Scale [42] previously employed by Williams et al. [63,
64]: Participants were asked at the end of each experiment block to answer three
7-point Likert items on the effectiveness, helpfulness, and appropriateness of the
robot’s communication styles.

3.4 Procedure

Upon arriving at the lab, providing informed consent, and completing demo-
graphic and visual capability survey, participants were introduced to the task
through both verbal instruction and an interactive tutorial.

The use of this interactive tutorial was motivated by several pilot tests that
were run before conducting official trials. The initial pilot testers were given
verbal instructions on how to use the HoloLens, how to complete their tasks in
each round, and then were asked to start the 12 rounds. Feedback from these
pilot tests showed that participants were not confident in their understanding of
the HoloLens or game, so they struggled in the first couple rounds and improved
with trial and error. This caused the participants’ performance to be lower in
the first few rounds than the later rounds, which made it hard to tell how the
variations in the 12 rounds affect performance. To correct this, our team designed
a tutorial scene that each participant completes at the start of the experiment,
which further pilot studies demonstrated as addressing those concerns.

The tutorial scene walks the participant through a sample experimental
round. When the participant starts the tutorial, they see a panel with text-
instructions, a row of blocks, and four bins. Participants are walked through
how to use the HoloLens air tap gesture to pick up blocks and put them in bins
through descriptive text and an animation showing an example air tap gesture,
and informed of task mechanics with respect to both target/non-target bins and
temporarily disabled grey bins. Participants then start to hear syllables being
played by the HoloLens. When the target syllable teh plays, the target and non-
target bins switch. Each bin on screen is labeled as a ‘target’ or ‘non-target’,
in order to help the participant understand what is happening when the target
syllable plays. These labels are only shown in the tutorial and participants are
reminded that they will have to memorize which bins are targets for the actual
game. At the end of the tutorial the participant has to successfully put a target
block in a target bin three times before they can start the experiment.

After completing this tutorial, participants engaged in each of the twelve
(Latin square counterbalanced) experimental trials formed by combining the
four cognitive load conditions and the three communication style conditions, with
surveys administered after each experiment block. The length of the experiment,
including surveys and breaks between each trial, was around 30 minutes.
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3.5 Participants

36 participants were recruited from Colorado School of Mines (31 M, 5 F), ages
18-32. None had participated in previous studies from our laboratory.

3.6 Analysis

Data analysis was performed within a Bayesian framework using JASP 0.11.1 [48],
using the default settings as justified by Wagenmakers et al. [51]. For each mea-
sure, a repeated measures analysis of variance (RM-ANOVA) [10, 33, 38] was
performed, using communication style and cognitive load as random factors. In-
clusion Bayes Factors across matched models (BFIncl [29]) were then computed
for each candidate main effect and interaction. BFIncl for candidate effect E

represents the ratio between two probabilities: the probability of our data being
generated under models that included E, and the probability of our data being
generated under models that did not include E. Therefore, this BFIncl represents
the relative strength of evidence for an effect E, i.e.

∑
m∈M |e∈m P (m|data)

∑
m∈M |e 6∈m P (m|data)

,

where e is an effect under consideration, and m is a candidate model in the space
of candidate models M . When sufficient evidence was found for a main effect,
the results were further analyzed using a post-hoc Bayesian t-test [24, 55] with

a default Cauchy prior (center=0, r=
√
2

2
=0.707).

The task accuracy was calculated as the ratio between the number of correct
block placement and the total number of block placements, with 0 being complete
failure and 1 being correct placement for each placed block within a trial.

Finally, transformations were applied to response time data. Since response
time distributions are often not Gaussian (normally distributed) but rather
have a long right-tail, logarithmic log(RT) transformations are often used by
researchers to handle such data [56].

A Shapiro-Wilk test of normality indicated (p<.01) that data in all conditions
was non-normally distributed. While an assumption of normal distribution is not
necessary for our analyses due to our use of a Bayesian analysis framework, the
reason for non-normality in our data was asymmetry, with a long right tail and
a number of extreme positive outliers. These considerations together suggested
the need for data transformation, regardless of analysis framework. To reduce
sensitivity to non-normally distributed outliers and induce a more normal data
distribution, we applied a log transformation on all response time data.

4 Results

4.1 Response Time

Strong evidence was found against any effect of communication style or imposed
cognitive load on primary task response time, with all BFsIncl < 0.028 for an
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effect. These results fail to support either hypothesis, with no benefit of MRDGs
observed in any condition. Our results provided strong evidence for an effect of
communication style (BFIncl=17.860) on secondary task response time, as shown
in Fig. 3, but evidence against an effect of imposed workload (BFIncl=0.017), or
of an interaction between workload and communication style, on response time
(BFIncl=0.018). A post-hoc Bayesian t-test analyzing the effect of communica-
tion style revealed extreme evidence (BF=601.460) for a difference in response
time between the complex language condition (µ = 2.095, σ = 0.325; untrans-
formed µ = 8.877 seconds, σ = 4.072 seconds) and the MR + complex language
condition (µ = 1.955, σ = 0.323; untransformed µ = 7.779, σ = 3.877), weak
evidence (BF=1.551) for a difference in response time between the complex lan-
guage condition and MR + simple language condition (µ = 2.006, σ = 0.436; un-
transformed µ = 8.764, σ = 6.203), and moderate evidence (BF=0.203) against
a difference between the MR + complex language and MR + simple language
conditions. In other words, when you use MR, language makes little difference.
And when you use complex language only, having MR is a big help. The evidence
against an effect of workload but for an effect of communication style provides
partial support for the Universal Benefit Hypothesis, as MRDGs do indeed pro-
vide task-oriented benefits regardless of level and type of cognitive load, but only
when paired with rich referring expressions.

Fig. 3. Effect of communication styles on participant’s secondary task log(RT). Error
bars represent standard errors.

4.2 Accuracy

Strong evidence was found against effects of communication style or imposed
cognitive load on primary or secondary task accuracy (All BFsIncl < 0.033 for an
effect). Mean primary task accuracy was 0.706 (σ = 0.261). Mean secondary task
accuracy was 0.984 (σ = 0.074). These results fail to support either hypothesis,
with no benefit of MRDGs observed in any condition.
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4.3 Perceived Mental Workload

Strong evidence was found against any effects of communication style or imposed
cognitive load on perceived mental workload (BFIncl between 0.006 and 0.040
for an effect). Aggregating across conditions, TLX score sums had a mean of
21.109 out of 42 points (σ = 5.443). Thus, most participants’ perceived workload
data was almost perfectly centered around “medium load”. These results fail to
support either hypothesis, with no benefit of MRDGs observed in any condition.

4.4 Perceived Communicative Effectiveness

Anecdotal to strong evidence was found against any effects of communication
style or cognitive load on perceived communicative effectiveness (BFIncl between
0.049 and 0.117 for an effect on all questions). Participants’ perceived commu-
nicative effectiveness had a mean of 5.611 out of 7 (σ = 1.208). These results
fail to support either hypothesis, with no benefits observed in any condition.

5 Discussion

Our results provide partial support for the Universal Benefit Hypothesis: while
the types of task-oriented benefits of MRDGs previously observed in some recent
laboratory studies [18, 7] were largely unobserved, these benefits were observed,
regardless of cognitive load, for secondary task response time; but only when
MRDGs were paired with complex language. These results suggest that the pri-
mary benefit of MRDGs in robot communication lies in their ability to increase
users’ speed at performing a secondary task by reducing the time taken to per-
form constituent visual searches (especially when paired with complex referring
expressions), regardless of the level and type of workload users are experiencing.

Moreover, our results have interesting (albeit non-identical) parallels with
previous work not performed in realistic task environments [64], which found
that participants demonstrated slower response times when complex language
alone was used, with no clear differences between simple and complex language
when pairing language with MRDGs. That previous study also suggested that
people found a robot to be more likable when it used longer more natural refer-
ring expressions. When combined with the results of our own experiment, this
suggests that robots can likely pair complex referring expression with mixed re-
ality gestures without worrying about cognitively overloading their interlocutors.

Our results overall provide evidence against the four Cognitive Contextual
Benefit Hypotheses, casting doubt on the potential of adaptive automation to
provide benefits in mixed reality human robot dialogue. While this hypothesis
would have predicted that the differences between communication styles under
different cognitive load profiles would primarily be grounded in whether com-
munication style was overall visual or overall auditory, in fact what we observed
is that visual augmentations, especially when paired with complex referring ex-
pressions, may always be helpful for a secondary task (when paired with complex
language), regardless of level and type of imposed workload.
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Fig. 4. Visualization of participant performance in the Complex Language Only / High

visual perceptual load condition. Each row depicts the performance of one participant,
with participants presented in decreasing order of primary task accuracy. Green and
red dots represent primary task block placement times, with green dots indicating
successful placement and red dots indicating unsuccessful placement (i.e., placement
involving an incorrect block or incorrect bin). Xes represent secondary task instruction
and completion times, with dark Xes indicating when the robot started uttering a
secondary task request, blue Xes indicating when participants successfully completed
that secondary task, and pink Xes indicating when participants failed a secondary task
(i.e., placement involving an incorrect block or incorrect bin).

Similarly, we found no effect of imposed workload or gesture on perceived
workload or perceived effectiveness. This may have been for at least three rea-
sons. First, secondary response time differences might simply not have been large
enough for participants to notice: the observed differences were on the order of
one second of response time when overall secondary task response time was
around 7.5 seconds, representing only a 15% secondary task efficiency increase.

Second, the benefits of mixed reality were only seen on speed of response to
the relatively rare secondary tasks, and not to the much more frequent primary
tasks. Participants may have primarily – or only – considered their primary task
when reporting their perceived workload and perceived effectiveness.

Finally, while participants’ TLX scores had a mean of 21.109 out of 42 points
in all conditions (i.e., the data was nearly perfectly centered around “medium”
load), analysis of individual performance trajectories demonstrates that the task
was sufficiently difficult that many participants experienced catastrophic pri-
mary task shedding. Consider Fig. 4, which shows the results of each participant
within one of the twelve conditions, with participants listed in decreasing order
of primary task accuracy. As shown in this figure, and described in the cap-



16 Tran et al.

tion, the bottom 50% of participants experienced large numbers of failures, with
many of these participants experiencing a failure that they never recovered from
immediately after a secondary task, perhaps due to missing an auditory cue
during that secondary task. While Fig. 4 shows only one condition (the complex
language/High visual load condition) for the sake of space, in fact all twelve
condition plots show similar results.

This suggests it may be too early to cast doubt on the potential use of adap-
tive automation in human-robot dialogue, as our results may have been due to
subtle aspects of our experimental or task design rather than universal principles
of human cognition. Moreover, our experiment had a number of limitations that
further motivate the need for future work.

5.1 Limitations and Future Work

While our study provides evidence of the effect of MRDGs on human’s task
response time, it has key limitations to address in future work. Given the catas-
trophic errors experienced by some participants, and given that all twelve con-
dition plots show similar results, our experimental setup should be reconsidered.
For example, some participants failed early into the game and completely lost
track of what block to place in what bin. Providing real-time, directive cues
might help participant recover from errors. However, the purpose of a challeng-
ing primary task is to impose high workload on the participants and to observe
how different communication styles can help enhance human task performance
under cognitive overload. The poor performance observed in our experiment
demonstrates the effect of the cognitive demanding primary task, but the catas-
trophic primary task shredding complicated our effort to unravel the impact
on accuracy, response time, and perceived workload. Additional consideration is
needed to design ways that recovery hints can be presented (visual or auditory)
without interfering with the imposed workload profiles during the experiment.

Additionally, we received feedback from some participants during the debrief-
ing that they felt the series of syllables playing in the task background (e.g., bah,
beh, boh, tah, teh, toh, kah, keh, koh) could easily be misheard. After missing
the auditory cue that signals the switch of the target and non-target bins, they
started to guess the target bins to attempt to proceed with the primary task.
We recommend in future research to use distinguishable sounds instead of these
syllables in order to improve auditory discrimination.

Another direction for future research is to use eye- or hand-tracking (e.g.,
through the HoloLens 2) to more precisely capture response time. For example, it
would have been advantageous to capture the delay between when a target block
first appeared and when participants first gazed at it, or the time between the
block’s first appearance and the participants movement of their hands to commit
to a new target goal. Rather than measuring response time as TimeBlockPlaced
– TimeBlockAppeared in this experiment, researchers could use hand trajectories
and movement data to infer the underlying cognitive processes, such as mental
processing time and midflight corrections (i.e., when participants initially move
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their hands towards an incorrect block, and then perhaps under the suggestion
of the robot, switch their target to the correct block).

Furthermore, devices such as HoloLens 2 enable new input modalities that
allow completely natural hand gestures rather than the simple gaze-and-commit
(e.g., air tap) interaction of the Hololens 1. In our experiment, participants were
given time and tutorials to become acquainted with the headset and practice
the air-tap hand gesture. Even though most participants expressed that they
felt comfortable with the headset and interaction to start the experiment, some
still struggled to pick-and-place the virtual blocks, affecting the measurement
of response time, interfering with the load placed by the primary task. Accord-
ingly, the system’s limitations led to issues in differentiation between the delay
participants took to figure out how to use the gesture vs. the true delay caused
by the cognitively taxing primary task.

Another limitation of our experiment was the number of participants re-
cruited. We were able to recruit 36 participants pre-COVID 19, and while our
current analysis provided evidence against effects of workload profiles on task
time, a larger participant pool would have allowed for more decisive conclusions.

6 Conclusion

We examined the effectiveness of different combinations of natural language
reference and MRDG under different types of mental workload, through a 36-
participant Mixed Reality Robotics experiment. We found that, for our verbal
and nonverbal communication strategies and workload manipulations, MRDGs
improve the effectiveness of users by shortening their response time in a sec-
ondary visual search tasks, regardless of underlying level and type of cognitive
load, providing partial support for a Universal Benefit Hypothesis. Moreover, we
found this to be especially true when MRDGs were paired with complex referring
expressions rather than concise demonstrative pronouns. These results will help
inform future efforts in mixed reality robot communication by demonstrating
how MRDGs and natural language referring expression should be paired to best
enhance the effectiveness of robots’ human teammates.
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